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A B S T R A C T   

Behavioral performance metrics employed to assess the usability of visual displays are increasingly coupled with 
eye tracking measures to provide additional insights into the decision-making processes supported by visual 
displays. Eye tracking metrics can be coupled with users’ neural data to investigate how human cognition in-
terplays with emotions during visuo-spatial tasks. To contribute to these efforts, we present results of a study in a 
realistic air traffic control (ATC) setting with animated ATC displays, where ATC experts and novices were 
presented with an aircraft movement detection task. We find that higher stationary gaze entropy – which in-
dicates a larger spatial distribution of visual gaze on the display – and expertise result in better response ac-
curacy, and that stationary entropy positively predicts response time even after controlling for animation type 
and expertise. As a secondary contribution, we found that a single component comprised of engagement, 
measured by EEG and self-reported judgments, spatial abilities, and gaze entropy predicts task accuracy, but not 
completion time. We also provide MATLAB open source code for calculating the EEG measures utilized in the 
study. Our findings suggest designing spatial information displays that adapt their content according to users’ 

affective and cognitive states, especially for emotionally laden usage contexts.   

1. Introduction 

Understanding how to effectively track multiple objects on an 
animated display is a problem faced by visualization scientists, the 
aviation industry, and the general public. Commonly, animated displays 
are used in research and application domains such as movement data 
analyses, including air traffic control (ATC), crisis management, sur-
veillance, sport analytics, movement ecology, transportation monitoring 
and forecasting, and for human health monitoring (Chevalier et al., 
2016; Dodge, Weibel, Ahearn, Buchin, & Miller, 2016; Hurter, Conversy, 
& Vinot, 2009; Klein, van der Zwan, & Telea, 2014). Animated displays 
serve as decision supports in contexts where situational awareness is 
critical. In the specific case of aviation, air traffic controllers are tasked 
with extracting relevant information from dynamic visual displays that 

will inform their decision on when to make landing and safety-critical 
decisions for aircraft, e.g., based on the speed and orientation of a spe-
cific moving aircraft in a crucial area close to an airport. Typical ATC 
situational awareness tasks include the prompt and accurate perception 
and understanding of ongoing movement patterns of spatio-temporal 
data, as well as the accurate projection of current movements into the 
near future (Endsley, 1995). 

To help decision makers such as air traffic controllers (ATCo) effec-
tively perform situational awareness tasks, animations should be 
adequately designed by considering design principles and users’ indi-
vidual background. The quality of the animation design and the users’ 

cognitive and affective skills, such as their expertise, mental effort and 
engagement level, impact visuo-spatial task performance (Fabrikant, 
Rebich, Montello, Andrienko, & Andrienko, 2008; Fish, 2015; Kriglstein, 
Pohl, & Stachl, 2012; Lowe & Schnotz, 2008; Maggi, Fabrikant, Imbert, 
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& Hurter, 2016; Shipley, Fabrikant, & Lautenschütz, 2013). For 
example, expertise can strengthen visual thinking and support focused 
attention on relevant visuo-spatial information. 

Though much is known about the role of cognitive states and traits in 
decision-making with visual displays, less is known about the role of 
emotions and their interactions with cognitive processes. Emotions are 
especially relevant to ATC decisions given that a mistake could be fatal 
and financially costly, potentially putting decision-makers under stress. 
More specifically, higher engagement and motivation can improve 
cognitive processes such as attentional focus and human-computer in-
teractions (Berka et al., 2007). Contrarily, affective states characterized 
by low engagement and high distress might negatively impact cognitive 
performance (Derryberry & Tucker, 1994; Easterbrook, 1959; Har-
mon-Jones, Gable, & Price, 2012; Roth, 2013), especially vigilance 
(Kamzanova, Kustubayeva, & Matthews, 2014). In addition, ATCo 
exhibiting a low level of engagement combined with high cognitive load 
during ATC tasks, even at high performances, may reflect a lower ability 
to allocate cognitive resources and greater difficulty in mastering critical 
situations (Wickens & Tsang, 2015). Knowing about viewers’ cognitive 
and emotional states is important for visual display designers to develop 
not only aesthetically pleasing, but also understandable and more 
engaging animated displays, such as emotion sensitive assistance sys-
tems for ATCo (Pfeiffer, Valtin, Müller, & Rosenthal, 2016). Effective 
system design in this application context is especially important given 
that ATC decisions have a high impact on health and safety. 

The current study combines multiple measures of user mental and 
affective states and traits (e.g., expertise and spatial skills) to examine 
how to support users making decisions with complex animated displays. 
Specifically, the current study investigates how visual scanning 
behavior, measured by gaze entropy, predicts air traffic controller per-
formance in an applied context using two types of air traffic displays (i. 
e., time-stepped and continuous animated ATC displays), with both 
expert air traffic controllers and non-experts. As a secondary contribu-
tion, we also present an exploratory cross-validation approach to iden-
tify individual factors, which include engagement, mental effort and 
spatial skills, influencing viewers’ performance. 

1.1. Related work 

Animations should be an adequate medium to depict real-time spa-
tio-temporal phenomena, reorientation in time and space, as well as the 
qualitative aspects of motion, compared to static representations 
(Tversky, Morrison, & Betrancourt, 2002). However, animations are 
often depicted in a too fast or complex manner to be effectively tracked 
or adequately understood. They thus do not always conform to the 
apprehension principle of good graphics, which also states that external 
representations should be accurately perceived and appropriately 
conceived (Tversky et al., 2002). 

Five factors guide our visual attention to relevant targets in visual 

search processing: bottom-up guidance by stimulus salience, top-down 
feature guidance, guidance by scene properties and meaning, previous 
history of search over timescales, and modulation of search by the 
relative item value (Wolfe & Horowitz, 2017). Bottom-up visual atten-
tion is guided by preattentive, perceptually salient visual cues, such as 
items, which differ from their surroundings in their attributes. In ATC 
animated displays, the (relative) motion, size (or length) and orientation 
of the moving aircraft are particularly important to identify movement 
speed or direction changes (Hurter et al., 2009). In addition, it seems 
that animations are effective if they show only a few graphic elements at 
a time (Robertson, Fernandez, Fisher, Lee, & Stasko, 2008). 

In air traffic control contexts specifically, Cavanagh and Alvarez 
(2005) highlighted the fact that air traffic controllers can track the 
movement of several aircraft simultaneously by grouping those objects 
with similar behavior such as similar speed or orientation. Conse-
quently, not only animation design, but also expertise influences 
viewers’ visuo-spatial processing of complex displays. The continuous 
processing of spatio-temporal information depicted in animations in-
volves complex interrelationships among bottom-up (stimulus-driven) 
and top-down (previous knowledge driven) mental mechanisms that can 
increase cognitive load (de Koning & Jarodzka, 2017; Franconeri, 
Alvarez, & Cavanagh, 2013; Kriz & Hegarty, 2007; Mayer, 2012), which 
in turn depend on the training level of the viewer (Bunch & Lloyd, 
2006). 

