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Abstract: Air Traffic Management (ATM) will be more complex in the coming decades due to the
growth and increased complexity of aviation and has to be improved in order to maintain aviation
safety. It is agreed that without significant improvement in this domain, the safety objectives defined
by international organisations cannot be achieved and a risk of more incidents/accidents is envisaged.
Nowadays, computer science plays a major role in data management and decisions made in ATM.
Nonetheless, despite this, Artificial Intelligence (AI), which is one of the most researched topics
in computer science, has not quite reached end users in ATM domain. In this paper, we analyse
the state of the art with regards to usefulness of AI within aviation/ATM domain. It includes
research work of the last decade of AI in ATM, the extraction of relevant trends and features, and
the extraction of representative dimensions. We analysed how the general and ATM eXplainable
Artificial Intelligence (XAI) works, analysing where and why XAI is needed, how it is currently
provided, and the limitations, then synthesise the findings into a conceptual framework, named the
DPP (Descriptive, Predictive, Prescriptive) model, and provide an example of its application in a
scenario in 2030. It concludes that AI systems within ATM need further research for their acceptance
by end-users. The development of appropriate XAI methods including the validation by appropriate
authorities and end-users are key issues that needs to be addressed.

Keywords: Air Traffic Management (ATM); Artificial Intelligence (AI); eXplainable Artificial Intelli-
gence (XAI); user-centric XAI (UCXAI)

1. Introduction
1.1. Air Traffic Management

Air Traffic Management (ATM) is a vast and complex domain [1] encompassing all
activities carried out to ensure the safety and fluidity of air traffic. In a nutshell, ATM
aims at efficiently managing and maximising the use of the different resources available to
it—e.g., the airspace and its subdivisions such as the sectors (see Figure 1), the air routes (see
Figure 2), the airport, the runways—by the users of the resources—e.g., aircrafts, airlines—,
in any time-frame of their use of the resources—i.e., in the taxi phase in the airport, or any
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flight phase simplified by the triplet climb, cruise, descent—while ensuring flight safety [2].
This task is achieved by managing resources, i.e., AirSpace Management (ASM), managing
the global demand before and while aircrafts are flying, i.e., Air Traffic Flow and Capacity
Management (ATFCM), and managing—avoiding separation losses between aircrafts, i.e.,
avoiding one to be in the separation zone of another (see Figure 3)—and providing local
information to the flying aircraft, i.e., Air Traffic Control (ATC) [3].

Figure 1. Sector division of the upper airspace of France [4].

Figure 2. Excerpt of a map of the route network in the south of France. Routes are defined by
waypoints—black and grey dots. Source: EUROCONTROL.
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Nowadays, computer science plays a major role in data management and decisions
made in ATM, and even if humans remain as the main agents, computer science remains
important, and is more likely to have a more relevant part in the future with increasing air
traffic—notwithstanding actual COVID situation [5]—and its complexity—notably with
the insertion of new aerial vehicles such as drones, e-VTOL into the airspace [6].

Artificial Intelligence (AI), being one of the most researched topic in computer science,
should be part of the picture.

Figure 3. Separation zone of an aircraft. From Degas et al. [7].

1.2. AI and XAI for ATM

‘Artificial Intelligence’ term was first used in 1956 for the first “Dartmouth Summer
Research Project on Artificial Intelligence”, and is generally refers to any machine that
exhibits traits associated with a human mind, such as learning and problem-solving. Since
then, the discipline has known several ‘summer’ with important interest, and ‘winter’,
disinterest from the field, associated with scepticism [8]. In particular, AI in general has
experienced a new bloom during the 2010s, boosted by the increasing access to massive
volumes of data, and the discovery of the very high efficiency of computer graphics
card processors to accelerate the calculation of learning algorithms [9]. This bloom has
been materialised by some significant public successes and has boosted funding, such
as Watson—IBM’s IA—winning the television game show Jeopardy against two of its
champions [10], Google X being able to have an AI recognise cats on videos [11], or later in
the decade, AlphaGo—and its successor AlphaGo Zero—beating one of the world players
of Go [12]. EXplainable Artificial Intelligence (XAI), methods and techniques enabling
humans to understand (i) the AI algorithm (i.e., global explanation or interpretability), or
(ii) its solutions(i.e., local explanation or justification), being strongly linked to the systems
it explains, followed the same tendency, and is actually in its third generation—according
to Muller et al. [13]. Artificial Intelligence in Air Traffic Management roughly followed the
same tendencies, with some delay. As the following shows, AI in ATM roughly evolved
from AI systems used to optimise the traffic, to AI systems to predict various objects—like
predicting 4D trajectories—during the last decade.

Despite historical research work in AI for ATM, a researcher facing a problem in the
ATM domain—to our knowledge—will find no general guide presenting how to resolve
this problem (or similar ones), nor the limitation of current work, which is detrimental to
the domain and its evolution. Some review exist in the domain, but they are specialised
into a category of AI algorithms—e.g., meta-heuristics [14,15], multi-agent systems [16]—,
focused on other aspects, e.g., communications [17], or are outdated [18], and focus more
on the techniques than the integration for the end users.

Unfortunately, despite several research work already carried in AI for ATM domain,
it has not been ‘fully operational’ nor has it brought any benefits to end users. Slow
progress within the use of AI in the ATM domain is explainable by the fact that the ATM
domain is a critical domain with life at stake, and that safety is the top most priority.
Historically, safety has been achieved in ATM with human-in-the-loop—in particular
but not restricted to, Air Traffic Controller (ATCO)—, and will most likely, as contend
by the authors, evolve by designing tightly human-centered systems, requiring those
systems to be understandable by the end-user, and to adapt to its characteristics—mental
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and physical—and to its psychological state. For example, if the operator’s workload
is exceeds their cognitive capacity, or if some kind of incapacitation is occurring, their
cognitive state could be automatically detected by the system, and used by this assessment
to execute actions autonomously along an escalating scale of automation (i.e., adaptive
automation) [19,20]. In other domains such as healthcare and criminal justice, among others,
the increasing interest in AI to support high-consequence human decisions has spurred
the field of XAI and User-Centric eXplainable Artificial Intelligence (UCXAI) [21]—User
Centered Design (UCD) refers to the methods employed when designing systems for end-
users to validate novel algorithms/working methods/interaction techniques [22–25]. This
primordial aspect is yet to be fully assessed in ATM, but the interest is growing [26,27].

Based on the two previous observations, the goal of this article is to depict the trends
of AI and XAI, and set the trajectory that these works must take in order to reach end-users.
Our main research questions stem from the two previous observations:

• RQ1: What are the current trends of AI and XAI in ATM tasks?
• RQ2: What are the limitation that arise from the use of AI and XAI in ATM tasks?
• RQ3: How could the general XAI field benefit AI and XAI in ATM?
• RQ4: What limitation may arise from the use of general XAI in ATM?
• RQ5: What should the trajectory of AI and XAI be for this domain?

To answer these questions, this article is divided into two parts: (i) The first part
of this article is dedicated to the review of research work of the last decade of AI in
ATM, presenting the methodology employed (Section 2), the extraction of relevant trends
and features, the clustering of these work into representative groups (Section 3), and the
extraction of representative dimensions, allowing us to create a design space representing
those works, used then to analyse the publications (Section 4); (ii) the second part of this
article is based on the dimensions extracted in the first part, to analyse general and ATM
XAI work, analysing where and why XAI is needed, how it is currently provided, and the
limitations (Sections 5 and 6), then synthesise the findings into a conceptual framework
(Section 7), that is then applied to different scenarios (Section 8). Finally, we conclude the
different findings of this article (Section 9).

2. Paper Selection

This section provides details for the procedure involved in the selection, inclusion,
and exclusion of research articles. The review was conducted using the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [28]. Overall, the
review was performed using different well-ranked conferences and journals, judge repre-
sentative of the domain, namely, Transportation Research Part C: Emerging Technologies
(TR_C) and IEEE Transactions on Intelligent Transportation Systems (IEEE Trans. on ITS)
(top two journal on Transportation according to Google Scholar metrics [29]), Journal of Air
Transport Management (JATM) (the first ATM journal [29]), and International Conference
on Research in Air Transportation (ICRAT) and Air Traffic Management Research and
Development Seminar (ATM seminar) (the two ATM conferences supported by EURO-
CONTROL and the Federal Aviation Administration). Figure 4 describes the complete
pipeline of the paper selection.

2.1. Identification

The focus of this research is on English published articles from 2010 until the end of
December 2021. The year 2010 has been determined as a starting point of the searching
process so as to be able to determine trends and evolution of the vast field from the
beginning of the new bloom of AI interest—see Section 1.2—, and be sure to fully capture
the essence of the research space. Apart from this, the inclusion and exclusion criteria of
this review are shown in Table 1.
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Figure 4. PRISMA flow of the review made on International Conference on Research in Air Trans-
portation (ICRAT), Air Traffic Management Research and Development Seminar (ATM seminar),
Transportation Research Part C: Emerging Technologies (TR_C), Journal of Air Transport Management
(JATM), and IEEE Transactions on Intelligent Transportation Systems (IEEE Trans. on ITS).

To be firstly selected (Identification), articles of the different journals and conferences
required: (i) To be in the ATM domain, a characteristic that is either obtained by the
database used—i.e., ATM specific conferences or journals, or using keywords to filter, in
detail, “air traffic” OR “airplane” OR “aircraft”, named in the following “ATM_Filter”; and
(ii) to work with the AI algorithm, characteristic that was filtered using general regular
expression “Predict*” OR “Estimat*” OR “Optimi*” OR “Cluster*” OR “Analy*” OR “Visu*”
OR “Learn*” OR “Explain*” OR “Model*” OR “Plan*” OR “Conflict” OR “Classif*”. The
number of articles identified per source are represented in Figure 4, and details about
the keyword filters catches are represented in Table 2. The keywords used were first
refined in a preliminary study performed to plan a systematic review, using different
keyword-extraction techniques, ATM domain insights from interviews performed, and
general author domain knowledge. In a nutshell, these keywords represent main tasks for
which AI can be employed in an ATM, along with some specific AI keywords, such as the
theory or framework employed—e.g., neural network, genetic algorithm.

Table 1. Exclusion and inclusion criteria.

Criteria Principles

Inclusion

• Papers published from 2010 to end of 2021.
• Full text.
• Peer-reviewed studies.
• Paper in the ATM domain.
• Paper in the AI domain.
• Paper answers the defined research questions.

Exclusion

• Papers not in the English language.
• Review papers.
• Papers less than 4 pages.
• Not peer reviewed studies.
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Table 2. Paper selection result at the identification phase.

Keyword ICRAT ATM Seminar TR_C JATM IEEE Trans. on ITS Total

“Predict*” 39 23 15 18 5 100
“Estimat*” 17 12 6 20 2 57
“Optim*” 26 27 24 26 5 108
“Cluster*” 5 3 0 7 0 15
“Analy*” 33 38 12 171 1 255
“Visual*” 2 2 1 1 0 6
“Learn*” 13 11 10 14 4 52

“Explain*” 0 0 0 3 0 3
“Model*“ 38 43 30 134 4 249
“Plan*” 9 9 12 37 0 67

“Conflict” 17 13 9 2 5 46
“Classif*” 1 1 0 8 0 10

Total (without duplication) 160 141 88 371 18 778

2.2. Screening

The review process used conferences and journal databases, duplicates came only
from external databases from previous work, and forward backward reference searching,
hence the low number of exclusion for duplication (29 excluded).

Selected papers were then manually screened for relevance, based on a first superfi-
cial reading using an empirical keyword list—containing mostly primary keywords and
methods employed—resulting in the exclusion of 383 papers.

