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Summary. While advanced inference and registration methods for functional data analysis
have recently been developed in the literature, statistical analyses of aircraft trajectories
have remained scarce, despite operational relevance. Using more than 3,000 trajectories
matched with weather data, this paper explores how the experienced wind speed can be
associated to en-route delays in a multivariate functional data analysis framework. The
processing of aircraft trajectories is challenging as it requires constraint smoothing and
rescaling. The paper emphasizes that the choice of the registration strategy influences
further inference. Five scenarios are developed to compare registration strategies and

find the most suited one for a pointwise functional two-sample test of means.

Keywords: Functional data analysis, curve registration, constraint smoothing, two-
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1. Introduction

To date, the statistical analysis of aircraft trajectories has been under-exploited in the

Airspace Traffic Management (ATM) literature. This assessment was early made by
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Puechmorel and Delahaye (2007), promoting the use of Functional Data Analysis (FDA)
to study aircraft trajectories. Concurrently, FDA has experienced substantial growth
and development in recent years. From the early work of Ramsay and Silverman (2005),
some topics have gained visibility such as inference procedures developed by Horvath
and Kokoszka (2012) and the elegant curve registration geometric framework of Srivas-
tava and Klassen (2016). Statistical analyses of bird or hurricane trajectories exploiting
these advanced frameworks have been made by Su et al. (2014). Currently, the sta-
tistical literature focusing on aircraft trajectories revolves around Functional Principal
Component Analysis (FPCA) carried out by Nicol (2017) and is applied to the detection
of atypical energy behaviours by Jarry et al. (2020). The key point of this paper is to
illustrate how advanced statistical frameworks are relevant to study operational topics.
More specifically, the paper focuses on testing the association between en-route delays
and wind speed, the working assumption being that delayed flights have experienced a
stronger wind. Roughly speaking, delay is the time lapse that occurs when a planned
event happens after the planned time. In aviation, delays are easily measurable before
departure, during taxi out, en-route and during taxi in. In order to provide some means
of comparison, a standard set of delay definitions was introduced by the International
Air Transport Association (IATA) Airport Services Committee. Regarding high-level
groupings, one may name airline-related delays, airport-related delays, en-route delays
and weather delays. Delay analysis is made complex by the fact that it is always cheaper
to take delay on the ground than to impose a delay by speed control, by holding, or by
re-clearing the aircraft to non-optimum flight levels. To put it differently, delays may
be the result of a planned process. For instance, the Federal Aviation Administration
(FAA) institutes Ground-Delay Programs (GDP) to delay flights before they depart
from their originating airports. The effect of weather conditions on the characteristics
of GDP events is investigated by Wang and Kulkarni (2011), and more recently by Liu
et al. (2019). As they induce a bad customer perception, direct financial costs, a lack of
efficiency and environmental issues, delays are subject to a quarterly report drafted by
the European Organisation for the Safety of Air Navigation, commonly known as Euro-

control. Crucially in Europe, the Central Office of Delay Analysis (CODA) is in charge



Statistical Analysis of Aircraft Trajectories 3
of collecting operational data and drafting reports. For its part, atmospheric wind plays
a mixed role in aircraft operations as it may have detrimental effects (delays, accidents)
or beneficial ones. When detrimental, the magnitude of these effects has recently been
quantified using econometric techniques by Borsky and Unterberger (2019). As Carvalho
et al. (2020) shows, most contributions in the literature focus on flight delay prediction.
Statistical studies of delays are often descriptive or are made at the airport level as in
Mueller and Chatterji (2002), Pejovic et al. (2009) and Pérez—Rodriguez et al. (2017).
To our knowledge, statistical inference has never been performed for en-route delays.
Crucially, aircraft trajectories have never been the object of inference procedures, de-
spite the great amount of information they contain about the true operating conditions.