Eye tracking technologies are increasingly used to assess visual 
search processes during the viewing of digital images (Brunyé, Drew, 
Weaver, & Elmore, 2019, December 1), but they are often not sufficient 
to characterize the cognitive and/or emotional mechanisms involved in 
the processing of and decision making with animated displays. Gaze 
transition and stationary entropy can help to inform how individuals 
switch and distribute their attention between AOIs in a digital display 
(see sections 2.3.1 and 2.7.2 for more information; Brunyé et al., 2019; 
van de Merwe, van Dijk, & Zon, 2012). Stationary entropy can be 
defined as the distribution of gaze amongst multiple AOIs, where high 
values indicate more equal attention given across areas. On the other 
hand, transition entropy can be defined as the frequency of switching 
between AOIs, where higher values indicate more frequent switching 
between display AOIs and less predictable visual search. Related work 
on situational awareness in applied contexts suggests that visual search 
and attentional guidance used in critical decision-making vary in com-
plex ways. For instance, users’ gaze transitions might appear more or 
less homogeneously distributed and more or less frequent depending on 
the visual search efficiency, expertise level and emotional state of the 
participant (Jarodzka & Gerjets, 2010). Usually, fewer gaze transitions 
are inferred to be indicators of efficient and directed search patterns, 
while higher transition entropy values are interpreted as a more random, 
non-efficient or exploratory search (Goldberg & Kotval, 1999; 
Holmqvist, 2011). Moreover, past ATC research demonstrates that 
anxiety increases stimulus-driven information processing and thus 
distraction from task-relevant information affecting focused attention 
and task performance (Eysenck, Derakshan, Santos, & Calvo, 2007, 
May). This can be individuated by increases in gaze transition entropy 
(Allsop & Gray, 2014). Similar to what Krejtz et al. (2015) hypothesized 
with highly curious users, we can speculate that more engaged users will 
present lower gaze transitions (i.e., more focused and longer concen-
tration on the same AOI) but more homogeneously distributed across 
AOIs (i.e., higher stationary entropy). 

We need additional approaches to better understand users’ 

emotional states, their perceptual and cognitive abilities, and their po-
tential interactions to be able to better explain why a certain display 
design works and to predict how it will work in similar usage contexts. 
One approach for improving this understanding is coupling standard 
behavioral measurements with neurological data and methodological 
triangulation – here we use the term “triangulate” to refer to multiple 
variable cross-validation (Bryman, 1984; Duchowski, 2002; Holmqvist, 
2011; Schinazi & Thrash, 2018). As quantitative and qualitative 

Abbreviations 

3D Three-dimensional 
AOI Area Of Interest 
ATC Air traffic control 
ATCo Air traffic controller 
EEG Electroencephalography 
ERP Event-related potential 
ODC French Operational Display System (ODS) comet design 
PCA Principal Component Analysis 
SEEV The Salience, Effort, Expectancy, Value model 
SSSQ Short Stress State questionnaire () 
UX User Experience  
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methods have their advantages and disadvantages, one data source 
might be used to disambiguate other data sources that are combined so 
the weaknesses of one behavioral data source can be complemented 
with the strengths of another (Holmqvist, 2011). For example, as 
Hyrskykari, Ovaska, Majaranta, Räihä, and Lehtinen (2008) argued, the 
attention to a specific visual element in a graphic display for a significant 
duration can be interpreted in two contradictory ways: (1) the user is 
attracted by this stimulus and finds it interesting; or, alternatively and 
worthwhile exploring, (2) the user does not understand the depicted 
information and is confused or distracted by it. By coupling eye tracking 
with electroencephalography (EEG) and measures of emotional state 
(self-report), it might be possible to further disentangle these two 
opposing interpretations by taking advantage of theories involving 
emotional and cognitive states as well. 

1.2. The present study 

Our primary aim in the current study is to identify common variables 
that may predict task performance for a multiple object tracking ATC 
task, i.e., the prompt detection of aircraft speed changes depicted on 
animations. In particular, we intend to investigate how well we can 
explain and predict task performance from visual scanning behavior, 
measured by gaze transition and stationary entropy. Further, we 
investigate the role that training with a specific task or display, ani-
mation design, and viewers’ personal traits, such as their spatial abili-
ties, mental effort and stress-related emotional states, have on visual 
search efficiency. To this end, we aim to shed light on the following 
research questions (RQ):  

• (RQ1) How do visual scanning patterns, measured by gaze entropy, 
predict performance (i.e. task completion time and accuracy) with a 
multiple object-tracking task using an ATC animated display? Related, do 
visual scanning patterns contribute to performance independently of 
expertise and animation design, factors that are known to influence 
performance? 
(H1) We expect that individual background and training will influ-
ence participants’ visual search strategies, due to differences in 
viewers’ cognitive processes, familiarity with the displays and task at 
hand, and their intrinsic motivation in succeeding on the task. It 
could be that ATC experts will demonstrate qualitatively different 
search patterns from novices, which in turn will differently predict 
performance when tracking multiple objects, as in 3D volumetric 
image search (Drew et al., 2013), or in aviation (Fox, Merwin, Marsh, 
McConkie, & Kramer, 1996). Alternatively, experts and novices 
could share qualitatively similar search patterns, but with differing 
levels of search efficiency or correlation between search and per-
formance. We thus hypothesize that higher gaze entropy will be 
associated with superior task performance (higher accuracy and 
lower completion time), and the association will be even more pro-
nounced for those with high levels of training or familiarity with the 
animation design type. In other words, the superior task experience 
of experts will be explained by more efficient visual search patterns 
and higher top-down visual processing.  

• (RQ2) What additional individual factors (mental effort, emotional 
states, and spatial abilities) underlying visual scanning behavior will 
predict task performance? To answer this question, we set the 
following competing hypotheses: 
(H2a) These individual factors will vary together and triangulate as 
follows: Task performance will increase with an increase of gaze 
entropy, coupled with an increase of engagement and spatial skills, 
and a decrease of mental effort. Respectively, a decline of task per-
formance will be associated with lower spatial skills, an increase of 
negative emotional states, and a decrease in gaze entropy (i.e., focus 
on perceptually salient visual elements over task-relevant ones). 
(H2b) Gaze entropy and these individual factors will contribute 
independently to task performance. 

To test the first research question (RQ1), we utilized a multilevel 
model approach to determinate the influence of individual search pat-
terns, as well as of group differences (expertise and animation design) on 
task performance. To further investigate the role of viewers’ back-
grounds and internal states (RQ2), we preformed, in this article, a cross- 
validation approach to triangulate quantitative neuroscience data 
streams, traditional task performance metrics, and qualitative data 
collected with standardized questionnaires in an ATC decision-making 
study. We wished to more deeply assess users’ task performance and 
visual search efficiency with visuo-spatial tasks using real-world ATC 
scenarios and ATC animated displays (i.e., continuous and time-stepped 
animations) depicting aircraft movements. 

2. Methods 

2.1. The example of French ATC animated displays 

To make decisions, ATCo use a radar screen, which displays past, 
current and future aircraft positions. Their tasks are very complex, and 
they are mainly focused on monitoring aircraft movements, preventing 
aircraft collisions, and optimizing traffic flow (e.g., fuel consumption, 
and landing and take-off regulation). ATCo’ training is designed to 
optimize their decisions in complex and time-dependent situations. 
Radar screens update aircraft positions on the display using time- 
stepped animations every 4 s. Due to this visual information update, 
ATCo can retrieve current aircraft position and speed. 