2.3. Eligibility

The remaining 366 articles were selected for a full-text review and content analysis. For
inclusion in the final list, articles must be related with ATM—excluding example articles
where drones are used for surveillance—, and AI or XAI. These inclusion criteria resulted in
257 relevant articles. In regard to exclusion criteria, the articles about passenger experience
and security were not included in this review, as this was not the core focus of this study.
Furthermore, only the articles written in English were considered in this review.

2.4. Inclusion

Inclusion rate was highly different depending on the sources of the papers. On one
side, papers coming from ATM domain conferences—ICRAT and ATM seminar—only
needed to be consistent with the AI field, hence the low exclusion rate at the identification
phase—285 out of 383 + 343 = 726, roughly 39 percent, see Figure 4.

On the other side, papers coming from more general journals—TR_C and IEEE Trans.
on ITS—needed to be consistent with both the AI and ATM domain, hence the high
exclusion rate at the identification phase—(n = 7186), around 98.5 percent. In between,
papers coming from the Journal of Air Transport Management targeting ATM and other
Aeronautical issues, the exclusion rate was medium-high—(n = 870), 70 percent.

Past this phase, exclusions were mostly in the screening and in the eligibility phases,
due to the fact that AI techniques were not used: In the screening phase—n = 383, roughly
51.1 percent—clearly defined in the title/abstract the use of techniques not from the AI
field; and in the eligibility phase—n = 109, around 29.8 percent did not meet the criteria.
As a result, the overall exclusion rate is a bit low compared to some systematic review, but
still high in general—around 97.2 percent.

3. Paper Clustering

This section provides details about data extraction from the publications, the different
statistics on the extracted data, and the clustering of the publications into representative groups.
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3.1. Data Extraction

The aim of this section is to create an information extraction form to derive out the
accurate data from the selected articles. In this step, the relevant data were derived from
selected articles through the use of spreadsheets and reference management software.

The following primary features were extracted in this systematic review: Author(s),
Publication, Year, Title of the Study, Source Type, Theory or Framework, Objective, and
Factors. The description of these items is presented in Table 3.

Table 3. Extracted features from primary papers.

Data Description

Author(s) Name of the author(s).
Publication Year The year of publishing the paper.
Title of the Study The title of each paper that is visible in the searching step.
Source Type Journal, book chapter, and conference proceeding.
AI Theory or Framework The AI theory or framework that the study had adopted, e.g., Neural Network (NN).
XAI Theory or Framework The XAI theory or framework that the study had adopted, e.g., LIME.
Objective The main objective of papers.
Factors The examined factors of the studies, detailed in Table 4.

The extracted factors were then refined in a preliminary study performed to plan
the systematic review—and of course adapted if needed in the rest of the study—, using
different keyword extraction techniques, ATM domain insights from interviews performed,
and general author domain knowledge. The refined extracted factors are presented in
Table 4.

3.2. First Data Clustering on Additional Extracted Data

The clustering of the paper was performed in two steps. The first step was performed in
the preliminary study, and resulted in the additional extracted feature presented in Table 4.

In detail, while extracting the different features of Table 3, it seemed promising, at
first, to categorise the publications by the specific part of the ATM world every publication
was benefiting to. However, although interesting, the feature was not selective enough to
assess any trends or categories in the different works. Nonetheless, it seemed that the main
Objective from Table 3, was a promising feature to fully categorise the Design Space of
AI in ATM. This clustering was performed by refining the Objective feature by extracting
the subject, the time-frame, and any complementary information pieces about the subject
from the feature. For example the following Objective “Predict the future location of a
general aviation aircraft” from [30], can be cut into “Predict” “the future” “location of a
general aircraft”. After this quite simple phase, the different extracted data—i.e., subject,
time-frame, complementary information pieces—have analysed and clustered into more
general categories. In a nutshell, the categories are regrouped into “Object”, subdivided
into “Complement”, and, if any, subdivided into “Sub-Complement”. All Object categories
except Time-Frame are named in the following “Material Object” and represent the general
subject of the objective, namely, “Aircraft”, “Traffic”, “Airport/Controlled Traffic Region
(CTR)”, “Airspace”, “ATCO”, and “Pilot” (the distribution of the publications in function
of the object feature is represented in Figure 5). These categories have been created as:
(i) They represented a distinct part for practitioners; and (ii) the publications across those
categories appeared to have a partial distinction of Objective and employed algorithms
and methodologies.
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Table 4. Additional extracted features.

Object Complement Sub-Complement Description

Time Frame

Pre-Flying
A publication focused on before the Aircrafts are
flying/moving; contains the ATM time-frame called Stategic,
Pre-Tactical, and part of Tactical phase.

Flying A publication focused on while implicated Aircrafts are flying.

Post-Analysis A publication focused on after implicated Aircrafts
have landed.

Not time-framed The publication is not time framed

“M
at

er
ia

lO
bj

ec
t”

Aircraft

State
The publication deals with any descriptor of the actual
physical state of the aircraft, such as mass or True Air
Speed (TAS).

Trajectory
Indicators

The publication deals with any descriptor of the trajectory, not
related to the direct physical state of the Aircraft, such as
Phase of Flight (PoF), or Descent Length.

Route/Flight Plan The publication focuses on the description of the
intended flight.

4D Trajectory The publication focuses on the description of the actual flight.

Traffic

Indicators The publication deals with any descriptor of the traffic, such
as time buffer separation, or delay.

5D Traffic

Conflict avoidance The publication deals with the avoidance of separation losses
between Aircrafts.

Optimisation The publication deals with the optimisation of
Aircraft trajectories.

Prediction The publication deals with the prediction of Aircraft
trajectories, and their potential interactions.

Simulation The publication deals with the simulation of Aircraft
trajectories, and their potential interactions.

Analysis The publication deals with the analysis of Aircraft trajectories,
and their potential interactions.

Airport/CTR Traffic

State The publication deals with any descriptor of the state of the
airport, e.g., the runway configuration.

Ground Traffic
Indicators

The publication deals with any descriptor of the ground
traffic, e.g., Taxi-Speed, or Estimated Take-Off Time (ESOT),
Arrival Runway Occupancy.

“5D” Traffic The publication focuses on the trajectories of the
taxiing aircrafts

CTR Traffic
The publication deals with the arrival of aircrafts(e.g., the
sequencing of arriving aircraft), the departure, or both (e.g.,
optimisation of departure and arrival).

Airspace

State
Static Structural State

The publication deals with any descriptor of the state of all or
a part of the airspace, e.g., the capacity of a sector, without
modifying it.

State of Environment The publication focuses on the weather, the wind or any other
environmental descriptor.

Structure
Sector The publication deals with the structure of the sector(s), e.g.,

the configuration of the sectors, or their geometrical structure.
Route The publication deals with the route network structure.

Demand/Capacity
Balancing

The publication focuses on the balancing of the demand
and capacity.

ATCO The publications focuses on the Air Traffic COntroller (ATCO).

Pilot The publication focuses on the Pilot.

Most publications targeting the ATCO or the Pilot focused on predicting or analysing
their behaviour and their decisions—the command for ATCO and the flight decisions
for the Pilot—, or analysing their audio transmissions. Publications targeting those two
categories are less represented than the others (see Figure 6), this most likely comes from the
global interest of this category, and possibly from the databases used that are not focusing
on this area.
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The Airspace category regroups publications that target: (i) The analysis or the predic-
tion of the “State” of the airspace; (ii) optimisation of the airspace “Structure” in function
of different criteria; or (iii) the optimisation of the capacity/demand balance.

Figure 5. Publication distribution on the different object feature from Table 3.

The Airport/CTR Traffic category regroups any publication about the Airport, that
either: (i) Predict its state (e.g., opened runway, or their configuration); (ii) model, optimise,
automate, or predict the “Ground Traffic”, i.e., aircraft(s) taxing; and (iii) model, optimise,
or automate the CTR traffic, i.e., Aircraft taking off or landing. While both the Airport and
CTR Traffic could be separated, lots of publication are mixing the two traffic, most of the
time to optimise the area.

The Aircraft category regroups any publication focusing only on one flying Aircraft,
with the publications focused on taxiing aircraft being already regrouped in the Air-
port/CTR Traffic category. This category regroup publication focusing on: (i) Predicting
the state of an Aircraft (e.g., its bearing); and (ii) modelling, predicting, analysing, or opti-
mising its Trajectory. Sub-categories have been created in the Trajectory category, namely,
Indicators, Route/Flight Plan, 4D Trajectory, as the intent behind the work—especially for
indicators where its is mostly to foresee the said indicator—, or the employed algorithms
and methodology change between them.

The Traffic category regroup any publication focusing only on a set of more than one
flying Aircraft, any publication focused on a set of more than one aircraft on the ground
being already regrouped in the Airport/CTR Traffic category. These publications either
focus on: (i) Predicting indicators of the traffic; and (ii) analysing, predicting, modelling,
automating, or optimising all traffic.

Within the Aircraft, Traffic, and Airport/CTR categories, two type of clusters have
been created regarding publications working on (i) Indicators, measures on intangible
object (like a trajectory), such as indicators of the complexity of the traffic, or on (ii) a State,
measures on tangible object (like an aircraft), such as the mass of an Aircraft.

The distribution of the article in function on the secondary extracted features from
Table 4 is represented in detail in Figure 6.
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Figure 6. Tree map of the distribution of the articles in function of on the secondary extracted features
from Table 4. Each rectangle represent a leaf of the table—the lowest level of description between
object, complement, and sub-complement—, with the number of article focusing on this feature.

3.3. Second Data Clustering on All Extracted Data

The second clustering of the publications have been performed from an analysis on all
the extracted features—listed in Tables 3 and 4—and it allowed the extraction of additional
knowledge on the general AI in ATM work.

This clustering resulted on the following four categories tightly connected with AI in
general, that globally define the purpose of the application:

• Prediction.
• Optimisation/Automation.
• Analysis.
• Modelling/Simulation.

This last clustering was performed using the previously extracted feature. Among the
different extracted features, the Time Frame feature—Table 3—and Objective features—
Table 4—proved to be very valuable while categorising the different work—Table A1 in
Appendix A details these two features per article. Based on these two features, the different
group could be clustered into 3 categories, further refined into 4.

The papers from the first and second categories, namely Prediction and Optimisa-
tion/Automation categories, contain paper from the “Pre-Flying” or the “Flying” parts of the
Time Frame feature—based on the actual state of the considered “Material Object”.

The Prediction category contains paper seeking to foresee the future behaviour of
a “Material Object”, answering “what if” questions about premises—e.g., “what will be
the trajectory of this aircraft, performed by this company, between this city pair”. As an
example, this category contains papers about the prediction of traffic or prediction of the
runway occupancy time. This category is about foreseeing an event, not to be confused
with the “prediction” of an AI algorithms on a subject, such as its “prediction” of the labels
of an image.

The Optimisation/Automation category contains papers seeking to enhance the be-
haviour of a “Material Object” according to different criteria, the most represented being
“avoiding separation losses between aircraft”, and “optimising the traffic”. As an exam-
ple, this category contains papers about sequencing arrival aircraft, avoiding conflict, or
optimising a trajectory.

The Analysis category, contains papers focusing mainly on the “Post-Analysis” part
and on the “Flying” part of the Time Frame feature. These papers are seeking to understand
the observed behaviour of a “Material Object”—see Table 4—answering “why” and “why
not” questions about the facts—i.e., what happened—and/or the foil—what is expected
or plausible to happen. As an example, this category contains papers about assessing the
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workload of an Air Traffic Controller (ATCO) in a sector, or evaluating the important factors
influencing the arrival of an aircraft.

The Modelling/ Simulation category contains papers that did not apply to any part of
the Time Frame feature. Those papers are modelling the behaviour of “Material Object” in
order to simulate it, which in the long run could lead to answer “why”, “what if”, “why
not”, and “how to” questions depending on the model constructed. As an example, this
category contains paper about simulating the air traffic of an airspace, or modelling the
arrival of aircraft.