The aim of this work is to provide a framework in which:

(a) Aircraft trajectories can be associated to experienced weather conditions
(b) The multivariate FDA framework can be used to model aircraft trajectories
(c¢) Data transformations such as registration can be carefully done taking into account

further inference

The paper is organized as follows. Section 2 describes the two data sources that have
been used as well as the method by which weather and raw trajectories are matched.
Upon request, both data sources are in free access for researchers. The resulting data set
includes more than 3,000 flights departing from Toulouse-Blagnac and landing at Paris-
Orly for the year 2015. Adding new airports or more recent years to the data set is almost
effortless once the weather data have been downloaded for a given area, which in turn
requires some storage capacity. Section 3 presents how the multivariate FDA framework
can be used to model trajectories. Interestingly, this framework should take into account
that some dimensions of a trajectory are physically constrained. For instance, it is
expected from the smoothing step that altitude must be positive everywhere as well as
null at the departure and arrival. This is why a focus is made on constrained smoothing
in Section 3.4. Additionally, for a given trajectory, the longitude, the latitude, the
altitude and the wind speed are not independent. For example, because of atmospheric
layers, altitude and wind speed are associated. A cross-correlation analysis is detailed

in Section 3.5. Because trajectories are never of same duration, a rescaling operation is
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necessary to compare trajectories. This basic homothety may have detrimental effects
for further inference. Rationally, this problem is tackled as a registration issue. Within
the framework developed in Srivastava and Klassen (2016), two strategies are compared
on illustrative scenarios in Section 4. An original registration strategy seems to produce
a desirable ground for the testing step. Finally, Section 5 presents the testing procedures

and results.

2. Empirical background

To demonstrate the practical efficiency of a statistical analysis of aircraft trajectories, a
data set is to be built. The latter has to rely the usual dimensions of an aircraft trajec-
tory (longitude, latitude, altitude, time) - the so-called “4D trajectory” - to additional
weather dimensions. To achieve so, two data sets are considered. Departing from the
R&D data provided by Eurocontrol, weather dimensions are added. The two data sets

are briefly introduced and the matching strategy is then presented.

2.1. R&D data from Eurocontrol (trajectories)
Eurocontrol is an international organisation working to achieve safe and seamless air
traffic management across Europe. Since 2020, Eurocontrol has given access to a R&D
data archive containing more than four years of data, that is to say to more than 14
million flights as of April 2021. The data are collected from all commercial flights
operating in and over Europe. To be more specific, Eurocontrol receives flight plans for
all Instrument Flight Rules (IFR) flights. These flight plans are activated and updated
based on live data from air navigation service providers. Data are available for 4 months
each year: March, June, September and December. About 2 to 3 million flights are
thus available each year. It includes the last-filed flight plans and the actual route, the
airspace and the route network that was in place at that time.

Only two data subsets are used in this work. The flights metadata and the actual
flight points are merged thanks to a unique numeric identifier to produce a data set of
raw trajectories. Each point of a trajectory is 4D as it includes the time, the crossed

flight levels, the latitude and the longitude.
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The duration of a flight is defined as being the time difference in seconds between the
first actual point of the flight and the last one. The centered duration of a given flight
is defined as being the centred duration (in seconds) with respect to the empirical mean
duration.
Depending on the needs, two groups can easily be made using the centered duration:
the group of delayed and on time flights, always relative to the observed mean duration
of the year for the air link of interest. Figure 1 gives an example of the two groups made
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Fig. 1. Empirical density (Gaussian smoothing) of centered durations for the flights between

Toulouse-Blagnac and Paris-Orly (2015). D8 indicates the value of the 8" decile.

2.2. ERAS5 hourly data on pressure levels from 1979 to present (weather)

ERAS5 is the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis for the global climate and weather for the past four to seven
decades. Reanalysis combines model data with observations from across the world into
a globally complete and consistent data set using the laws of physics. ERA5 provides

hourly estimates for a large number of atmospheric, ocean-wave and land-surface quan-
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tities. Data has been regridded to a regular longitude-latitude grid of 0.25 degrees for
the reanalysis. There are four main subsets: hourly and monthly products, both on
pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land
surface quantities). The subset of interest for trajectories is entitled “ERA5 hourly data
on pressure levels from 1979 to present”.