Fig. 1 shows the display system currently used by French ATCo at the 
operational level (Hurter & Conversy, 2008). Aircraft are depicted by 
multiple squares. The biggest square represents the current position of 
an aircraft, while the squares of decreasing sizes indicate its past posi-
tions. Speeds and accelerations, as well as direction changes, of an 
aircraft can also be directly inferred from the motion of the aircraft and 
from the distance (or orientation) between past and current positions of 
an aircraft (i.e., the faster the aircraft is traveling, the more separated the 
squares representing past and current positions). Close to the aircraft, 
ATCo can also visualize and gather a variety of information about the 
aircraft, such as the speed, altitude, heading, destination, type of 
aircraft, flight call-signs, and flight intentions. At the same time, they 
have also to communicate with and give instructions to pilots during 
landing or take-off maneuvers. A more complete description and in-
vestigations of ATC activity can be found in past literature (Cordeil, 
Dwyer, & Hurter, 2016; Hurter, Lesbordes, Letondal, Vinot, & Conversy, 
2012; Letondal, Hurter, Lesbordes, Vinot, & Conversy, 2013; MacKay, 
1999; Mackay, Fayard, Frobert, & Medini, 1998) (see Fig. 2). 

Due to the high amount of information and tasks that they have to 
process and accomplish simultaneously, both visually and auditory, 
ATCo are often under conditions of high cognitive load. For this 
experiment, however, we decided to focus only on the prompt detection 
of aircraft speed changes because of our desire to better understand the 
fundamental aspects of visual attention underlying, as well as the 
engagement level and the animation design choices best suited to 
effectively fulfill, basic situational awareness tasks. Specifically, we 
focused on participant’s performance in solving a task involving the first 
level of situational awareness from Endsley (1995)’s model, i.e., how 
well and fast participants perceive the visual elements that continuously 
changes over time on a dynamic scene. The additional two levels have 
been assessed in a supplementary study; the outcomes are not presented 
in this publication. 

2.2. Experimental design 

As shown on Fig. 3, our user study utilized a between-subject design, 
which included two expertise groups (ATC experts versus ATC novices) 
and two ATC animation designs (time-stepped versus continuous ani-
mations). In total, we tested 16 air traffic animations depicting aircraft 
movements. The displays were created using Processing (https://process 
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ing.org/, accessed: 21.01.2021), and designed-based operational display 
system displays and realistic ATC scenarios (Fig. 4). We tested partici-
pants’ task performance (i.e., response accuracy and completion time in 
the detection of accelerating aircraft) in the two different ATC animation 
display conditions. More specifically, we manipulated the visual rate of 
change (smoothness of the transitions between scenes) of the animations 
(DiBiase, MacEachren, Krygier, & Reeves, 1992). Dynamic visual vari-
ables such as rate of change are typically used in cartography to control 
the visual appearance and dynamics of the animation scenes. 
Time-stepped animations depict aircraft movements at 4-s intervals, i.e., 
scenes are refreshed abruptly with one frame every 4 s, the rate currently 
used at the operational level by French ATCo (Hurter & Conversy, 
2008). Conversely, continuous animations display aircraft movements 
continuously, i.e., updated at 60 frames per second. Such displays are 
not used professionally for technical and historical reasons, even if the 

continuous visualization and smooth transitions of the aircraft move-
ments seems to be more coherent with the congruence principle of 
effective graphics than time-stepped animations. This principle states 
that the content and format of a visual display should depict the visual 
information congruently with the mental representations of the user, in 
this case, real aircraft movements visualized with continuous changes 
over time (Tversky et al., 2002). Both animation types (including the 
Processing code) can be visualized at and downloaded from https://osf. 
io/d2jpg/ (accessed: 21.01.2021). 

We manipulated the difficulty of the task by varying the amount of 
the depicted information and the speed of the moving visual entities. 
Specifically, eight of the 16 animations depict four moving aircraft (i.e., 
presenting a lower difficulty level) and eight animations show eight 
moving aircraft (i.e., presenting a higher difficulty level). The aircraft 
movements were depicted using typical take-off speeds (i.e., 160, 200, 
250 and 290 knots, or kts). Four animations show aircraft moving at the 
same speed; the other four animations show aircraft moving at different 
speeds. The speed and heading are kept constant for the whole duration 
of each animation with the exception of one aircraft, which after 4 s 
started to accelerate slowly (0.4 kt/s, 1 knot = 0.514 m/s). However, we 
do not present differences in participants’ cognitive effort between these 
two conditions (4 versus 8 moving objects), as the conditions were 
selected to provide a range of variability in the stimuli and were not 
directly relevant to our research questions. The EEG signals recorded 
within this timeframe were processed to measure participants’ cognitive 
load, frontal alpha asymmetry (FAA), and engagement level. Before 
every animation, a white screen is shown for 500 ms to the participants 
to provide a baseline EEG signal. 

The task required a visual search task (Posner, 1980) to correctly 

Fig. 1. Screenshot of a French ATC radar screen depicting several moving aircraft.  

Fig. 2. The representation of one aircraft according to the French ODC comet 
design (Hurter & Conversy, 2008; Maggi et al., 2016). 
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identify the accelerating aircraft – according to the first (perception) 
situational awareness level (Endsley, 1995) – and to click on the aircraft 
as quickly as possible. To confirm their choice and move on to the next 
animation, participants are asked to press the “enter” key on the 
keyboard. Only one of the depicted aircraft for each trial accelerates (i. 
e., task-relevant item or target), the remaining features have to be 
considered as distractors. To successfully complete the task, participants 
had to avoid distraction by irrelevant but perceptually salient objects, e. 
g., by fast aircraft movements. To distinguish participants’ visual 
attention between thematically relevant and perceptually salient infor-
mation, we designed displays so that the accelerating aircraft was never 
the fastest aircraft. 

2.3. Measures 

In this study we combined eye tracking, EEG and self-reports data to 
measure users’ cognitive states, traits, and emotional reactions (West-
erman, Sutherland, Robinson, Powell, & Tuck, 2007) that might influ-
ence visuo-spatial decision-making. We triangulated eye tracking 
measures (i.e., gaze entropy; see section 2.3.1 for more), self-reported 
engagement (extracted from the Short Stress State questionnaire; Hel-
ton, 2004), and engagement index, alpha power and frontal alpha 
asymmetry (extracted from EEG data; Coan & Allen, 2004; Heger, Putze, 
& Schultz, 2010; Kothe & Makeig, 2011; Wolfe & Horowitz, 2017). 

Table 1 summarizes and defines the physiological and cognitive con-
structs and the related measures. 

2.3.1. Gaze entropy 
Entropy measures are used to compare transition matrices, which 

can indicate whether participants used a directed or a more random 
search strategy for identifying the accelerating aircraft (Shannon, 1948). 
Specifically, we used transition entropy to determine how participants’ 

eye movement sequences transitioned between animated AOIs (4 or 8 
depending on the number of animated aircraft on a given trial, Krejtz, 
Duchowski, & Krejtz, 2014) and stationary entropy to determine the 
distribution of participants eye movements amongst AOIs. More spe-
cifically, gaze transition entropy describes “the rate of fixation transitions 
between defined spatial regions”, indicating an “overall estimation for the 
level of complexity or randomness in the patterns of visual scanning relative 
to stationary entropy, i.e. the overall spatial dispersion of gaze, where higher 
entropy suggests less predictability” (Shiferaw, Downey, & Crewther, 2019, 
January 1). It is a measure of visual scanning efficiency, where “the 
optimal range in gaze transition entropy can be considered the ideal level of 
scanning complexity that results from modulation of the underlying 
bottom-up influence (i.e. distribution of salience within the visual field) by 
top-down prediction (e.g., requirement of the task or the observer’s prior 
knowledge”, and where “gaze transition entropy is expected to increase with 
greater top-down engagement” (Shiferaw et al., 2019). Concurrent analysis 

Fig. 3. Input-process-output model of the experiment.  