4. Design Space: Trends of AI in ATM

This section analyses the trends of AI trough the lens of the previously presented
Design Space—composed of four categories: Prediction, Optimisation/Automation,

Analysis, and Modelling/Simulation—, first from a general point of view, and then
from the category point of view.

4.1. General Insights

From a global point of view, AI in ATM is a growing domain: The number of pub-
lications of AI in ATM—as shown in Figures 7 and 8—has almost doubled between the
2014 and 2018 pikes, and has more than tripled since 2010 The total distribution of the
publication in function of the categories can be visualised in Figure 9.

Through the lens of our categorisation, the growth of the last four years of publications
originate from the growing work in the Prediction category—publications about Predic-
tion tripled between 2013 and 2020—and the Optimisation category—doubled between
2013 and 2020. It seems that AI in ATM—and the number of publications—highly bene-
fited from AI community work—researcher work or developer community, e.g., scikit [31],
tensorflow [32], keras [33]—of the last decade, that democratised and made AI model
generation far more accessible, and in some areas, more effective, in particular in prediction
and optimisation. The time window of the review does not allow any previous trend in
AI for ATM before 2010. However, previous work and other reviews [14] suggest that
publications of AI in ATM has grown in the last decade but had a strong core base for many
years, in particular in Optimisation—collision avoidance and traffic flows being arguably
one of the most consistent subjects of AI in ATM.

Figure 7. Distribution of the publications per year in function of the Source Type.
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Figure 8. Evolution of the number of publication per year of the Prediction, Optimisation/Automation,
Modelling/Simulation, and Analysis categories.

Figure 9. Distribution of the publications in function of the categories.

The following section analyses the trends of AI through the lens of the Design Space
from the category point of view.

4.2. Categorisation Insights

The primary Objective of the model already categorise successfully the different AI
models used in ATM. The different models used in the different categories are instead pre-
sented in the following, using selected references—please refer to Table 4 for the description
of the descriptors.

AI Prediction in ATM is performed using a vast range of AI models, with most used
utilised being: (i) Multi-Agent Systems (MAS); (ii) Neural Network (NN); (iii) Random
Forest (RF); (iv) Gradient Boosting Machine (GBM); (v) Support Vector Machine (SVM);
and (vi) Linear Regression. The five later models—NN, RF, GBM, SVM, and linear re-
gression—are mostly used to predict: (a) A descriptor of the State or an Indicator of the
Trajectory of an aircraft, e.g., mass estimation [34], descent length [35], phase of flight [36];
and (b) a Ground Traffic Indicator or a State descriptor of an Airport, e.g., the estimated
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take-off time [37], or taxi speed [38]. Authors using these models are mostly capitalising on
framework availability of the past years and are often used jointly for comparison, with
the linear regression often used as a baseline. Nonetheless, (ii)–(v) AI models have also
been used for other type of predictions such as Route choice [39], the Structure of a Sector
configuration [40], the Environmental State of the Airspace, ATCO action prediction [41],
or—short-term—4D Trajectory prediction [42,43]. Multi-Agent Systems on their side have
been used to model and predict more complex tasks, like Indicators of the Traffic such
as delay propagation on networks [44], 4D Trajectory, and to a certain extent, 5D Traffic
prediction [45] and CTR Traffic—CTR Traffic being easier to predict due to the important
amount of constraints.

AI Optimisation and Automation works use mostly a more restricted range of AI
models: (i) Multi-Agent Systems (MAS); (ii) Evolutionary Algorithm (EA), mostly genetic
algorithms; (iii) Simulated Annealing (SA); and (iv) Reinforcement Learning (RL) (e.g., RL,
multi-agent RL, Deep RL, and DQN, see Table 5). A majority of these works focus on opti-
mising the traffic and/or avoiding collisions, from the point of view of the trajectories. 5D
Traffic Optimisation works focus in general on one flight phase, such as optimising (a) En-
Route traffic, using centralised, i.e., SA [46] or EA [47], or decentralised, i.e., MAS [48,49];
(b) arrival traffic [50]; (c) departure traffic [51]; (d) Ground Traffic (“5D” Traffic) Optimi-
sation—although this traffic is not really using altitude, it is still noted 5D Traffic in the
categorisation to avoid confusion between traffic and trajectory—; or (e) the whole CTR
Traffic [52]. Notable other focus of AI model for optimisation are optimising Airspace
Structure, such as Route network [53], Sectors [54], and Optimising a 4D Trajectory [55],
optimising the Demand/Capacity Balance, or the Route of an Aircraft.

Analysis of ATM activities using an AI model is mostly composed of: (i) Techniques
that clusterise—e.g., DBSCAN, BIRCH, or auto-encoder NN—4D Trajectories in order to
analyse the different factor influencing the 4D Trajectory, the Route choice [56], the CTR
Traffic, in particular the arrivals [57], but also Traffic Indicators such as delays [58], in order
to understand the different influencing factors and/or as a first analysis to latter use in a
predictive model; or (ii) more precise analysis, such as trajectory analysis to detect ATCOs
action [59], or speech recognition and analysis or utterance of ATCOs [60] or a Pilot.

AI Modelling in ATM is mostly performed using multi-agent systems, which is not a
surprise considering their importance in simulation in many domains, such as the simu-
lation of car traffic. Nonetheless, AI modelling is not that prevalent in ATM compared to
other domains since in ATM, modelling and simulation are mostly made using records, and
mathematical models [61]—e.g., BADA [62], ASTOR. Multi-Agent modelling is quite broad,
going from modelling CTR Traffic, notably arrivals, to assess risks in TMA [63], simulate
network delay [44], simulation of 5D Traffic [64], or simulate all ATM environments [65].
Other AI models found focused on more simple tasks, such as modelling a particular pilot
decision [66] with NN. The latest work on a graph neural network [67] could possibly
become important in modelling in the future, such as modelling actual ATCOs [68].

Table 5. Publication distribution with the design space.

AI/ML Models Prediction Optimisation/Automation Analysis Modelling/Simulation

Multi-Agent System (MAS) [44,45,64,69–73] [7,49,53,61,74–79] [44,45,61,63–65,70,71,73,80–88]

Evolutionary Algorithm
(EA) (e.g., Genetic
Algorithm (GA),
Differential Evolution (DE))

[89] [54,90–100] [101] [102,103]

Simulated Annealing (SA) [46,50–52,55,97,104–110]

Particle Swarm Optimisation [98,111]

Tabu Search [112–114]

Ant Colony Algorithm [115] [116]

Bee Colony Algorithm [117]
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Table 5. Cont.

AI/ML Models Prediction Optimisation/Automation Analysis Modelling/Simulation

Neural Network (NN) [34–37,40,66,118–134] [130,135] [57,59,60,66,136,137] [66]

Random Forest (RF) [38,39,41,42,129–131,138–152] [137,149]

Support Vector
Machine (SVM) [36,39,89,142,145,150,153–155] [135,156]

Quantile Regression Forest [139,140,157]

Gradient Boosting
Machine (GBM)

[27,35,37,39,123,131,138,141–
143,148,149,158–162]

Decision Tree [138,143,145,149,150,163] [137] [164]

Linear Regression [35,36,39,56,119,125,130,145,
155,163,165–169] [135,170] [56,137,171–178] [166]

Linear Functional
Regression [168,179,180]

Deep Deterministic Policy
Gradient (DDPG) [79,181,182]

Convolutional Neural
Networks (CNN) [183–185] [186]

Deep Q-Network (DQN) [78,187]

Binary Logistic
Regression Models [188]

Dynamic Bayesian Belief
Network [189] [189]

Linear Discriminant
Analysis (LDA) [123]

Quadratic Discriminant
Analysis (QDA) [123]

Gaussian Mixture
Model (GMM) [153,190–195] [196–198]

Autoencoder [199]

Fuzzy Logic [200] [117,201,202] [203–207]

Logistic Regression [131,150] [126,208]

Bayesian Network [30,209–211] [212]

Recursive Bayesian
estimation [213] [214]

Hierarchical clustering [215]

k-nearest neighbours
(kNN) [130,216]

BIRCH [200]

OPTIC [58,217]

DBSCAN [127,151,195,218] [219] [200,220–224]

K-means [153,225–227] [146,224,228,229] [230,231]

Principal Component
Analysis (PCA) [127] [178]

Non Negative Matrix
Factorisation (NMF) [232]

A* & Derivated Methods [92,108,233–235]

Reinforcement Learning [236,237] [238,239] [84]

Deep Reinforcement
Learning [68,78,240–242] [68]
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Table 5. Cont.

AI/ML Models Prediction Optimisation/Automation Analysis Modelling/Simulation

Recurrent Neural Network
(RNN) & Long Short Term
Memory (LSTM)

[43,152,156,184,185,243–251] [186] [252]

Multi-Layer
Perceptron (MLP) [125,163,251]

Graph-Theoretic
Clustering [253]

Hidden Markov
Model (HMM) [254]

Markov Decision
Process (MDP) [78,235,240,255]

Not referenced [256,257] [258] [259] [260]

4.3. Validating the Design Space

While the Design Space presented previously seems to seize the global structure of the
articles of AI in ATM from our data set, one may wonder if:

(i) This Design Space is covering all the AI in ATM work.
(ii) This Design Space contains overlap.
(iii) This Design Space is perennial and how would it evolve otherwise.

As the Design Space was generated from an analysis of a representative data set
of articles, the Design Space should cover all the AI in ATM work of the last decade.
Furthermore, as the Design Space focuses more on the abstract task which make, in the end,
quite general—i.e., predict the future state of an “object” , understand the actual state
of an “object” , automate or optimise the behaviour or the state of an “object”, and
simulate an “object”.

In terms of overlapping, some boundaries between the categories might seem blurry,
but they are in fact quite distinct. The Optimisation/Automation category is quite
distinct from the other 3 categories, and this distinction is also noticeable from the different
algorithms used—in particular the use of Meta-Heuristics. The boundary between the
Prediction category with the Modelling/Simulation category might be seen as blurry
as the historic of a realistic simulation—e.g., the trajectory performed by the aircraft during
the simulation—can be used as a prediction. Nonetheless, the distinction comes from the
fact that the historic is only a side-effect of the technique, and not its main purpose, which
is to simulate an “object” in a virtual environment. Similarly, the borders of the Analysis
category with the Modelling/Simulation category could seem permeable, as a simulation
can help to understand a past situation(e.g., understanding a collision alert afterward), but
this would be the result of the analysis of an end-user. The analysis would result easier
for the end-user with AI, but it would still be made by the human and not by the system.
Finally, the Analysis algorithms are often used as an input for Prediction algorithms,
but both fulfil very distinct ATM tasks.

Looking into the future and the sustainability of the Design Space, as the category
focus on abstract tasks on “object”, the Design Space should be valid for at least the next
decade. The “object” might change, e.g., the aircraft feature from Table 4 might be divided
into different new sub features but the abstract task will not remain. Nonetheless, new
categories could appear, and sub-categories could be created.

5. Analysing General XAI

The concept of XAI is comparatively contemporary to other concepts of AI and the
term “explainability” is deliberately used in various research domains including AI. Thus,
it is expedient to develop a general understanding of the term explainability from the
perspective of XAI. The prime hindrance towards developing the ground knowledge of
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explainability concerning AI, is the interchangeable use of several terms in the literature,
such as: Interpretability, transparency, explainability, etc. Before proceeding to the litera-
ture review, the commonly used terms are presented briefly according to the definitions
compiled by Barredo Arrieta et al. [261].