Among all weather variables, only two are chosen: the eastward component of the
wind and the northward component of the wind. The former, the u-component of wind,
is the horizontal speed of air moving towards the east for which a negative sign indicates
air moving towards the west. The latter, the v-component of wind, is the horizontal
speed of air moving towards the north for which a negative sign indicates air moving
towards the south. Both are expressed in m.s™ 1.

Combined together, they give the speed of the horizontal wind on each point of the

longitude-latitude grid mentioned above. Given the v and v components, the wind speed

is computed as vVu? + v2.

2.3. Towards augmented trajectories

Departing from a 4D trajectory (longitude, latitude, altitude, time), the goal is to add
weather dimensions to obtain a so-called augmented trajectory. To associate each point
of a trajectory to a weather value, the matching should be done taking the closest
altitude, the closest position (longitude, latitude) and the nearest time.

Regarding the altitude, weather data are coming by pressure levels whereas trajectory
data are given in flight levels (in feet). A flight level is an aircraft’s altitude at standard
air pressure. To calculate a standard pressure p at a given altitude h in meters, the
temperature is assumed to be standard and the air is assumed to be a perfect gas. The
air pressure is computed assuming an International Standard Atmosphere pressure of

po = 1013.25 hPa at sea level.

0.0065 x h\ >2°%1
p=po|l-— — 7
0

where Ty is a baseline temperature equal to 288.15°K. In what follows, the matching
step is assumed to be perfect (no errors to be taken into account in the smoothing step).

This can be refined in a future work.
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2.4. Scope
Dealing with weather data ranging from -5 to 9 degrees in longitude, and 42 to 52
degrees in latitude, one is interested in studying flights departing from Toulouse-Blagnac
and landing at Paris-Orly in 2015. Flights departing from Paris-Orly and landing at
Toulouse-Blagnac in 2015 are not taken into account to avoid the implicit assumption
that outbound flights are comparable with return flights in terms of trajectories. A

summary of the data cleaning process is given in Section 5.2.

3. A multivariate functional data framework to model trajectories

3.1.  The univariate functional data perspective
For g = 1,2, let X, = {X,(t),t € [0,1]} be a L? stochastic process taking values in R
with mean function f4(t) and covariance function (s, t), both unknown in practice. It
is assumed that X; and X5 are independent. For aircraft data, the two groups are the
on time and the delay groups presented above. Let X, ; be iid copies of X, and ¢,4; be
iid copies of € which is a stochastic process with a null mean and a covariance function
given by 7.(s,t) = O'Q(t)l{s:t}. For g = 1,2, X, and ¢ are assumed to be independent.
Following Zhang and Chen (2007) and Wang (2021), a functional data set is modeled as
independent realizations of an underlying stochastic process: Y ;(t) = Xg(t)+e4:(t). It
is not fully observed in practice. Rather, for process i in group g, there are M, ; random
observing times denoted Ty 1, ..., Ty M, ,- If the observing times are modeled as being
deterministic, they may be regularly-spaced on [0,1] or not. Yet, if random, they are
assumed to be at least iid with a bounded density function within [0,1]. Every process is
observed at these random times such that Yy ;(Ty;) = Xg.i(Ty5) + €945 (Ty,i,5) where
Jje{l,...,My;}. It is assumed that all is independent from M, ;. In practice, a fixed
design is used, meaning that all is done conditionally with respect to random observing
times.

When observing times are not regularly-spaced but are numerous enough for each
subject, a smoothing approach is often performed. The strategy is to reconstruct curves.

As pinpointed by Hall and Van Keilegom (2007), there is rightly a debate as to

whether statistical smoothing should be used at all, in a conventional sense, when con-
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structing two-sample hypothesis tests. Smoothing is relevant if the new observed times
are not too numerous as compared to the original ones and if the same tuning parameters
are used to produce each curve in all groups.

Historically, this approach has prevailed in the literature following the work of Ram-
say and Silverman (2002) and Ramsay and Silverman (2005). It has been coined the
“smoothing first, then estimation” strategy by Zhang and Chen (2007) who carefully
investigated the effect of the substitution of the underlying individual functions by re-
constructed functions obtained by Local Polynomial Kernel (LPK) smoothing.