Fig. 4. Video screen capture of 2 test stimuli depicting (a) 4 aircraft moving at four different speeds, and (b) 8 aircraft moving at three different speeds (the whole 
animations can be seen at: https://osf.io/d2jpg/, accessed: 21.01.2021). 
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of both gaze transition and stationary entropy can provide more precise 
insights into the viewer’s visual scanning behavior, as follows (accord-
ing to Shiferaw et al., 2019):  

• an increase of both entropy types may reflect the influence of top- 
down modulation resulting in a less structured and a greater 
dispersion of gaze; 

• a decrease of transition entropy accompanied by an increase of sta-
tionary entropy may suggest distractibility or greater bottom-up in-
fluence on gaze control;  

• a decrease of both entropy types may indicate a low top-down 
modulation which results in an insufficient exploration;  

• a decrease of stationary entropy when transition entropy is above the 
optimal range may suggest a top-down interference that leads the 
viewers to concentrate their eye fixations on only certain elements 
within the visual scene. 

However, how both entropy types are interconnected and predict 
visual scanning efficiency also depends on the task and visual scene. 
Gaze transition entropy, as a measure of visual search efficiency, gives 
insights into top-down modulation of gaze control. Gaze stationary en-
tropy, on the other hand, indicates changes in the spatial dispersion of 
eye fixations, which can in turn be influenced by viewers’ top-down 
engagement (Shiferaw et al., 2019). More on how gaze transition en-
tropy is calculated can be found in section 2.7.2. 

2.4. Participants 

A total of 37 participants (M age = 30, range from 19 to 45) took part 
in our experiment. 18 were experts in the domain of ATC (ages ranged 
from 30 to 45, mean age = 38, standard deviation = 3.53; 3 females and 
15 males), with more than 10 years of experience as ATCos in an airport 
or in a air traffic control center, and as instructors at the “Ecole 

Nationale de l’Aviation Civile” (ENAC) in Toulouse, France. 19 partic-
ipants were novices (ages ranged from 19 to 39, mean age = 21, stan-
dard deviation = 4.57; 12 females and 7 males), all psychology students 
at Temple University in Philadelphia (USA), who had no prior knowl-
edge of ATC. Novices received class credits for their participation in the 
study. Equal numbers of experts and novices participated in the exper-
iment with only one type of animation design. This study was run in 
accordance with the recommendations of the Temple University’s 
Human Research Protection Program (HRPP) prior to data collection. 
The ethics procedure was approved by Temple University’s Office for 
Human Subjects Protections, Institutional Review Board (IRB). All par-
ticipants, both ATC experts and ATC novices, gave written informed 
consent to participate in this study. 

2.5. Apparatus 

2.5.1. User experience and self-reported emotional states 
Participants’ emotional states were assessed by means of the Short 

Stress State Questionnaire (Helton, 2004) to measure their task 
engagement, distress, and worry. In total, participants were presented 
24 questions to answer before and after the ATC trials. Participants were 
offered a choice of five responses (1 = not at all, 2 = a little bit, 3 =
somewhat, 4 = very much, 5 = extremely). For each participant, the 
responses of the post-test SSSQ were subtracted by the responses of the 
pre-test SSSQ, and the result divided by the (individual) standard de-
viation (σ) according to equation (1) (Helton, 2004), below: 
Post − score − Pre − score

σ
(1) 

Furthermore, after the experiment, participants were asked to 
respond to two questions about the task easiness and their enjoyment 
with the proposed interface and animation design type used to solve the 
required task. The two questions were:  

• How easy can you detect aircraft movement changes with this kind of 
display?  

• Did you enjoy solving the task with this kind of visualization? 

Participants were offered a choice of five responses (1 = Not easy at 
all/Not at all, 5 = Very easy/Yes, absolutely). 

2.5.2. Spatial abilities test 
To measure the participants’ spatial abilities we used a Hidden 

Pattern Test (Ekstrom, French, Harman, & Dermen, 1976). This previ-
ously validated test measures participant’s visuo-perceptual speed, 
which was especially relevant for the visual detection task in the current 
study. 

2.5.3. Emotiv EPOC + EEG 
We measured participants’ brain activity with Emotiv EPOC+, a 

high-resolution 14-channel mobile EEG (Emotiv Inc., https://www.em 
otiv.com/, accessed: 21.01.2021). The saline-based electrodes for 
brain activity measurements are located at AF3, F7, F3, FC5, T7, P7, O1, 
O2, P8, T8, FC6, F4, F8, AF4. Following the default setting of the 
manufacturer, electrodes at P3 and P4 were used as common mode sense 
(CMS) and driven right leg (DRL) electrodes respectively to provide 
reference to the EEG measurement. The sampling rate was 128 Hz. 

2.5.4. Tobii Studio 
Gaze data were collected with the Tobii TX300 eye tracker (Tobii 

Technology AB, http://www.tobii.com/, accessed: 21.01.2021), and 
calibrated, processed and analyzed with the software Tobii Studio 3.4. 
As I-VT fixation filter, we selected a minimum fixation duration of 60 
ms, and a velocity threshold of 30◦/s. The sampling rate was 300 Hz. 

Table 1 
Cognitive and physiological sensing methods used in our user study, including 
the variables measured and the predicted (or analyzed) user cognitive and 
emotional processes. Further details defining measures and associated data 
processing are provided in the referenced sections.  

Cognitive and 
sensing 
method 

Measures Prediction or post-hoc evaluation 
of the following cognitive and 
affective states 

Neural (EEG) Electrical activity of the 
brain using EEG. Measures 
of interest included alpha 
power, engagement index, 
and frontal alpha asymmetry 
(FAA) 

Cognitive load (measured with 
alpha power, Bunch & Lloyd, 
2006a, mental engagement 
(measured with engagement 
index, Pope, Bogart, & 
Bartolome, 1995), and approach 
versus withdrawal-related 
motivation (measured with FAA,  
Briesemeister, Tamm, Heine, & 
Jacobs, 2013) 

Eye tracking Eye movements and derived 
measures, e.g., transition 
and stationary entropy 

Search strategies and search 
efficiency measured with 
transition and stationary entropy, 
which differentiate between 
directed versus randomly 
distributed gaze transitions over 
the animation scene and across 
their graphic elements, (e.g., a 
focus on specific elements or 
homogeneous gaze transitions 
between all the depicted 
elements) according to Krejtz 
et al. (2015) 

Subjective 
self-reported 

Short stress state 
questionnaire (SSSQ): 
Measures subjective 
emotional engagement, 
distress and worry 

Assessment of self-perceived 
stress states, i.e., engagement, 
distress and worry during the 
task; questionnaire previously 
validated by Helton (2004)  
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2.6. Procedure 

After participants signed the consent form, they were asked to pro-
vide demographics, and complete the SSSQ questionnaire. Successively, 
they were asked to solve the spatial abilities test. Next, the main 
experiment with animated displays were carried out according to the 
experimental design described above. At the beginning of the experi-
ment, participants’ eye movements and EEG signals were calibrated. 
After an introductory training with air traffic displays, participants 
started the main experiment by watching 16 animations and engaging in 
the required task for each animation, i.e., detecting the accelerating 
aircraft among four or eight moving aircraft. The animations were 
presented to the participants in random order on a computer screen with 
a resolution of 1920 × 1200 pixels. In total, the main experiment lasted 
about 16 min. Once they completed the main experiment, participants 
were asked to complete the Short Stress State Questionnaire (Helton, 
2004) for a second time, and a post-test questionnaire about their user 
experience and enjoyment. Finally, participants were thanked for their 
participation and novices received class credits. 