“Understandability”, often termed as “Intelligibility”, is the characteristics of a model
that helps a user realise its functions. In other words, how the model works without any
requirement of further explanation for the model’s internal operations on the data. Another
similar term is “Comprehensibility”, which has been used to define the ability of an ML
model to represent its learned knowledge to humans in an understandable way. Clearly
the prior terms differ from the second on representing the internal operations on the data
and the knowledge acquired from the data. In addition, the terms “Interpretability” and
“Transparency” are mostly used in describing similar concepts to explainability and they
refer to a model’s ability to provide meaning or explain in an understandable way to human
beings. Nonetheless, model transparency also indicates the ability to be understandable to
humans. There are three types of transparent models [262]:

• Simulatable models have the capacity to make humans understand their structure and
functioning entirely.

• Decomposable models can be decomposed into individual components, i.e., input,
parameters and output, and their respective intuitions.

• Algorithmically Transparent models behave “sensibly” in general with some degree
of confidence.

Above all, the term “Explainability” affiliates the interface between humans and
decision-makers, which is concurrently comprehensible to humans and an accurate repre-
sentation of the decision-maker [263]. In XAI, explainability is the interface between the
models and the end-users through which an end-user gains clarifications on the decisions
from an AI/ML model.

The AI/ML models learn the underlying characteristics of the available data and
subsequently try to classify, predict, or cluster new data. The stage of explainability refers
to the period in the process mentioned above in which a model generates the explanation
for the decision it provides. The stages are found to be ante-hoc and post-hoc [264]. Brief
descriptions of the categorised methods based on these stages are:

• Ante-hoc methods generally consider generating the explanation for the decision from
the very beginning of the training on the data while aiming to achieve the optimal
performance. Mostly, explanations are generated using these methods for transparent
models, such as, Fuzzy models, Tree-based models, etc.

• Post-hoc methods comprise an external or surrogate model and the base model. The
base model remain unchanged, and the external model mimics the base model’s
behaviour to generate an explanation for the users. Generally, these methods are
associated with the models where the inference mechanism remains unknown to
users, e.g., Support Vector Machines, Neural Networks, etc. Moreover, the post-hoc
methods are again divided into two categories: Model-agnostic and model-specific.
The model-agnostic methods are applicable to any AI/ML model, whereas the model-
specific methods are confined to particular models.

The scope of explainability defines the extent of an explanation produced by some
explainable methods. Vilone and Longo deduced after scanning more than 200 scientific
articles published on XAI that the scope of explainability can be either global or local [264].
That is, the whole inferential technique of a model can be made transparent or compre-
hensible to the user by a full decision tree (global) vs. only a single instance of inference
can be explicitly presented to the user (local) e.g., a single branch can be termed as a
local explanation.

XAI in Terms of Design Space

The prime reason of adding explanation to the dimensions of the design space de-
fined in Section 4 ( Prediction, Optimisation/Automation, Analysis, and Mod-
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elling/Simulation), is to increase trust of humans on the decision making process of AI/ML
models [265] and improve human decisions or predictions based on the models [266].
Moreover, human decisions can be often driven by biases and heuristics that may present
some limitations under certain working conditions [267]. However, abundant relevant
information also does not necessarily assist people in making proper decisions. In human
decision-making for the stated dimensions, the heuristics and biases are mostly controlled
by statistical constraints [268]. Regardless of the domain expertise, people generally can
not produce fully optimal decisions [269]. On the contrary, XAI can be beneficial to human
decision-making by increasing the trust on the automated systems. This can be investi-
gated through human experiments testing AI systems with explanations compared with
traditional AI systems alone for different dimensions of the design space.

Literature indicates that mostly four different forms of explanations are generated
to “explain” to the human the decisions of the AI/ML models as well as the process of
deducing a decision for the tasks from different dimensions of the design space. Those
four forms of explanations have the following format: Numeric, rules, textual, and visual
explanations. Some researches [270–272] investigated the use of a combination of formats
to make the explanation more understandable and user friendly. The available methods
for adding explainability of these forms to the existing and proposed AI/ML models are
clustered on the basis of the categories of tasks; prediction, optimisation/automation,
analysis, and modelling/simulation from the publications on AI in ATM. In addition, the
available explainable methods are grouped based on the explanation generation scope
and stages. The summary of the clustering is represented in Table 6. The bottom row
of the table presents the total number of articles that contribute to each of the compo-
nents of explainability and categories of tasks from the design space. It is evident that
most of the methods were deployed to add explainability to prediction tasks whereas the
tasks of modelling/simulation were investigated least with a view to add explanations.
On the other hand, for specific methods, the Adaptive Neuro-Fuzzy Inference System
(ANFIS) [273] was observed to be utilised to generate all four types of explanations in the
tasks containing optimisation/automation and analysis. However, Sequential Rule Mining
(SRM) [274] algorithms were found to be exploited in all task categories of design space
except prediction. Among other methods available for adding explainability to intelligent
systems, Local Interpretable Model-Agnostic Explanations (LIME) [270,272,275,276] and
Shapley Additive Explanations (SHAP) [21,271,272,277] are worth mentioning due to their
wide acceptability among researchers.

Table 6. XAI methods with associated types of explanations (N: Numeric, R: Rules, T: Textual, V:
Visual), stage (Ah: Ante-hoc, Ph: Post-hoc), scope (L: Local, G: Global) of explainability, and the design
spaces (P: Prediction, O/A: Optimisation/Automation, A: Analysis, M/S: Modelling/Simulation).

Methods for
Explainability References

Explanations Stage Scope Design Space Total
CountN R T V Ah Ph L G P O/A A M/S

ANFIS [273,278–280] X X X X X X X X X 9
Anchors [281] X X X X X X X X 8
Feature Importance [282–285] X X X X X X X 7
LIME [270,272,275,276] X X X X X X X 7
RetainVis [286] X X X X X X X 7
SHAP [21,271,272,277] X X X X X X X 7
SRM [274] X X X X X X X 7
SurvLIME-KS [287] X X X X X X X 7
TreeExplainer [271] X X X X X X X 7
BB-BC IT2FLS [288] X X X X X X 6
CIE [289] X X X X X X 6
ExNN [290] X X X X X X 6
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Table 6. Cont.

Methods for
Explainability References

Explanations Stage Scope Design Space Total
CountN R T V Ah Ph L G P O/A A M/S

FDE [291] X X X X X X 6
MAPLE [292] X X X X X X 6
Generation [293] X X X X X 5
GRACE [294] X X X X X 5
HFS [295] X X X X X 5
iNNvestigate [296] X X X X X 5
J48 [297,298] X X X X X 5
Ada-WHIPS [299] X X X X X 5
BN [300] X X X X X 5
BRL [301] X X X X X 5
CAM [302,303] X X X X X 5
CFCMC [304] X X X X X 5
CIT2FS [305] X X X X X 5
Counterfactual Sets [306,307] X X X X X 5
eUD3.5 [308] X X X X X 5
FINGRAM [309] X X X X X 5
FormuCaseViz [310] X X X X X 5
FURIA [297] X X X X X 5
Ontological Perturbation [311] X X X X X 5
RBIA [312,313] X X X X X 5
RuleMatrix [314] X X X X X 5
FFT [298] X X X X 4
ICM [315] X X X X 4
LORE [21,316] X X X X 4
MTDT [317] X X X X 4
Mutual Importance [318] X X X X 4
OC-Tree [319] X X X X 4
Attention Maps [320,321] X X X X 4
Causal Importance [322] X X X X 4
CTree [298] X X X X 4
TCBR [323] X X X X 4
Template-based Natural Lan-
guage Generation

[324] X X X X 4

TREPAN [325] X X X X 4
WM Algorithm [326] X X X X 4

Total Count 14 15 15 23 18 28 38 26 27 11 20 8 –

6. Analysing XAI in ATM

Globally, the explainability of the AI algorithms used by the different works reviewed
is barely addressed.

In our review, the algorithm belonging to the Prediction category is the only one
where explainability is approached clearly even if it is secondary to the papers main goals
and it was restricted mainly to predicting an indicator of the trajectory, i.e., the landing
time [138] and take-off time [37]. The main goal of Xie et al. [27] was to explain the results
of their risk of incidents and accidents predictive model. Although those AI algorithms
are already useful to the ATM community, fully understanding the underlining reasons of
congestion, trajectory routes, and delay, i.e., answering “why” and “why not” questions,
is more than required to better enhance latter traffic, or more simply better predict it.
Predicting the traffic and its delays is one key to enhance the general traffic, its congestion,
and better balance the demand and resources, so more research should focus on this topic.
Additionally, another example of the need for explainability for those algorithms would
be to predict the future behaviour of those algorithm with other features, or in a new
environment—e.g., transposing the landing time prediction model from one airport to
another. Moreover, being able to efficiently and effectively alert the ATM users on the
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prediction result and explain the reasons behind the alert, has proven to be key for not only
building trust in the system. For example, alerting the user that the prediction result might
be false (because of the class-imbalanced data set for that class) or alerting a possible lack
of feature provided to perform the analysis (e.g., an over simplification of the trajectories),
are all “explanations” that need to be communicated in a certain way, during a certain time
to the final human operator, otherwise the advantages of automation support would not be
considered [327].

Unfortunately—as shown in the previous section—AI algorithms used to Optimise
and Automate are not the main target of the general explainable AI community, and has
not been further studied in the ATM field. Nonetheless, optimising and/or automating
the general traffic and avoiding collision is one key—arguably the most important—to
enhance general traffic and its safety. Due to the upmost importance of safety in ATM, fully
understanding the underlining reasons of conflict avoidance procedures(e.g., explaining
why one aircraft is moved away from its planned trajectory and not another), sequencing,
or any other optimisation result, is more than required to be accepted and used by human
operators such as ATCO. Going further, it would be interesting to predict how the AI
algorithm would perform in a different environment—e.g., how it would organise the
traffic when a part of the airspace changes and becomes not available (e.g., military zones).
Furthermore, alerting on a possible bad solution, for example alerting on a possible bias
from the training, could also prove to be essential to the acceptance of the algorithm.

In our review, AI algorithms used to Analyse did not receive any effort to explain the
result or the algorithm, despite some algorithms being strongly addressed by the general
XAI community—see Section 5. Adding explainability could help the end-user understand
the classification performed by the algorithm (e.g., the different factors influencing this
analysis), and help one to understand also how this analysis could evolve with new
parameters or data, and how to modify the analysed “Material Object” to obtain the desired
behaviour. Additionally, it would be interesting to be able to predict the change of the
classes if a new feature is added, or predict the evolution of classes with a modification of
the problem structure—e.g., predict the evolution of the flows of trajectories with a new
route structure.

Similarly, Modelisation and Simulation AI algorithms were not found to be explained
either. In a sense, AI modelling most of the time start from the underlying reasons motivat-
ing actions of the different actors taking part in the simulated world. This is particularly
true with MAS systems that are dominant in this category, where MAS designers try to
represent the different entities in the system, their actions and reasoning, allowing a global
state to emerge for agent interactions. Nonetheless, explainability could be added to explain
some emerging behaviours instead of the local behaviour(e.g., delay propagation), with a
valuable impact to global understanding.

In the current state, the effectiveness and acceptability of AI algorithms in ATM will
be limited by the machine’s inability to explain its thoughts and actions to human users in
these critical situations, and fully understand the needs and desires of the end-user. Finally,
the following section formalises the lack of explainability using a conceptual framework to
further detail the need and direction that must be taken in order to tackle the explainability
problem in ATM.

7. XAI in ATM Synthesis

The ATM domain being a critical one, with life at stake, the effectiveness of AI systems
will be limited by the machine’s inability to explain its thoughts and actions to human
users in these critical situations, and fully understand the needs and desire of the end-user.
As seen in previous sections, the third wave of XAI is yet to be at a general XAI level.
Nonetheless, as contended by the authors, actual general XAI will not be totally sufficient
for AI to reach end-users as ATCO.