If functions are sparsely observed, smoothing should not be applied to individual
sparse trajectories. As put by Kokoszka and Reimherr (2017), imputed smooth trajec-
tories can be obtained only after information from the whole sample has been suitably
combined. In this case, a two-sample test have recently been proposed by Wang (2021).

In this work, trajectories are assumed to be detailed enough for individual curves to
be reconstructed. The average number of observed points in a trajectory is 14. The

median is also 14.

3.2. A multivariate functional data perspective on augmented trajectories

By nature, an aircraft trajectory is a multivariate object. Let Nyota be the total number
of flights that can be divided into N on time trajectories and M delayed trajectories
such that Npgia = N + M.

For each flight ¢ = 1, ..., Nmota1 an augmented trajectory is

{(yg,i,jvtgid) J = {17 R mg,i}}

where yg ;. is a four-dimensional vector, £, ; ; a timestamp and mg ; the number of points
in trajectory ¢ in group g. The components of y4; ; are denoted gz, Yg.ijy> Yg,ijzs
Yg,i.jw,> Tespectively referring to the longitude value for point j in trajectory ¢ in group
g, the latitude, the altitude and the wind speed. For two points in a given trajectory,
the time gap between two points depends on the chosen points and on the trajectory
itself. In other words, the sampling is not regular within a trajectory, nor between two
trajectories. For all four dimensions of a given trajectory (longitude, latitude, altitude

and wind speed), observing times are the same.
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In the case of aircraft trajectories, the pilot follows a flight plan. Observed augmented
trajectories hide a smooth underlying process. In this context, FDA offers a rigorous
framework to perform inference. For each dimension (longitude, latitude, altitude, wind
speed), observed augmented trajectories are modeled as independent realizations of an
underlying stochastic process, as described above. In the multivariate setting, there are

now four dimensions.

00 = [-180,180] x [-90,90] x B¥ x B
gsi
t = (nglrr (t)’ nghy (t)’ }/g?ivz (t)7 nglﬂﬂ (t))/

3.3.  Smoothing
Many smoothing methods are available to reconstruct individual trajectories. A review
of four popular non-parametric techniques is given by Zhang (2013).

Whatever the method, the construction of the functional observations using the dis-
crete data takes place separately for each flight and for each dimension of a flight: the
longitude, the latitude, the altitude and the wind speed. As the regression B-splines
strategy is adopted, the order and interior knots are chosen to be the same for all trajec-
tories. Of course, choices can be different for each dimension. The B-spline basis system
developed by de Boor (2001) is used.

For a given dimension (for instance the longitude), the latent function is estimated

by some projection on a linear functional space spanned by K, known basis functions

¢x,17 ceey ¢I,K1‘

K.
Xgia(t) = Z Og,ie ke k() = aé,i,ccd’m(t)
k=1

where X, ; ;. denotes the smooth function for the longitude dimension associated with
flight 7 in group g and 6, ; , 1 are some coefficients to estimate. In matrix form, g ; , is
a vector of length K, that contains the coefficients and ¢4 (t) is a vector of length K,
containing the basis functions.

The choice of K, is driven by a bias-variance trade-off. Note that the choice of the
number of basis functions may change depending on the intrinsic variability: more basis

functions may be needed to correctly smooth some dimensions.
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Estimating the coefficients 6, ; , » can be viewed as a least squares problem, for each
flight and each dimension. In the least squares approach, the number of observing times
should higher than the number of coefficients. Yet, a high number of B-spline functions
may be needed for the smoothing to be satisfactory. In this case, the roughness penalty
approach is relevant to avoid singularity problems on the computational side. This
approach allows to use a large number of basis functions (bigger than the number of
observing times) and to penalize some measure of function complexity. This is what
is called regularization. If one focuses on the observed longitude point yg; ;. for every

flight 4 in group g, the following optimization problem is considered

mg,i Kz 2 1
2
a;gmin > Nvgiga — > Ogiwkborltyis)| +A / [D2 (%,i,w%(t)” dt
g,i,x,k ]:1 k:l 0

where D? is the second derivative and A a smoothing parameter. Once the coefficients
are estimated, the irregularity of the sampling is no longer a problem. A resampling on

a regular grid can be done easily: this is the main advantage of the FDA framework.