2.7. Data processing 

2.7.1. Missing data and data synchronization 
Due to low signal quality, 35% of the collected EEG data and 38% of 

the eye tracking data was missing and not further analyzed to avoid 
misinterpretation of the outcomes (Dalrymple, Manner, Harmelink, 
Teska, & Elison, 2018; Wass, Forssman, & Leppänen, 2014, Table 2 for a 
summary). A complete set of raw data (recorded from all the eye 
tracking, EEG, and questionnaire data sources) was only available for 19 
participants (10 ATC experts and 9 novices). Specifically, the eye 
tracking data of 13 participants were not further analyzed because the 
quantity of gaze samples collected by the eye tracker was below a 
minimum value of 50%, likely due to head or body movements. The 19 
remaining participants whose data was included in the multivariate 
analysis have a valid gaze samples mean of 81%. The EEG data of 13 
participants was missing because of the inability to complete the cali-
bration procedure. Task accuracy, completion time and questionnaire 
responses were complete (N = 37). Since an imputation analysis is not 
recommended with more than 10% missing data (Lodder, 2014), we 
performed the PCA analysis presented in this article only by considering 
the 19 participants with a complete dataset. 

Time-based data sources were collected using different sampling 
rates (eye tracking data at 300 Hz and EEG data at 128 Hz). This sam-
pling rate difference should not compromise our statistical outcomes 
since the measured values, derived from the two data sources, have been 
aggregated over the whole animation trials as averaged values (e.g., one 
averaged entropy or alpha power value across all the 16 animated dis-
plays for each participant). Other aggregation or interpolation tech-
niques are necessary if, for example, we aimed to measure specific 
events such as event-related potentials (ERPs). The recorded timestamp 
of each data source has been used to join and synchronize the different 
measurements. Both absolute timestamps of eye tracking and EEG data 
were recorded in milliseconds. 

2.7.2. Eye tracking data processing 
To capture variability in visual strategies across individuals and 

expertise levels, we computed first-order (fixation) transition matrix 
entropies, i.e., transition and stationary entropies (Krejtz et al., 2015). 
Transition entropy (Ĥt ) is computed for individual transition matrices 
according to Shannon’s entropy (Ciuperca & Girardin, 2005; Ekroot & 
Cover, 1993), which is based on the first-order Markov chain (i.e., the 
next gaze transition depends only on the present fixation on a certain 
AOI and not on past eye movement patterns), as shown in equation (2). 
Our stochastic model of transition matrices relied only on the current 
participant’s visual attention state (and not past states). This is because 
participant’s current state can be viewed as an instance of first-order 
Hidden Markov Models (HMMs), as suggested by Liechty, Pieters, and 
Wedel (2003), who used this model to efficiently classify temporal eye 
movement patterns (i.e., local versus global visual attention states). In 
our case, however, we were more interested in comparison between 
transition matrices, as afforded by transition entropy, instead of classi-
fication per se. 
Ĥt = −

∑

iεS

πi

∑

j∈S

pijlog2pij (2) 

In this equation, pij are transition probabilities and πi stationary 
probabilities of a participant’s AOI switching pattern and by a given 
sequence x = (x0, …,xn). In general, high Ĥt values indicate that par-
ticipants frequently switch between the four or eight aircraft depicted on 
our tested ATC animated displays; thus, their visual search strategies 
seem to be more exploratory, and their AOI sequence more complex. It 
can also be indicative of high “expected surprise” (Krejtz et al., 2015) or 
anxiety (Allsop & Gray, 2014). Conversely, low transition entropy 
values indicate that participants’ eye movements switch less frequently 
between the depicted moving objects, and are thus indicative of a more 
focused search behavior, such as highly curious users (Krejtz et al., 
2015). 

Stationary entropy (Ĥs) is calculated for individual stationary fixa-
tion distributions as shown in equation (3): 
Ĥs = −

∑

i∈S

πilog2πi (3) 

Higher Ĥs values suggest that participants’ visual attention is more 
homogeneously distributed among AOIs, whereas low values indicate 
that eye fixations are concentrated on a few specific AOIs. Transition 
matrix entropies were calculated using an R script developed by Krejtz 
et al. (2015). For further details about how transition and stationary 
entropy have been computed, see Krejtz et al. (2015). 

2.7.3. EEG data processing 
EEG raw data were collected using the Emotiv TestBench software 

(version 2.0, https://www.emotiv.com/, accessed: 21.01.2021). Suc-
cessively, EEG raw data were processed with EEGLAB (version 14.1.1, 
https://sccn.ucsd.edu/eeglab/index.php, accessed: 21.01.2021). First, 
EEG raw data and event information (i.e., type and latency) were im-
ported. Afterwards, continuous EEG data were filtered by applying a 
short non-linear (IIR) filter (i.e., 0.1–30 Hz), and then EEG artefacts, 
such as eye blinks or body movements, were removed (i.e., signal seg-
ments containing artefacts were first rejected manually and then 
decomposed by independent component analysis algorithms to elimi-
nate eye blink artefacts). Finally, the filtered data were segmented into 
epochs, which started 500 ms before and ended 4 s after the onset of 
each animation. These binned EEG data were then used to calculate 
average alpha power, FAA, and the engagement index. 

Firstly, binned data were used to compute mean alpha (8–12 Hz) 
band power values for each participant to infer information about par-
ticipants’ cognitive load and determine frontal alpha asymmetry (FAA). 
Higher frontal alpha asymmetry indicates approach behavior for posi-
tive stimuli, but withdrawal behavior from negative stimuli 

Table 2 
Summary of the collected and missing data for the listed data sources, and across 
expertise groups.  

Independent 
variables 

Dependent variables 

Expertise Response accuracy and time, SSSQ 
responses and spatial ability scores 

EEG 
data 

Eye tracking 
data 

Novices 19 13 12 
Experts 18 11 12 
All 37 24 24 
Missing data 0 13 13  
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(Briesemeister et al., 2013). Previous research demonstrates that FAA 
effects are limited to both frontal electrodes and alpha band (Davidson, 
Schwartz, Saron, C., Bennett, & Goleman, 1979; Ramsøy, Skov, Chris-
tensen, & Stahlhut, 2018; Weinreich, Stephani, & Schubert, 2016). To 
calculate both alpha power and FAA, we used a custom-made MATLAB 
graphical user interface called GIVA_EEGtoolbox (available at the 
following URL: https://gitlab.uzh.ch/giva/geovisense/GIVA_EEGtoolb 
ox, accessed: 21.01.2021). More specifically, alpha band power values 
were decomposed for each animation segment (i.e., the first 4 s after the 
start of each animation) using Fourier transform (Tran, Thuraisingham, 
Wijesuriya, Craig, & Nguyen, 2014) and a 0.5-s Hamming window with 
overlap of the six prefrontal channels (i.e., F3/F4, F7/F8, FC5/FC6). 
After baseline correction (i.e., 500 to 0 ms before stimulus onset), we 
calculated hemispheric asymmetries in the alpha band in the prefrontal 
brain cortex according to the FAA metric, where FAA values are 
computed as natural-log transformed difference between the alpha 
power of right-hemispheric electrodes and their left-hemispheric elec-
trodes (equation (5), Briesemeister et al., 2013): 

ln(R)− ln(L) , with R =
F4 + FC6 + F8

3
and L =

F3 + FC5 + F7

3
(5) 

In line with Pope et al. (1995), the participants’ engagement index 
was also computed using the GIVA_EEGtoolbox by taking the ratios of 
beta/(alpha + theta) EEG bandwidths. According to McMahan, Par-
berry, and Parsons (2015), alpha, beta and theta power ratios of each 
animation segment (i.e., the first 4 s after the start of each animation) 
were extracted using a fast Fourier transform (FFT) and a 0.5-s Hamming 
window with no overlap, averaged for all the 14 EEG channels on the 
Emotiv headset. 