Indeed, developed XAI systems are more directed to the developer or the debugger
than the final end-user [13]. Although some XAI are focused on an explanation that might
be presented to a non-developer [270,328], little justification is provided for choosing
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different explanation types or representations, and it is unclear why these explanations
will be feasibly useful to actual users or simply understood [329]. Already existing formal
psychological theories that are greatly summarized for XAI in [330–333], are poorly used
to guide explanations facilities, as argued in [13,21]. The last concern is essential to move
towards human-centric AI since it is essential to understand how humans think as well
as being able to adapt to different ways of thinking. A second or parallel step can be to
understand what information they seek and the biases that impair their reasoning, so as to
understand what reasoning method triggers actual XAI facilities [334], and how XAI can
be leveraged to mitigate decision biases.

Furthermore, explanation is both a product and a process, in particular a social
process [335]. XAI systems are required to fully understand the user, which means to adapt
to the one that receives the explanation [21,336]. This is crucial to determine the explanation
requirements for a given problem, and understand the ‘why’ behind user actions [337]. Fur-
thermore, understanding is required to adapt to its socio-technical environment since the
AI user will interact with other humans outside of the 1-1 human-computer interaction, and
thus trust should be transitive to them [334]. Lastly, the systems also need to understand
the user, which means it has to be able to interact with the user, which here is beneficial in
both ways, i.e., human understanding the machine and machine understanding the human.
In order to adapt while the XAI systems is in use and not only during the development
process to enhance explainability, the XAI systems must be able to adapt to the user and
provide information which is not only about the internal state of the AI [338]. The previous
paragraphs about general XAI—and thus Section 5—and Section 6, let emerge user-centric
XAI requirements for ATM that can be synthesised by the three following XAI:

• Descriptive XAI, any XAI that describe an AI algorithm, or its outputs.
• Predictive XAI, any XAI that predict the behaviour of an AI algorithm to a certain

input or system modification.
• Prescriptive XAI, any XAI that detect errors or an unwanted behaviour of an AI

algorithm and prescribe a way to overcome it.

Descriptive XAI is particularly covered by actual general XAI state of the art, and
is required by the end-user to understand the machine. Predictive XAI is required by
the end-user to interact and to ask counterfactual ‘what if’ or ‘why not’ questions to the
AI system—must it be on its internal behaviour or its output—, on a more semantically
accessible level. This level requires the description level—as shown in Figure 10—to be
intelligible by the end user. Finally, the prescriptive XAI is required by the end-user
expressing to the machine, allowing ‘how to’ questions to be asked, and overcoming
errors and unwanted behaviours. The prescriptive XAI requires the predictive level to
analyse different outcomes and prescribe adequate modifications to the AI system, and the
descriptive level to be intelligible by the end user.

We illustrate these different types of XAI in the following section on a selected scenario
about conflict avoidance.

Figure 10. Synthesis of EXplainable Artificial Intelligence (XAI) conceptual framework.
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8. Scenarios XAI in ATM

In this section, we present scenarios and benefits of our XAI framework within aviation
concrete examples. It is assumed that safety within the context of civil aviation is taken by
default of high importance during our scenario presentation.

Let us assume that the fully functional XAI is deployed in 2030 within the aviation
domain and is being used by all stakeholders including an Air Traffic Controller and
Management. We assume further that at point C (see Figure 11), aircraft A1 and A2 will
go below the minimum safety distance in X minutes if no actions are taken by the pilots.
ATC gets a notification that actions need to be taken—e.g., safety warning with blinking
notifications on the radar screen.

Figure 11. Conflict scenario involving two Aircrafts, A1 and A2.

Let us further assume that the controller in charge changed the flight level of the
Aircrafts such that this dangerous situation is avoided. However, due to change in the flight
level or flight path, Aircraft A1 will reach the final destination during peak landing hour,
which increases the congestion and holding time of several aircraft, which will drastically
impact the take-off/landings sequences.

The situation leads to congested airspace inducing stress and a high workload of sev-
eral stakeholders (e.g., ATC, Pilots, Airline’s ground staff, or other stakeholders), degrading
the landing and take-off performance of several aircraft—e.g., delay, cost.

In the above scenario, based on the inputs from all interconnected complex systems,
any safety events are identified well in advance (SAFETY PREDICTION) such that all
actors—including ATC/pilots—can take appropriate actions.

In 2030, when AI modules are induced within the complex Air Traffic Management
System, algorithm transparency and explanation should be able to appropriately provide
all stakeholders, including ATC retrieve, the following three major pieces of information:

(1) Descriptive XAI: The system should be able to provide to all users the detailed descrip-
tion and rational of the action to be taken. In the above example, the XAI should be
able to provide information on why there is need of change in the flight plan which is
due to a possible collision risk. Or it should be able to provide information on potential
congestion in airspace, during take-off or landing, which will help to optimise among
other things the efficiency of the whole systems and stakeholders in addition to the
avoidance of safety catastrophe.
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(2) Predictive XAI: In the above example, the XAI should be able to determine the ‘what if’
conditions or in other words, provide information to all stakeholders what will be the
consequences of the actions that will be taken. The XAI in the above case should be
able to provide information to ATC so that if the ATC performs certain actions to avoid
collision, then it will lead to congestion in the airport due to their actions. This will
help and support the ATC including other stakeholders understand the consequences
of certain actions, ‘what if I perform this action’.

(3) Prescriptive XAI: The induced AI functions will, in addition to the above information,
be able to suggest/propose the appropriate actions and options along with an appro-
priate explanation such that stakeholders can decide on the next course of actions.
This next course of action will be based on safety criteria as a main contributor but
will also take other appropriate considerations like congestion, weather information,
induced workload to ATC, pilots taking into account human factors, cost benefits, and
environmental benefits to name the few. In the above scenario, the user can use the
XAI prediction to assess the efficiency of potential actions—‘what if’. XAI prescription
will provide sufficient information to enable the user with immediate action to perform
without testing them. For instance, the ‘what if’ function shows that aircraft A will
induce high delay in the landing sequence, and XAI prescription will provide the
immediate solution which will address this issue—i.e., providing a different solution
for conflict resolution with a change of path rather than a change of altitude.

9. Setting the Trajectory of AI and XAI in ATM

This paper presented a systematic review of the literature regarding Artificial Intelli-
gence (AI) and EXplainable Artificial Intelligence (XAI) in Air Traffic Management (ATM).
The review found that there is a wide range of ATM tasks that have been considered
(Sections 2 and 3). Some of these applications include, but are not limited to, tasks related to
AirSpace Management (ASM) (e.g., optimising the structure of the sectors), tasks related to
Air Traffic Flow and Capacity Management (ATFCM) (e.g., predicting the network delay),
and tasks related to Air Traffic Controller (ATCO) (e.g., conflict detection and avoidance).

This application space has been clustered by a iterative process into four categories
(Sections 3 and 4), namely (i) the “Prediction” category, papers seeking to foresee the
future behaviour of a “Material Object”, see Table 4, (ii) the ”Optimisation/Automation”
category, papers seeking to enhance the behaviour of a “Material Object”, (iii) the “Analysis”

category, papers seeking to understand the observed behaviour of a “Material Object”,
and finally (iv) the “Modelling/Simulation” category, paper modelling the behaviour of
a “Material Object” to simulate it.

These four categories that constitute the author Design Space of AI in ATM have
then be used to analyse current AI in ATM work (Section 4). As a summary, the main
challenges for the Optimisation/Automation category is to reach end users that are
mostly performing high risk/time pressure tasks (since, most of those works optimise
actual traffic). MAS and RL could particularly be of great interest for potential UAV uses.
Modelling could also greatly benefit from using MAS more often in order to enhance the
reality of the simulations. As for the Prediction category, the main opportunity lies in
enhancing their models and embracing the complexity of air traffic. Finally, works from the
Analysis category would benefit from more transparency toward its users.

The Design Space has then be used to analyse XAI in general and XAI in ATM
(Sections 5 and 6). It has shown that AI in ATM still needs to apply XAI to its algorithm in
order to reach end users, as nearly no article were focusing and explaining their results,
and that XAI for ATM should move toward a more user-centric design, where both the
AI system and the end-user can understand and interact with each other thanks to this
user-centric XAI (UCXAI).

This analysis of XAI in ATM through the lens of the Design Space has presented
some common points between the four categories and have then been summarised into
a conceptual framework composed of three interconnected XAI levels required in ATM,
namely, (i) “Descriptive” XAI, XAI system that describes an AI algorithm, or its outputs,
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(ii) “Predictive” XAI, that predict the behaviour of an AI algorithm to a certain input or
AI system modification, and (iii) “Prescriptive“XAI, that detect errors or an unwanted
behaviour of an AI algorithm and prescribes a way to overcome it.

The current investigation highlights that general XAI are focused on the Descriptive
level, although some research provides Predictive characteristics—mostly the sensibility of
the prediction to some variables. However, more research on XAI for the predictive and
prescriptive levels within ATM are required to grab the potential value that XAI in general
can bring to the aviation community.
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Appendix A. Principal Extracted Features from Articles

We present in this annex the principal extracted features from all publications (i.e., the
material object and time frame feature from Table 4), along with their title and reference.

Table A1. Principal extracted features from articles.

Reference Title Material Object Time Frame

[339] Parameterised framework for the analysis of prob-
abilities of aircraft delay at an airport Airport, Analysis, Airport State Post-Analysis

[340] A survival model for flight delay propagation Aircraft, Analysis, Aircraft Trajectory, Air-
craft Trajectory Indicator Post-Analysis

[341]
Optimisation of the waiting time and makespan
in aircraft departures: A real time non-iterative
sequencing model

Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic, Flying

[342] An empirical analysis of delays in the Turkish Air-
lines network Analysis, Traffic, Traffic Indicator Post-Analysis

[343] Aircraft line maintenance scheduling and optimisation Optimisation, Aircraft, Aircraft State Pre-Flying

[215] Aircraft grouping based on improved divisive hier-
archical clustering algorithm

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[344] A novel heuristic approach for solving aircraft land-
ing problem with single runway Modelling, CTR, CTR Traffic Not Referenced

[345]
Analysis of bilateral air passenger flows: A non-
parametric multivariate adaptive regression spline
approach

Modelling, Airspace, Airspace Structure,
Airspace Structure Route Post-Analysis
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Table A1. Cont.