3.4. Constrained smoothing

Regarding the altitude and the wind speed, the smoothing problem should be con-
strained: data are collected on functions that are strictly positive. A positive smoothing
function sT can always be defined as the exponential of an unconstrained function s:

sT(t) = exp{s(t)}. The optimization problem for the altitude is then
2

My,i K. 1 9
argmin Z [yg,i,j,z - exp{ 09,i,z,k¢z,k(tg,i,j)} + )‘/0 [DQ ( ;’i,zﬁbz(t))} dt.

giizk =] k=1
Numerical methods are used to minimize the criterion. As the altitude is zero at both

the departure and the arrival, that is to say at boundaries, the values in that region are
poorly defined large negative numbers.

The above strategy does not ensure that the altitude is going to be zero at the
departure (¢t = 0) and at the arrival (¢ = 1), even if one knows that it must be the case
for an aircraft. Additionally, one wishes to smooth the longitude and the latitude such
that for all trajectories, the first longitude-latitude values are the one of the departure

airport. Similarly, the last longitude-latitude must be the one of the arrival airport.
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These boundary constrains have not received much attention in the literature. They can

be taken into account proceedings as follows. Let the Left Trapeze Function (LTF) be

LTF.(t) =

— o
~
m
™
=

for t € [0,1] and € €]0, %] ; the Right Trapeze Function (RTF) be

1 te[0,1—¢]
=+l tel—e 1]

£

RTF.(t) =

for t € [0,1] and € €]0, %] ; and the Trapeze Function (TF) be

TF.(t) = inf {LTF(t), RTF(t)}

For a given trajectory i, the reconstructed functions are then estimated.

Y, ia(t) S 0giw kb k(t) X TEL(t) + LTF:(t) x lon? + RTF.(t) x lon”
) = @(t) _ S Oy by (t) X T:s ({) + LTF.(t) x lat? + RTF.(t) x lat*
| Voo (1) ep {Sh By ex:(0)} x TE-(1)
mu(t) erp {ZkK§1 ég,i,w,kqﬁw,k(t)}

where lon” and lon? are respectively denoting the longitude of the departure/arrival
airport; lat? and lat? are respectively denoting the latitude of the departure/arrival
airport. For a small value of €, the idea is only to smoothly clip the longitude-latitude
values to the airports’ coordinates. Likewise, the altitude is constrained to be null at the
departure and at the arrival. The smoothing is shown on Figures 2 and 3. Now that the
functional data framework is used, vizualisation is much more easier as one may note

from Figures 4 and 5.
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The map on Figure 4 clearly shows that some trajectories have a go-around pattern
(loop before arriving at Paris-Orly). In aviation, a go-around is an aborted landing of
an aircraft that is on final approach. A go-around can either be initiated by the pilot
flying or requested by air traffic control for various reasons, such as an unstabilized
approach or an obstruction on the runway. As this paper focuses on en-route delays,
trajectories with a go-around pattern are excluded from the analysis because delays
are clearly explained by the go-around. Some trajectories have an abnormal altitude
profile with lot of redundant values. To avoid computational problems, there are also
excluded from the analysis. Sophisticated approaches are available in the literature to
detect such outliers. For instance, two adaptations of the Invariant Coordinate Selection
(ICS) method from the multivariate to the multivariate functional case are proposed by

Archimbaud et al. (2022).

3.5. Cross-correlation
Let Z and W be two square integrable random functions corresponding to the altitude
and the wind speed. The way in which these random functions depend on one another

can be quantified by the empirical cross-correlation function
COVZ’W(tl, t2)

\/ Var (t1) Var (t2)

pzw(ti,t2) =

where the numerator is the empirical cross-covariance function, @Z is the empirical
variance of the altitude and \//a\rW is the empirical variance of the wind speed.