3. Results 

First, we fit multilevel models to the data to test our hypotheses 
about the effects of visual search on task performance. Next, we present 
outcomes of a Principal Component Analysis (PCA) and related regres-
sion analysis to triangulate the variables in this study and highlight the 
variables that predict task performance (i.e., task accuracy and 

completion time). 

3.1. Descriptive statistics across animations and expertise 

Generally, experts completed the task more accurately than novices. 
However, experts took more time to complete the task overall, especially 
with continuous animations compared to time-stepped animations, 
which they were already familiar with (see Fig. 5, see Table 3). Further, 
novices performed much better with time stepped animations than with 
continuous animations, and time-stepped animations were completed 
more accurately overall (see Fig. 5, see Table 4). 

3.2. Visual search and task performance: multilevel model results 

We utilized a logistic multilevel model appropriate for modeling the 
effects of binary (0 or 1, incorrect vs correct) outcomes in nested data 
structures (in this case, trials nested within persons). A logit link func-
tion was used to model accuracy outcomes, and a normal link function 
was used to model the response time outcomes. Prior to fitting the final 
model, we tested for effects of both types of entropy (transition and 
stationary), as well as an interaction between animation type and 
expertise. Since transition entropy did not predict performance, it was 
left out of the final model. Further, the model failed to converge with an 
interaction between expertise and animation design, so this was left out 
of the final model to test our research questions. The final model can be 
described by Equation (6): 

Fig. 5. Average percent of response accuracy and time across expertise and animation conditions.  

Table 3 
Response time across expertise and animations.   

Animation 
Expertise Time-stepped Continuous 
Experts M = 49.88 (SD = 8.86) M = 61.65 (SD = 8.36) 
Novices M = 49.60 (SD = 16.92) M = 43.95 (SD = 15.57)  
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Yij = β00 + β10Stationary  Entropyj + β01Expertisei + β02  Animationi + u0j

+ rij

(6)  

where i represents trials and j represents individuals. This model sought 
to determine if visual search entropy predicts performance, even after 
controlling for animation design and expertise. We found that higher 
stationary entropy and expertise result in better accuracy on a given trial 
(see Table 5, see Fig. 6). While people generally performed better with 
time-stepped animations, the effect was not statistically significant. 

The next model was similar to the first, but with a continuous 
outcome to model the effects of entropy, animation type, and expertise 
on response time. In this model, an interaction between animation type 
and expertise was included. We found that stationary entropy predicts 
performance even after controlling for animation type and expertise (see 
Table 6, see Fig. 7). Contrary to our expectations (H1), this suggests that 
stationary entropy serves as a common visual metric for predicting 
better task performance, irrespective of training or animation type. 
Further, there was a significant interaction between expertise and ani-
mation type, such that experts took much longer to respond when 
viewing continuous animations, whereas novices responded in similar 
times regardless of animation (see Table 6). 

3.3. Principal components analysis 

To further investigate which variables of this study predict task ac-
curacy and completion time, a Principal Component Analysis (PCA) was 
conducted. Principal components analysis (PCA) was employed as an 
exploratory data reduction technique to summarize variables that share 
common variance into a single component to triangulate the variables in 
this study. The results of this technique are presented for 19 participants 
who had a complete dataset. For this reason, these results should be 
considered as an exploratory cross-validation analysis, and future 
studies will be required to confirm patterns in our findings. 

Prior to conducting the principal components analysis, we utilized a 
parallel analysis to determine the number of components to extract from 
our data using the psych package in R (Watkins, 2006). The parallel 
analysis suggested that one component was present in our data, as the 
observed eigenvalue on the second component did not exceed the 95th 
percentile of randomly simulated data. Thus, we extracted one compo-
nent using predictor variables of interest: spatial abilities, alpha power, 

frontal alpha asymmetry, engagement index, transition entropy, sta-
tionary entropy, and self-reported emotional states (engagement, 
distress and worry). However, fit was relatively poor (RSMR = 0.20) and 
several variables did not load highly onto the component. 

Therefore, we completed a follow-up principal components analysis 
using the six variables that loaded highly (greater than or equal to 0.5) 
with the factor of interest. This resulted in better model fit (RSMR =
0.15) and a component comprised of spatial ability, transition entropy, 
stationary entropy (Fig. 9 shows participants’ entropy scores across 
expertise groups), engagement index and subjective engagement (see 
Table 7a, Table 7b for full results). Together, these variables explained 
60% of variance in the component and were each positively associated 
with the component. In other words, individuals with higher spatial 
ability search displays more thoroughly and exhibit higher levels of 
engagement (measured by EEG and self-reported) compared to in-
dividuals with lower spatial ability. This result in part confirms hy-
pothesis H2a - that high gaze entropy coupled with positive emotional 
states and high spatial skill positively affect task performance. 

We then utilized individuals’ scores from the principal component 
analysis to determine if their component score predicted task perfor-
mance. A linear regression revealed that component scores predicted 
accuracy (B = 28.1, SE = 4.9, p < 0.001, R2 = 0.67), but not completion 
time (B = 3.0, SE = 3.8, p = 0.43, R2 = 0.04), see Fig. 8. Using a non- 
parametric Wilcoxon-Mann-Whitney t-test (10,000 sample Monte 
Carto distribution approximation), we found that experts had higher 
component scores than novices (z = 2.12, p = 0.03). 

3.4. Effects of engagement on task performance: multilevel model results 

Because engagement was important to the component but did not 
share as much variance with the component, we performed post-hoc 
analyses to determine if engagement predicted task performance. We 
ran a similar multilevel model to the model reported in section 3.2. We 
found that an increase in subjective engagement was associated with a 
higher likelihood of answering correctly on a given trial, while 
engagement index (measured by EEG) did not predict meaningful 
changes in accuracy (see Table 7a,Table7b, see Fig. 10). Further, neither 
subjective engagement nor engagement index predicted response time 
(see Table 8). 

3.5. Task easiness and enjoyment 

Participants’ self-assessments concerning task easiness and enjoy-
ment during the experiment revealed that experts judged the task as 
slightly easier to solve (i.e., 25% easy, 12% neutral, 62% not easy) 
compared to novices (i.e., 11% easy, 16% neutral, 74% not easy). For 
self-perceived enjoyment during the experiment, 39% of the experts 
reported that they enjoyed the experiment (i.e., 39% enjoyed, 28% 
neutral, 33% did not enjoy), while only 17% of novices enjoyed it (i.e., 
17% enjoyed, 28% neutral, 56% did not enjoy). 

3.6. Short Stress State questionnaire responses 

To gain insight into the viewers’ emotional state during the experi-
ment, they reported their subjective judgments about three of the 
following stress-related emotions collected by the Short Stress State 
questionnaire (Helton, 2004): their engagement with the task, their 
distress, and their worry during the experiment (Fig. 11). Although the 
experts reported greater engagement and less distress and worry than 
the novices, the levels were not significantly different across expertise 
groups. However, when we look at their level of engagement across the 
two animation conditions (Fig. 12), we can see that those experts who 
solved the task for the condition where the animations familiar (i.e., the 
time-stepped animations) were significantly more engaged compared to 
the novices of the same animation condition (t (16) = −2.12, p = 0.05, r 
= 0.47). 