Reference Title Material Object Time Frame

[346] Airport and route classification by modelling flight
delay propagation

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[131] Predicting demand for air taxi urban aviation ser-
vices using machine learning algorithms

Prediction, Airspace, Demand Capacity
Balancing Pre-Flying

[210] Using causal machine learning for predicting the
risk of flight delays in air transportation Prediction, Traffic, Traffic Indicator Pre-Flying

[208]
Analysis of airport weather impact on on-time per-
formance of arrival flights for the Brazilian domes-
tic air transportation system

Airport, Analysis, Airport State Post-Analysis

[347]
Using machine learning algorithms to predict the
risk of small Unmanned Aircraft System violations
in the National Airspace System

Prediction, CTR, CTR Traffic Pre-Flying

[130] Automated data-driven prediction on aircraft Esti-
mated Time of Arrival

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[205] Airport selection criteria of low-cost carriers: A
fuzzy analytical hierarchy process Airport, Analysis, Airport State Post-Analysis

[129]
Assessing strategic flight schedules at an airport
using machine learning-based flight delay and can-
cellation predictions

Prediction, CTR, CTR Traffic Flying

[348] Forecasting air passenger demand with a new hy-
brid ensemble approach

Prediction, Airspace, Demand Capacity
Balancing Pre-Flying

[349] Towards a maturity model for big data analytics in
airline network planning

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[350] Improving aircraft approach operations taking into
account noise and fuel consumption Optimisation, CTR, CTR Traffic Pre-Flying

[203]
A hybrid approach based on the fuzzy AHP and
HFACS framework for identifying and analyzing
gross navigation errors during transatlantic flights

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[100] An efficient hybrid approach for resolving the air-
craft routing and rescheduling problem Optimisation, CTR, CTR Traffic Flying

[204] A novel hybrid fuzzy DEA-Fuzzy MADM method
for airlines safety evaluation

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[351] Collaborative air traffic flow management: Incor-
porating airline preferences in rerouting decisions

Optimisation, Airspace, Demand Capacity
Balancing Not Referenced

[352] An intelligent decision making approach for identi-
fying and analysing airport risks

Airport, Analysis, Ground Traffic, Ground
Traffic 5D Traffic Post-Analysis

[206]
Multi-attribute sustainability evaluation of alterna-
tive aviation fuels based on fuzzy ANP and fuzzy
grey relational analysis

Aircraft, Analysis, Aircraft State Post-Analysis

[353] Statistical characterisation of deviations from
planned flight trajectories in air traffic management

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[176] Causal Analysis of En Route Flight Inefficiency—
the US Experience

Analysis, Airspace, Airspace Structure,
Airspace Structure Route Post-Analysis

[160] Predicting & Quantifying Risk in Airport Capacity
Profile Selection for Air Traffic Management Prediction, Airport, Airport State Pre-Flying

[125]
A Novel Machine Learning Model to Predict Ab-
normal Runway Occupancy Times and Observe
Related Precursors

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[212] A Bayesian Network Model of Pilot Response to
TCAS Resolution Advisories Prediction, Modelling, Pilot Pre-Flying,

Flying

[123] Learning Air Traffic Controller Workload from Past
Sector Operations Prediction, Air Traffic Controller (ATCo) Flying

[148] Predicting Performance of Ground Delay Programs Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[163] A Comparative Analysis of Models for Predicting
Delays in Air Traffic Networks Prediction, Traffic, Traffic Indicator Pre-Flying
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Table A1. Cont.

Reference Title Material Object Time Frame

[147] Using Machine-Learning to Dynamically Generate
Operationally Acceptable Strategic Reroute Options

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Route Flying

[149] Predicting and Analysing US Air Traffic Delays
using Passenger-centric Data-sources

Prediction, Analysis, Airspace, Static
Structural State, Airspace State

Flying,
Post-Analysis

[234] Optimising Successive Airspace Configurations
with a Sequential A* Algorithm

Optimisation, Airspace, Airspace Struc-
ture, Airspace Structure Sector Pre-Flying

[78] Optimising Collision Avoidance in Dense Airspace
using Deep Reinforcement Learning

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[124] Cost Reductions Enabled by Machine Learning
in ATM Air Traffic Controller (ATCo), Analysis Post-Analysis

[182] A Machine Learning Approach for Conflict Resolu-
tion in Dense Traffic Scenarios with Uncertainties

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[170] Regression Analysis of Top of Descent Location for
Idle-thrust Descents

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[178]
Analysis of Airspace Complexity Factors’ Capa-
bility to Predict Workload and Safety Levels in
the TMA

Prediction, Airspace, Static Structural
State, Airspace State Flying

[164] Modelling Delay Propagation Trees for Sched-
uled Flights

Prediction, Modelling, Traffic, Traffic Indi-
cator Pre-Flying

[159] Machine Learning Applied to Airspeed Prediction
During Climb

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[258]
Machine Learning of Controller Command Predic-
tion Models from Recorded Radar Data and Con-
troller Speech Utterances

Air Traffic Controller (ATCo), Analysis Post-Analysis

[56]
Combining Visual Analytics and Machine Learn-
ing for Route Choice Prediction Application to Pre-
Tactical Traffic Forecast

Aircraft, Prediction, Analysis, Aircraft Tra-
jectory, Aircraft Trajectory Route

Pre-Flying,
Post-Analysis

[60] A context-aware speech recognition and under-
standing system for air traffic control domain Air Traffic Controller (ATCo), Analysis Post-Analysis

[57] Deep Trajectory Clustering with Autoencoders Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[171] Identification of Significant Impact Factors on Ar-
rival Flight Efficiency within TMA Analysis, CTR, CTR Traffic Post-Analysis

[138] Predicting Aircraft Landing Time in Extended-
TMA Using Machine Learning Methods

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[66] Analysing Pilot Decision-Making Using Predictive
Modelling Prediction, Modelling, Analysis, Pilot Not Referenced

[200] Large-scale flight phase identification from ads-b
data using machine learning methods

Aircraft, Prediction, Analysis, Aircraft Tra-
jectory, Aircraft Trajectory Indicator

Pre-Flying,
Post-Analysis

[232]
Classification of Air Traffic Controller Utterance
Transcripts via Warm-Start Non-Negative Matrix
Factorisation

Air Traffic Controller (ATCo), Analysis Post-Analysis

[59] Detecting Controllers’ Actions in Past Mode S Data
by Autoencoder-Based Anomaly Detection Air Traffic Controller (ATCo), Analysis Post-Analysis

[58] Clustering Trajectories by Relevant Parts for Air
Traffic Analysis

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[188] Analysis of Airspace Infringements in European
Airspace

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis

[189] A Dynamic Bayesian Belief Network Approach for
Modelling the ATM Network Delays Analysis, Traffic, Traffic Indicator Post-Analysis

[173]
A linear programming approach for capacity esti-
mation and robustness analysis of the European air
traffic network

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis

[174] A linear programming approach to maximum flow
estimation on the European air traffic network

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis
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Table A1. Cont.

Reference Title Material Object Time Frame

[175] Topological properties of the air navigation route
system using complex network theory

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis

[61] Auto-structuration de trafic temps-réel multi-
objectif et multi-critère dans un monde virtuel

Optimisation, Aircraft, Conflict Avoid-
ance, Modelling, Traffic, Aircraft Trajec-
tory, Aircraft 4D Trajectory, Traffic 5D Traf-
fic, 5D Traffic Modelling

Flying,
Not Referenced

[45] Simulation massive de monde virtuel par système
multi-agent auto-adaptatif

Aircraft, Prediction, Traffic, Aircraft Tra-
jectory, Aircraft 4D Trajectory, Traffic 5D
Traffic, 5D Traffic Prediction

Not Referenced

[64] Adaptive Air Traffic with Big Data Analysis
Aircraft, Prediction, Traffic, Aircraft Tra-
jectory, Aircraft 4D Trajectory, Traffic 5D
Traffic, 5D Traffic Prediction

Not Referenced

[70] Learning aircraft behaviour from real air traffic
Aircraft, Prediction, Traffic, Aircraft Tra-
jectory, Aircraft 4D Trajectory, Traffic 5D
Traffic, 5D Traffic Prediction

Not Referenced

[68] An Autonomous Free Airspace En-route Controller
using Deep Reinforcement Learning Techniques

Optimisation, Modelling, Air Traffic Con-
troller (ATCo) Flying

[63]
Using agent-based modelling to determine collision
risk in complex TMA environments: the turn-onto-
ILS-final safety case

Modelling, CTR, CTR Traffic Not Referenced

[80] Using Agent-Based Modelling to Determine Colli-
sion Risk in Complex TMA Environments Modelling, CTR, CTR Traffic Not Referenced

[81] Bluesky ATC simulator project: an open data and
open source approach

Modelling, Traffic, Traffic 5D Traffic, 5D
Traffic Modelling Not Referenced

[82] An Agent Based Model of the Air Traffic Management Aircraft, Modelling, Air Traffic Controller
(ATCo), Traffic, Airspace Not Referenced

[65] Agent-based simulation framework for airport col-
laborative decision making

Airport, Modelling, Ground Traffic, CTR,
CTR Traffic, Ground Traffic 5D Traffic Not Referenced

[85] Agent-based safety risk analysis of Trajectory Based
Operation in the Terminal Manoeuvring Area Modelling, CTR, CTR Traffic Not Referenced

[83] Risk-capacity tradeoff analysis of an en-route corri-
dor model

Modelling, Airspace, Airspace Structure,
Airspace Structure Route Not Referenced

[91] Aircraft conflict resolution by genetic algorithm
and B-spline approximation

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[76] Decentralised cooperative conflict resolution
among multiple autonomous mobile agents

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[96]
Hybridisation of interval methods and evolution-
ary algorithms for solving difficult optimisation
problems

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[53] Multi-agent systems to help managing air traf-
fic structure

Optimisation, Conflict Avoidance, Airspace,
Airspace Structure, Airspace Structure Route Flying

[61] Auto-structuration de trafic temps-réel multi-
objectif et multi-critère dans un monde virtuel

Optimisation, Aircraft, Conflict Avoid-
ance, Modelling, Traffic, Aircraft Trajec-
tory, Aircraft 4D Trajectory, Traffic 5D Traf-
fic, 5D Traffic Modelling

Pre-Flying,
Flying,
Not Referenced

[48] Dynamic Collision Avoidance using Local Cooper-
ative Airplanes Decisions

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation

Pre-Flying,
Flying

[115] Ant colony optimisation for air traffic conflict resolution Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation

Pre-Flying,
Flying

[95]
Modélisation mathématique et résolution automa-
tique de conflits par algorithmes génétiques et par
optimisation locale continue

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[104] Strategic deconfliction of aircraft trajectories Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[74] Multiagent Reinforcement Learning Methods for
Resolving Demand—-Capacity Imbalances

Optimisation, Airspace, Demand Capac-
ity Balancing Pre-Flying
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Table A1. Cont.

Reference Title Material Object Time Frame

[93] Multiobjective Pre-tactical Planning Under Uncer-
tainty for Air Traffic Control

Optimisation, Traffic, Traffic 5D Traffic, 5D
Traffic Optimisation Pre-Flying

[77] The Effect of Intent on Conflict Detection and Reso-
lution at High Traffic Densities

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[68] An Autonomous Free Airspace En-route Controller
using Deep Reinforcement Learning Techniques

Optimisation, Modelling, Air Traffic Con-
troller (ATCo) Flying

[55] FPCA applied to flight paths optimisation Optimisation, Aircraft, Aircraft Trajectory,
Aircraft 4D Trajectory Pre-Flying

[135] Coupling Mathematical Optimisation and Machine
Learning for the Aircraft Landing Problem Optimisation, CTR, CTR Traffic Pre-Flying

[181] Improvement of Conflict Detection and Resolution
at High Densities Through Reinforcement Learning

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Flying

[94] Merging Flows and Optimising Aircraft Scheduling
in Terminal Manoeuvring Area Based on GA Optimisation, CTR, CTR Traffic Flying

[92] Aircraft Ground Traffic Optimisation Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic Pre-Flying

[214] Airport ground traffic optimisation Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic Pre-Flying

[54]
A multi-objective evolutionary method for Dy-
namic Airspace Re-sectorization using sectors clip-
ping and similarities

Optimisation, Airspace, Airspace Struc-
ture, Airspace Structure Sector Pre-Flying

[187] Autonomous Aircraft Sequencing and Separation
with Hierarchical Deep Reinforcement Learning

Optimisation, Conflict Avoidance, CTR,
CTR Traffic Flying

[52] Integrated Optimisation of Arrival, Departure, and
Surface Operations

Optimisation, Airport, Ground Traffic,
CTR, CTR Traffic, Ground Traffic 5D Traf-
fic

Pre-Flying

[50] Merging flows in terminal manoeuvring area using
time decomposition approach Optimisation, CTR, CTR Traffic Pre-Flying

[49] Multi-agent Systems for Air Traffic Conflicts Reso-
lution by Local Speed Regulation

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Flying

[46] Large Scale Adaptive 4D Trajectory Planning
Optimisation, Aircraft, Conflict Avoid-
ance, Aircraft Trajectory, Aircraft 4D Tra-
jectory

Pre-Flying

[90] A new framework for solving en-routes conflicts Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[98] Benchmarking conflict resolution algorithms Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[105] Trafic aérien: détermination optimale et globale des
trajectoires d’avion en présence de vent

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[75] The effect of swarming on a voltage potential-based
conflict resolution algorithm

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[51] Optimisation of arrival and departure routes in
terminal manoeuvring area

Optimisation, Airspace, Airspace Struc-
ture, Airspace Structure Route Pre-Flying

[97] The use of meta-heuristics for airport gate assign-
ment

Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic Pre-Flying,

[14] Metaheuristics for air traffic management

Optimisation, Traffic, Airspace, Airspace
Structure, Airspace Structure Route, Traf-
fic 5D Traffic, 5D Traffic Optimisation,
Airspace Structure Sector

Pre-Flying,
Flying

[145] Evaluation of algorithms for a miles-in-trail deci-
sion support tool

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[112] Optimised Flight Level Allocation at the Continen-
tal Scale

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[113] Air transportation network robustness optimisa-
tion under limited legs itinerary constraint

Optimisation, Airspace, Airspace Struc-
ture, Airspace Structure Route Pre-Flying

[106] Optimisation of aircraft trajectories in North At-
lantic oceanic airspace

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying
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Table A1. Cont.