Table 4 
Response accuracy across expertise and animations.   

Animation 
Expertise Time-stepped Continuous 
Experts M = 86.13 (SD = 15.66) M = 77.70 (SD = 15.11) 
Novices M = 63.20 (SD = 31.35) M = 27.78 (SD = 29.55)  

Table 5 
Logistic multilevel model with response accuracy regressed onto stationary en-
tropy, animation type, and expertise.   

Accuracy 
Predictors Odds Ratios CI p 
(Intercept) 0.01 0.00–0.76 0.036 
Stationary entropy 315.78 3.79–26280.34 0.011 
Expertise 5.93 1.76–19.98 0.004 
Animation type 0.32 0.10–1.05 0.060 
Random Effects 
σ2 3.29 
τ00 subject 1.49 
ICC 0.31 
N subject 23 
Observations 363 
Marginal R2/Conditional R2 0.319/0.531  
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4. Discussion 

In the current study, we aimed to predict users’ performance in an 
animated ATC detection task using visual search patterns. In addition, 
we also analyzed the role that viewers’ mental and emotional states, and 
traits play in task performance. To answer our research questions, we 
utilized a cross-validation approach to analyse participants’ visual 
scanning behavior (with eye tracking), mental engagement (by using 
electroencephalography; EEG), and self-reported emotional states while 
scrutinizing various moving aircraft depicted on ATC displays. We 
measured task performance (response accuracy and completion time) in 
a real-world ATC visual search task, i.e., detection of task-relevant in-
formation in a cluttered animated scene. 

4.1. General visual mechanism predicting performance, or constrained by 
expertise and animation? 

Our findings suggest that higher stationary entropy (but not transi-
tion entropy) is associated with higher accuracy and shorter completion 
time, irrespective of training or animation type. Similar to experts, the 
novices who performed well exhibited higher values of both gaze tran-
sition and stationary entropy. As highlighted by Shiferaw et al., 2019, 
gaze stationary entropy reflects the overall spatial dispersion of gazes on 
a visual scene, where a decrease of this value may suggest a decline in 
top-down modulation of the search process. More specifically, a 
decrease of stationary entropy values, coupled with high transition en-
tropy values, may be associated with top-down interferences that induce 
the viewers to carefully scrutinize only specific objects that appear on 
the animated display. In fact, slightly higher transition values of experts, 
coupled by significant higher stationary entropy, could be an indicator 
of more homogeneously distributed visual fixations on the visual scene, 
more gaze transitions or switches between objects (higher exploration 
modulated by top-down gaze control), and an higher top-down 
engagement and gaze control compared to novices. Conversely, signif-
icant lower stationary entropy, encountered mostly in novices, likely 
reflects a more intensive attentional focus on specific objects, which in 
our study are the perceptually salient but task-irrelevant visual elements 
(i.e., fastest moving aircraft). This is consistent with past studies in 
aviation (Brams et al., 2018). In contrast, participants showing superior 
task performance, mostly experts, attended to all the aircraft within the 
animated scene, including those that were distant from one another, as 
well as aircraft moving at different speeds. This is in line with previous 
reports in ATC research (McClung & Kang, 2016; Stein, 1989), which 
note that ATCo are trained to repeatedly scan the whole display using 
specific strategies (e.g., by systematically using circular, linear or mixed 
eye scanning patterns) and at a higher saccadic velocity compared to less 
trained controllers. 

In addition, participants performed the detection task more accu-
rately with the time-stepped animations than with continuous 

Fig. 6. Predicted response accuracy on a given trial based on animation, expertise, and stationary entropy. Shaded areas correspond to 95% confidence intervals 
(CIs) of estimated effects. 

Table 6 
Logistic multilevel model with response time regressed onto stationary entropy, 
animation type, and expertise.   

Response time 
Predictors Estimates CI p 
(Intercept) 18.46 −9.58 – 46.50 0.197 
Stationary entropy 38.56 8.47–68.66 0.012 
Animation type 0.29 −11.07 – 11.66 0.959 
Expertise 0.96 −10.56 – 12.48 0.870 
Animation*Expertise 32.53 9.74–55.32 0.005 
Random Effects 
σ2 509.43 
τ00subject 151.07 
ICC 0.23 
N subject 23 
Observations 363 
Marginal R2/Conditional R2 0.134/0.332  
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animations. As partially discussed in Maggi et al. (2016), this is pri-
marily attributable to the performance of novices than those of experts. 
In fact, experts performed well in both animation conditions, while 
novices performed much better with time-stepped animations than with 
continuous animations. The smooth transitions of the frames in the 

continuous animations have probably accentuated and facilitated the 
perception of the relative motion between the various visual objects, but 
has also made more salient those task-irrelevant elements that move at 
higher speed than the others. This may have misled novices who may 
have erroneously assigned these aircraft to be the accelerating ones 
instead of the fastest ones. Contrarily, with continuous animations, those 
participants who took longer to complete the task likely performed well 
because they were intensively searching for task-relevant accelerating 
aircraft. In fact, accelerations are harder to notice and take longer to be 
detected compared to perceptually salient, but task-irrelevant fast 
moving aircraft. 

4.2. Which additional individual factors predict performance, and is the 
contribution of gaze entropy independent from these factors? 

Even though stationary entropy predicted performance indepen-
dently of spatial ability and engagement (from both neural and subjec-
tive judgments), our findings suggest that these individual factors are 
also related to how users perform visual search. High engaged and 
spatial ability individuals search a display more completely and fixate 
for less time on specific moving objects than low engaged and low 
spatial ability individuals. This is consistent with past findings in avia-
tion (Brams et al., 2018; Diaz-Piedra et al., 2019) as well as other 
findings suggesting that superior spatial abilities positively influence 
visuo-spatial task performance (Berney, Bétrancourt, Molinari, & 
Hoyek, 2015). Across expertise, novices who performed well exhibited 
an efficient visual scanning strategy (higher levels of transition and 
stationary entropy), similar to those of experts, as well as high spatial 
skills. This suggests that higher spatial skills may promote more efficient 
visual search behaviors in novices, making up for their lack of training 
with complex animated displays. Contrary to our predictions, cognitive 
load did not affect task performance. 

Contrary to prior work on aviation, which mostly highlighted the 
negative influence of anxiety or distress on task performance and gaze 

Fig. 7. Predicted response time on a given trial based on animation, expertise, and stationary entropy. Shaded areas correspond to 95% confidence intervals (CIs) of 
estimated effects. 

Table 7a 
Results of principal components analysis showing the component consisting of 
spatial ability, transition entropy, stationary entropy, subjective engagement, 
and engagement index, including component loadings.  

Variable Loading Communality 
Spatial ability 0.88 0.78 
Transition entropy 0.89 0.78 
Stationary entropy 0.89 0.80 
Engagement index (EEG) 0.53 0.28 
Subjective engagement 0.62 0.38  

Table 7b 
Logistic multilevel model with response accuracy regressed onto engagement 
index, subjective engagement, animation type, and expertise.   