Reference Title Material Object Time Frame

[233] Iterative planning of airport ground movements Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic Flying

[7] Cooperative multi-agent model for collision avoid-
ance applied to air traffic management

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Flying

[45] Simulation massive de monde virtuel par système
multi-agent auto-adaptatif

Aircraft, Prediction, Traffic, Aircraft Tra-
jectory, Aircraft 4D Trajectory, Traffic 5D
Traffic, 5D Traffic Prediction

Pre-Flying,
Not Referenced

[64] Adaptive Air Traffic with Big Data Analysis
Aircraft, Prediction, Traffic, Aircraft Tra-
jectory, Aircraft 4D Trajectory, Traffic 5D
Traffic, 5D Traffic Prediction

Not Referenced

[70] Learning aircraft behaviour from real air traffic
Aircraft, Prediction, Traffic, Aircraft Tra-
jectory, Aircraft 4D Trajectory, Traffic 5D
Traffic, 5D Traffic Prediction

Not Referenced

[56]
Combining Visual Analytics and Machine Learn-
ing for Route Choice Prediction Application to Pre-
Tactical Traffic Forecast

Aircraft, Prediction, Analysis, Aircraft Tra-
jectory, Aircraft Trajectory Route

Pre-Flying,
Post-Analysis

[44] A Multi-Agent Approach for Reactionary Delay
Prediction of Flights Prediction, Traffic, Traffic Indicator Flying

[141] Data-driven Aircraft Trajectory Predictions using
Ensemble Meta-Estimators

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Pre-Flying

[122] Prediction of the Propagation of Trajectory Uncer-
tainty for Climbing Aircraft

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[138] Predicting Aircraft Landing Time in Extended-
TMA Using Machine Learning Methods

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[142]
Full-scale pre-tactical route prediction Machine
Learning to increase pre-tactical demand forecast
accuracy

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Route Pre-Flying

[42] Short-Term Trajectory Prediction Using Generative
Machine Learning Methods

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[38]
Taxi-speed Prediction by Spatio-Temporal Graph-
based Trajectory Representation and Its Applica-
tions

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[36]
Comparative Analysis of Machine Learning and
Statistical Methods for Aircraft Phase of Flight Pre-
diction

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[158] A Boosted Tree Framework for Runway Occupancy
and Exit Prediction

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[121] Data-driven predictive analytics of runway occu-
pancy time for improved capacity at airports

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Flying

[143] Model generalisation in arrival runway occupancy
time prediction by feature equivalences

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Flying

[34] Predictive Distribution of the Mass and Speed Pro-
file to Improve Aircraft Climb Prediction Aircraft, Prediction, Aircraft State Pre-Flying

[37]
Improving the predictability of take-off times with
Machine Learning: a case study for the Maastricht
upper area control centre area of responsibility

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[140]
Probabilistic Prediction of Separation Buffer to
Compensate for the Closing Effect on Final Ap-
proach

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[139] Probabilistic Prediction of Time To Fly using Quan-
tile Regression Forest

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[190] En-route Arrival Time Prediction using Gaussian
Mixture Model

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[120] Neural Network based Convection Indicator for
Pre-Tactical Air Traffic Flow Management

Prediction, Airspace, Airspace State, Envi-
ronmental State Pre-Flying

[118] A Multi-Layer Artificial Neural Network Approach
for Runway Configuration Prediction Prediction, Airport, Airport State Pre-Flying
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[40] Predicting sector configuration transitions with
autoencoder-based anomaly detection

Prediction, Airspace, Airspace Structure,
Airspace Structure Sector Flying

[213] Aircraft Mass and Thrust Estimation Using Recur-
sive Bayesian Method Aircraft, Prediction, Aircraft State Pre-Flying

[41] A machine learning apporach on past ads-b data to
predict planning controller’s actions Prediction, Air Traffic Controller (ATCo) Flying

[66] Analysing Pilot Decision-Making Using Predictive
Modelling Prediction, Modelling, Analysis, Pilot Flying,

Post-Analysis

[89]
Research on Civil Aircraft Fuel Consumption in
Cruise Phase Based on Least Square Support Vector
Regression with Genetic Algorithm

Aircraft, Prediction, Aircraft State Flying

[39] Predicting Aircraft Trajectory Choice – A Nominal
Route Approach

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Route Pre-Flying

[119]

Evaluation of feasible machine learning techniques
for predicting the time to fly and aircraft speed pro-
file on final approach: Predictive dynamic support
tool on final approach

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[35] Predicting aircraft descent length with machine
learning

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[69] Wind and Temperature Networking Applied to Air-
craft Trajectory Prediction

Prediction, Airspace, Airspace State, Envi-
ronmental State Flying

[200] Large-scale flight phase identification from ads-b
data using machine learning methods

Aircraft, Analysis, Aircraft Trajectory, Air-
craft Trajectory Indicator Post-Analysis

[144] Visual Analytics for Exploring Local Impact of Air
Traffic

Prediction, Airspace, Static Structural
State, Airspace State Pre-Flying

[166] Machine Learning Model for Aircraft Performances Aircraft, Prediction, Aircraft State Flying

[72] Data-driven modelling of the Tree of Reactionary
Delays Prediction, Traffic, Traffic Indicator Flying

[73] Systemic delay propagation in the US airport net-
work

Prediction, Modelling, Traffic, Traffic Indi-
cator

Flying,
Not Referenced

[30] Predicting the future location of a general aviation
aircraft

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[146] A network-based model for predicting air traffic
delays Prediction, Traffic, Traffic Indicator Flying

[256] Accuracy of Reinforcement Learning Algorithms
for Predicting Aircraft Taxi-out Times Prediction, Airport, Airport State Pre-Flying

[179] Trajectory prediction by functional regression in
sobolev space

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Pre-Flying

[180] Trajectory prediction by functional regression in
Sobolev space

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Pre-Flying

[165]
Estimation and Comparison of the Impact of Sin-
gle Airport Delay to the National Airspace System
Using Multivariate Simultaneous Models

Prediction, Airspace, Static Structural
State, Airspace State Flying

[225] Generating day-of-operation probabilistic capacity
profiles from weather forecasts

Prediction, Airspace, Static Structural
State, Airspace State Pre-Flying

[172] Analysing and Decomposing Taxi Times and Pre-
dicting Taxi out Times Prediction, Airport, Airport State Pre-Flying

[254] Learning Traffic Patterns at Small Airports From
Flight Tracks

Airport, Modelling, Ground Traffic,
Ground Traffic 5D Traffic Not Referenced

[116]
An Efficient Ant Colony System Based on Receding
Horizon Control for the Aircraft Arrival Sequenc-
ing and Scheduling Problem

Optimisation, CTR, CTR Traffic Pre-Flying

[111]
Two-Stage Stochastic Programming Based on Par-
ticle Swarm Optimisation for Aircraft Sequencing
and Scheduling

Optimisation, CTR, CTR Traffic Pre-Flying

[228] Airspace Collision Risk Hot-Spot Identification us-
ing Clustering Models

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis
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[220] Trajectory Clustering and an Application to
Airspace Monitoring

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[253] Forecasting Flight Delays Using Clustered Models
Based on Airport Networks

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[193] Learning Probabilistic Trajectory Models of Aircraft
in Terminal Airspace From Position Data

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Pre-Flying

[157] High Confidence Intervals Applied to Aircraft Alti-
tude Prediction

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[192] Efficient Road Detection and Tracking for Un-
manned Aerial Vehicle

Aircraft, Analysis, Aircraft Trajectory, Air-
craft 4D Trajectory Post-Analysis

[153]
A Two-Phase Method of Detecting Abnormalities
in Aircraft Flight Data and Ranking Their Impact
on Individual Flights

Aircraft, Analysis, Aircraft Trajectory, Air-
craft 4D Trajectory Post-Analysis

[191] Anomaly detection via a Gaussian Mixture Model
for flight operation and safety monitoring

Aircraft, Analysis, Aircraft Trajectory, Air-
craft Trajectory Indicator Post-Analysis

[151]

Flight trajectory data analytics for characterisation
of air traffic flows: A comparative analysis of ter-
minal area operations between New York, Hong
Kong and Sao Paulo

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[127]
A hybrid machine learning model for short-term
estimated time of arrival prediction in terminal ma-
noeuvring area

Aircraft, Prediction, Analysis, Aircraft Tra-
jectory, Aircraft 4D Trajectory

Flying,
Post-Analysis

[154] A knowledge-transfer-based learning framework
for airspace operation complexity evaluation

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis

[218] Temporal logic learning-based anomaly detection
in metroplex terminal airspace operations Analysis, Traffic, Traffic Indicator Post-Analysis

[199] Detection and identification of significant events in
historical aircraft trajectory data

Aircraft, Analysis, Aircraft Trajectory, Air-
craft 4D Trajectory Post-Analysis

[217]
A data-driven methodology for characterisation
of a terminal manoeuvring area in multi-airport
systems

Analysis, Traffic, Traffic 5D Traffic, 5D Traf-
fic Analysis Post-Analysis

[259] Interactive image-based information visualisation
for aircraft trajectory analysis

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[226] Characterisation and prediction of air traffic delays Prediction, Traffic, Traffic Indicator Pre-Flying

[177] Predictability impacts of airport surface automation Airport, Analysis, Ground Traffic, Ground
Traffic Indicators Post-Analysis

[102]
Evaluating ground–air network vulnerabilities in
an integrated terminal manoeuvring area using co-
evolutionary computational red teaming

Analysis, CTR, CTR Traffic Post-Analysis

[354] Modelling delay propagation within an airport network Modelling, Traffic, Traffic Indicator Not Referenced

[201] Multi-objective optimisation for aircraft departure
trajectories minimising noise annoyance

Optimisation, Traffic, Traffic 5D Traffic, 5D
Traffic Optimisation Pre-Flying

[237] Reward functions for learning to control in air traf-
fic flow management

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[99]
Systemic identification of airspace collision risk tip-
ping points using an evolutionary multi-objective
scenario-based methodology

Optimisation, Traffic, Traffic 5D Traffic, 5D
Traffic Optimisation Pre-Flying

[260] A CD&CR causal model based on path shorten-
ing/path stretching techniques

Optimisation, Conflict Avoidance, CTR,
CTR Traffic Flying

[202] A fuzzy approach to addressing uncertainty in Air-
port Ground Movement optimisation

Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic Pre-Flying

[101] Preference-based evolutionary algorithm for air-
port surface operations

Optimisation, Airport, Ground Traffic,
Ground Traffic 5D Traffic Pre-Flying

[107]
Integrated sequencing and merging aircraft to par-
allel runways with automated conflict resolution
and advanced avionics capabilities

Optimisation, CTR, CTR Traffic Flying

[117] Solving the gate assignment problem through the
Fuzzy Bee Colony Optimisation Optimisation, Airport, Airport State Pre-Flying
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[114] Metaheuristics for efficient aircraft scheduling and
re-routing at busy terminal control areas Optimisation, CTR, CTR Traffic Flying

[355] Increasing stability of crew and aircraft schedules Optimisation, Traffic, Traffic Indicator Pre-Flying

[84] Intelligent computing methods in Air Traffic Flow
Management

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Pre-Flying

[216] Prediction of aircraft performances based on data
collected by air traffic control centers Aircraft, Prediction, Aircraft State Pre-Flying

[126] Development of network restructuring models for
improved air traffic forecasts Prediction, Traffic, Traffic Indicator Pre-Flying

[236]
Accuracy of reinforcement learning algorithms for
predicting aircraft taxi-out times: A case-study of
Tampa Bay departures

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[167]
Learning the aircraft mass and thrust to improve
the ground-based trajectory prediction of climbing
flights

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[230] Generating day-of-operation probabilistic capacity
scenarios from weather forecasts

Prediction, Airspace, Static Structural
State, Airspace State Pre-Flying

[150] Predicting the operational acceptance of airborne
flight reroute requests using data mining

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Route Flying

[161]
Learning aircraft operational factors to improve
aircraft climb prediction: A large scale multi-airport
study

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Flying

[154] A knowledge-transfer-based learning framework
for airspace operation complexity evaluation

Analysis, Airspace, Static Structural State,
Airspace State Post-Analysis

[136]
Analysis of air traffic control operational impact
on aircraft vertical profiles supported by machine
learning

Aircraft, Prediction, Aircraft Trajectory,
Aircraft Trajectory Indicator Pre-Flying

[209] Estimating runway veer-off risk using a Bayesian
network with flight data

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Pre-Flying

[247] Flight time prediction for fuel loading decisions
with a deep learning approach

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators Flying

[183]
Prediction of runway configurations and airport ac-
ceptance rates for multi-airport system using grid-
ded weather forecast

Prediction, Airport, Airport State Flying

[184] Short-term prediction of airway congestion index
using machine learning methods

Prediction, Airspace, Static Structural
State, Airspace State Flying

[218] Temporal logic learning-based anomaly detection
in metroplex terminal airspace operations Analysis, Traffic, Traffic Indicator Post-Analysis

[128]
A machine learning approach to air traffic interde-
pendency modelling and its application to trajec-
tory prediction

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[243] Machine learning approach to predict aircraft
boarding Aircraft, Prediction, Aircraft State Flying

[226] Characterisation and prediction of air traffic delays Prediction, Traffic, Traffic Indicator Pre-Flying

[168] Aircraft trajectory forecasting using local functional
regression in Sobolev space

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Pre-Flying

[244] A Deep Graph-Embedded LSTM Neural Network
Approach for Airport Delay Prediction Prediction, Traffic, Traffic Indicator Pre-Flying

[132] A New Multilevel Input Layer Artificial Neural
Network for Predicting Flight Delays at JFK Airport Prediction, Airport, Airport State Pre-Flying

[43] Multi-Aircraft Trajectory Collaborative Prediction
Based on Social Long Short-Term Memory Network

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[246] A Deep Learning Approach for Aircraft Trajectory
Prediction in Terminal Airspace

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[194] Hybrid Machine Learning and Estimation-Based
Flight Trajectory Prediction in Terminal Airspace

Aircraft, Prediction, Aircraft Trajectory,
Aircraft 4D Trajectory Flying

[235]
3D path planning and real-time collision resolution
of multirotor drone operations in complex urban
low-altitude airspace

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation

Pre-Flying,
Flying
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[255] Multi-Rotor Aircraft Collision Avoidance using Par-
tially Observable Markov Decision Processes

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation Flying

[195] Identification and prediction of urban airspace
availability for emerging air mobility operations Prediction, CTR, CTR Traffic Pre-Flying

[108] Trajectory-based flight scheduling for AirMetro in
urban environments by conflict resolution

Optimisation, Conflict Avoidance, Traffic,
Traffic 5D Traffic, 5D Traffic Optimisation

Pre-Flying,
Flying

[185]
Predictive classification and understanding of
weather impact on airport performance through
machine learning

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators

Pre-Flying,
Flying

[356]
Computation of Air Traffic Flow Management Per-
formance with Long Short-Term Memories Consid-
ering Weather Impact

Prediction, Airport, Ground Traffic,
Ground Traffic Indicators

Pre-Flying,
Flying

[221]
Characterising air traffic networks via large-scale
aircraft tracking data: A comparison between
China and the US networks

Analysis, Traffic, 5D Traffic Analysis, Traf-
fic 5D Traffic Post-Analysis

[86] Comparing the modelling of delay propagation in
the US and European air traffic networks Modelling, Traffic, Traffic Indicator Not Referenced

[222]
From aircraft tracking data to network delay model:
A data-driven approach considering en-route con-
gestion

Traffic, 5D Traffic Analysis, Traffic 5D Traf-
fic Post-Analysis

[109] A probabilistic model based optimisation for air-
craft scheduling in terminal area under uncertainty CTR, CTR Traffic Flying

[357]
Terminal area control rules and eVTOL adaptive
scheduling model for multi-vertiport system in ur-
ban air Mobility

CTR, CTR Traffic Pre-Flying

[71]
An agent-based model for air transportation to cap-
ture network effects in assessing delay manage-
ment mechanisms

Traffic, Traffic Indicator Pre-Flying,
Post-Analysis

[240]
UAV-Assisted Content Delivery in Intelligent
Transportation Systems-Joint Trajectory Planning
and Cache Management

5D Traffic Optimisation, Traffic, Traffic 5D
Traffic Pre-Flying

[110]
An Iterative Two-Phase Optimisation Method
Based on Divide and Conquer Framework for Inte-
grated Scheduling of Multiple UAVs

Traffic, Traffic Indicator Pre-Flying

[241]
Data Freshness and Energy-Efficient UAV Naviga-
tion Optimisation: A Deep Reinforcement Learning
Approach

5D Traffic Optimisation, Conflict Avoid-
ance, Traffic, Traffic 5D Traffic Pre-Flying

[229] A Traffic Demand Analysis Method for Urban Air
Mobility Analysis, Traffic, Traffic Indicator Post-Analysis

[156] 4-D Flight Trajectory Prediction With Constrained
LSTM Network

Aircraft, Aircraft Trajectory, Aircraft 4D
Trajectory

Pre-Flying,
Flying

[248] A Machine Learning Approach to Predict the Evo-
lution of Air Traffic Flow Management Delay Traffic, Traffic Indicator Pre-Flying,

Flying

[249] Predicting Air Traffic Congested Areas with Long
Short-Term Memory Networks Traffic, Traffic Indicator Pre-Flying,

Flying

[250] Early Detection of Night Curfew Infringements by
Delay Propagation with Neural Networks Traffic, Traffic Indicator Pre-Flying

[155] Having a Bad Day? Predicting High Delay Days in
the National Airspace System Traffic, Traffic Indicator Pre-Flying

[227] Modelling of Flight Time Prediction Uncertainty for
Four-Dimensional Descent Trajectory Management

Aircraft, Aircraft Trajectory, Aircraft Tra-
jectory Indicator Flying

[223]
Leveraging local ADS-B transmissions to assess
the performance of air traffic at general aviation
airports

Traffic, Traffic Indicator Post-Analysis

[196] Modelling and Detecting Anomalous Safety Events
in Approach Flights Using ADS-B Data CTR, CTR Traffic Post-Analysis
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[197] Modelling and Detecting Anomalous Safety Events
in Approach Flights Using ADS-B Data CTR, CTR Traffic Post-Analysis

[198] Wind Profile Estimation from Aircraft Derived Data
Using Kalman Filters and Gaussian Process Regression

Airspace, Airspace State, Environmental
State, Post-Analysis

[238] Recommending Strategic Air Traffic Management
Initiatives in Convective Weather

Traffic, Traffic 5D Traffic, 5D Traffic Opti-
misation Pre-Flying

[79] Towards Conflict Resolution with Deep Multi-
Agent Reinforcement Learning

Conflict Avoidance, Traffic, Traffic 5D Traf-
fic, 5D Traffic Optimisation Flying

[103] Learning Uncertainty Parameters for Tactical Con-
flict Resolution ATCO Not Referenced

[186] Readback Error Detection by Automatic Speech
Recognition to Increase ATM Safety ATCO, Pilot Flying

[358] Feasibility Study of Free routing Airspace Opera-
tion over the North Pacific Airspace

Traffic, Traffic 5D Traffic, 5D Traffic Mod-
elling Not Referenced

[224] A machine learning-based framework for aircraft
manoeuvre detection and classification

Traffic, 5D Traffic Analysis, Traffic 5D Traf-
fic Post-Analysis

[219] Aircraft Performance-optimised Departure Flights
Using Traffic Flow Funnels

Aircraft, Aircraft Trajectory, Aircraft 4D
Trajectory Pre-Flying

[242]
Real-time departure slotting in mixed-mode oper-
ations using deep reinforcement learning: a case
study of Zurich airport

CTR, CTR Traffic Pre-Flying

[87] Evaluation of UTM Strategic Deconfliction
Through End-to-End Simulation

Traffic, Traffic 5D Traffic, 5D Traffic Mod-
elling Flying

[88]
Mid-air collisions with drones Assessment of colli-
sion scenarios and of drone operation risks in urban
areas

Traffic, Traffic 5D Traffic, 5D Traffic Mod-
elling Flying

[239] Reinforcement Learning for Traffic Flow Manage-
ment Decision Support Traffic, Traffic Indicator Pre-Flying

[152] Predicting arrival delays in the terminal area five
hours in advance with machine learning

Aircraft, Aircraft Trajectory, Aircraft Tra-
jectory Indicator Pre-Flying

[231] Spatial Modelling of Airport Surface Fuel Burn for
Environmental Impact Analyses

Airport, Ground Traffic, Ground Traffic
Indicators Not Referenced

[252] A data-driven operational model for traffic at the
Dallas Fort Worth International Airport CTR, CTR Traffic Not Referenced

[211] Characterisation of delay propagation in the air
traffic network Traffic, Traffic Indicator Flying

[133] Air passenger forecasting using Neural Granger
causal Google trend queries Traffic, Traffic Indicator Pre-Flying

[162] An explainable machine learning approach to im-
prove take-off time predictions

Airport, Ground Traffic, Ground Traffic
Indicators Pre-Flying

[137]
Estimating entry counts and ATFM regulations
during adverse weather conditions using machine
learning

Airspace, Airspace State, Static Structural
State Post-Analysis

[257] Prediction and extraction of tower controller com-
mands for speech recognition applications ATCO Flying

[134]
Estimating the impact of COVID-19 on air travel in
the medium and long term using neural network
and Monte Carlo simulation

Traffic, Traffic Indicator Pre-Flying

[169] Ratio-based design hour determination for airport
passenger terminal facilities Airport, Airport State Pre-Flying

[207]
An integrated SWOT-based fuzzy AHP and fuzzy
MARCOS methodology for digital transformation
strategy analysis in airline industry

Traffic, Traffic Indicator Pre-Flying

[251] Artificial neural network models for airport capac-
ity prediction Airport, Airport State Pre-Flying
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