Accuracy 
Predictors Odds Ratios CI p 
(Intercept) 4.49 2.04–9.88 < 0.001 
Engagement Index 1.01 0.94–1.08 0.827 
Subjective Engagement 2.60 0.89–7.57 0.079 
Expertise 8.10 2.14–30.67 0.002 
Animation Design 0.42 0.09–1.86 0.254 
Random Effects 
σ2 3.29 
τ00subject 1.59 
ICC 0.33 
N subject 22 
Observations 265 
Marginal R2/Conditional R2 0.321/0.542  
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entropy (i.e., increase of anxiety leads to an increase of gaze transitions; 
Mandrick, Peysakhovich, Rémy, Lepron, & Causse, 2016), we found that 
especially subjective engagement recorded by self-reported judgments 
(and not by EEG engagement index) positively affects task accuracy, in 
both expertise groups and animation types. An increase in the engage-
ment level of the viewer is often linked with an increase in focused 
attention and alertness (Higgins, 2006; Yerkes & Dodson, 1908). Over-
all, task performance was then more positively correlated with 
self-perceived engagement than with distress or worry. However, the 
pattern differed for experts and novices. Both EEG and participants’ 

subjective judgments indicate that experts were more engaged than 
novices in solving the required visual search task, but this especially 
with time-stepped animations. This is not surprising because experts 
were asked to solve a familiar task relevant to their job with familiar 
displays; thus, they may have had a higher intrinsic motivation than 
novices to succeed in the task. Experts’ higher mental engagement 
suggested that they were more focused on the required task than nov-
ices. Experts might be closer than novices to an optimal flow state 
(Csikszentmihalyi, 1990). This result aligns with the inverted-U hy-
pothesis of Yerkes and Dodson (1908) and prior studies in sport research 
(Khacharem, Zoudji, Kalyuga, & Ripoll, 2013; Saha, Saha, Binti, & Zahir, 
2015), which found that people perform best at an optimal level of 

arousal where their engagement is at the highest level and negative 
affective states (e.g., distress and worry) are low. 

By combining gaze behavior with EEG and self-reports, we thus 
provide another stepping stone to facilitate the interpretation of 
behavioral study results, as suggested by Brunyé et al. (2019). Eye 
tracking data provides useful information for how a user interacts with a 
display: it tells the researcher where, when, and for how long a user looks 
at a specific element of the graphic display, but not why. Eye tracking 
studies alone might lead to different observed behavior interpretations, 
as it is difficult to disentangle cognitive and/or emotional processes 
when using this data source by itself. Coupled with EEG data and sub-
jective judgment about viewers’ emotional states, we are able to see 
interactions with their cognitive and emotional processes as well as their 
background: participants’ engagement and spatial abilities predict gaze 
patterns and help to interpret why there are individual task performance 
differences. Our multivariate analysis served the purpose of simplifying 
multiple variables into more simple and related components, as well as 
generate a metric that is useable across a generalizable sample regard-
less of expertise. This supports the argument that multiple measures 
should be used when studying complex visuo-spatial decision-making. 
The measures predict accuracy independently, but also comprise a 
multifaceted factor that constitutes whether a given individual is 

Fig. 8. Response accuracy and time separately regressed onto component score. Component score predicts response accuracy (a, left), but not response time (b, 
right). Shaded areas correspond to 95% confidence intervals (CIs) of estimated effects. 

Fig. 9. Participants’ transition (a, left) and stationary (b, right) entropy across expertise.  
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successful at completing the task. Our results are consistent with recent 
work from Padilla, Castro, Quinan, Ruginski, and Creem-Regehr (2019) 
who demonstrate that traditional measures of accuracy and reaction 
time should be supplemented by converging measures when assessing 
the cognitive load of visualization-based decision-making. 

5. Future work and conclusions 

Ideally, future work will 1) attempt to replicate the presence of the 
single PCA component we identified, and if found, 2) test whether this 
component predicts task performance for similar complex visuo-spatial 
decisions with visualizations, 3) manipulate additional factors 
increasing cognitive load to more closely simulate real-world decision- 
making in ATC contexts, either through a concurrent cognitive task, or 
through introducing other task-relevant information such as the simul-
taneous processing of auditory and visual stimuli, 4) develop robust 
conceptual and computational models, to enable effective and efficient 

coupling of behavioral data streams (e.g., eye tracking with EEG), and 5) 
further develop general design guidelines for animations to make task- 
relevant information more salient and animations more engaging. 
Design guidelines would help enable rapid development of graphic 
displays that are adapted to specific user characteristics, in particular to 
both users’ cognitive and emotional skills (e.g., prior knowledge)) and to 
the specific task and usage context (e.g., a stressful situation). For 
example, to pursue the role of expertise, a potential research objective 
would be to investigate how to reduce expert response time with design 
improvements, as experts responded correctly with both animation 
types, but at the cost of more time. In novices, one could explore those 
visual variables most likely to draw their attention to the scene elements 
most relevant to the task, or reduce their focus to those perceptually 
salient elements that are not relevant to the task. 

Our results should be considered a first step to develop a workflow 
and identify likely areas for future work, given that missing data made 
our sample relatively small for a PCA and likely underpowered for 
detecting small effects (Cohen’s f2 = 0.02). Although it can be chal-
lenging to find task-domain experts for real-world use case experiments, 
the robust ecological validity of our findings allows guidance of design- 
based research on critical decision-making displays. Furthermore, the 
assessment of animation designs might be influenced by other user 
characteristics. Beyond group differences in expertise and individual 
differences in cognitive and emotional abilities, participants’ age might 
affect task performance (Guest, Howard, Brown, & Gleeson, 2015). 
Given that some cognitive abilities are known to decline after 20–30 
years of age (Driscoll, Hamilton, Yeo, Brooks, & Sutherland, 2005; 
Salthouse, 2009), participants’ age differences should be further inves-
tigated in future studies on visuo-spatial information displays. In addi-
tion, it would be helpful to know how our findings might be extended to 
different usage contexts, such as in private and public transportation 
systems, sport analytics, movement ecology, human health, and pedes-
trian navigation (Dodge et al., 2016), where dynamic visualizations are 
used for data analysis and decision making. This would allow applied 

Fig. 10. Predicted response accuracy on a given trial based on animation, expertise, and subjective engagement. Shaded areas correspond to 95% confidence in-
tervals (CIs) of estimated effects. 

Table 8 
Logistic multilevel model with response time regressed onto engagement index, 
subjective engagement, animation type, and expertise.   

Response time 
Predictors Estimates CI p 
(Intercept) 49.41 43.06–55.75 < 0.001 
Engagement Index 0.10 −0.32 – 0.52 0.642 
Subjective Engagement −5.95 −15.01 – 3.10 0.198 
Expertise 10.22 −1.27 – 21.71 0.081 
Animation Design 3.25 −9.66 – 16.16 0.622 
Random Effects 
σ2 540.51 
τ00subject 137.49 
ICC 0.20 
N subject 22 
Observations 265 
Marginal R2/Conditional R2 0.068/0.257  
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researchers to develop robust design guidelines for animations to facil-
itate decision making with a broad range of dynamic displays and users. 
Our study serves as a first step towards that goal by identifying a com-
mon visual mechanism - stationary gaze entropy - and other individual 
differences factors - spatial abilities and engagement - that directly 
contribute to performance in object detection with dynamic displays 
irrespective of animation type and training. 
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Availability of data and materials 
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codes) that support the findings of this study are available in OSF at htt 
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eo.uzh.ch. The MATLAB code of our EEG tool is available at the 
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Fig. 11. SSSQ’s self-perceived engagement, distress and worry across expertise for all participants (N = 37).  

Fig. 12. SSSQ’s subjective engagement across expertise and animation design for all participants (N = 37).  
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