Along the main diagonal of the cross-correlation plot (diagonal black dotted line on
Figure 6), the value of the altitude (¢;) and the wind speed (t2 = 1) are correlated in
the beginning of the flight and at the end of the flight. This is easily understandable:
the wind speed increases (as well as the altitude) during the take-off phase, and the
wind speed drops (as well as the altitude) when the aircraft is landing. It is a positive
correlation. There is a low negative association between the altitude and the wind speed
during the en-route phase of the flight. It is explained by atmospheric layers: above 10
km (depending on the latitude), the tropopause ends. It is within this layer that changes

in the temperature values create a pressure variation at a given altitude. This change in
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pressure increases with altitude within the tropopause and explains that wind speed is
positively associated with altitude. The tropopause border demarcates the beginning of
the temperature inversion. Above a given altitude, moving up to the stratosphere, the

wind speed drops (Figure 7).

Along the horizontal black dotted line on Figure 6, the association between altitude
and wind speed is strongly negative for early wind speed values and decreasing after-
wards. An early strong wind speed is associated with a lower en-route altitude value (the
highest one during a flight). The aircraft takes more time to reach its highest altitude.
Of course, as time goes, the effect is vanishing: a strong wind at the end of the flight

has no impact on the en-route altitude.

Along the vertical black dotted line on Figure 6, the association between altitude and
wind speed is stronger when the aircraft experiences an early strong wind. At the end
of the flight, the positive association between an early wind (t2 = 0.1) and the altitude

value (¢; = 0.9) suggests that the wind values in Toulouse are related to the wind values
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in Paris (positive spatial correlation of the wind).
The lack of symmetry suggests that the cross-correlation between the altitude and
the wind mostly goes one-way. The wind speed values follow the altitude profile. Yet,
early wind values will strongly influence the timing at which future altitude values are

going to be reached.

4. Elastic registration

4.1. The detrimental effect of rescaling to study the wind

Empirically, two flights never have the exact same duration. To compare two trajectories
with different lengths, a scaling is made to the unified time interval [0,1]. This trans-
formation is popular in FDA but may have an impact on statistical procedures. In this
section, a small thought experiment is proposed to understand how this transformation
may impact statistical inference. Five scenarios are presented and are named A, B, C,

D, and E. In all of them, there are two theoretical trajectories having:

e A similar longitude-latitude profile (the path from the departure airport to the

arrival airport is the same)

e A similar trapezoid altitude profile except for the en-route phase that is assumed
to be longer for one of the two flights. Specifically, the climb and the descent are

the same. In scenario E, the en-route altitude is higher for the green flight.

e A similar experienced wind speed, computed according to a stylised version of the
empirical association that have been noticed in the previous section. The wind

profile depends on the scenario.

Schematically, a scenario is made of 5 plots (see Figure 8): the two upper left plots are
the original altitude and wind speed. The scaled versions are shown in the two lower
left plots. The plot on the right gives the function used to compute the wind speed
from the altitude profile. Let’s focus on scenario A. In this scenario, the two altitude
profiles are the same. There is no difference in the experienced wind speed. As one may
note, comparing wind values for a given time is misleading due to the association with

the altitude. At first glance, at each time, the wind was higher for the red trajectory.



16 Rémi Perrichon et al.
This is obviously wrong from looking at the initial situation: each trajectory has been
experiencing the same wind speed. The only difference was that the red trajectory had
a longer en-route phase.

Intuitively, one wishes to compare wind values for similar flight phases. This well-

known problem is called a registration problem in FDA.

4.2.  Previous related works on registration

As put by Ramsay and Silverman (2005), registration starts with a key idea: the rigid
metric of physical time may not be directly relevant to the internal dynamics of many
real-life systems. To avoid fallacious comparisons, time should be stretched or shrunk
for shapes to be aligned. For trajectories, one wishes to align wind speed values corre-
sponding to the same flight phase.

In general, registration can be as simple as shifting the time or as tedious as applying
a continuous transformation of the time scale. Methods for estimating the shift are
traditionally based on Procrustes fitting following Silverman (1995). The main problem
is the need for a landmark to perform the registration. Landmark registration has
been studied by Kneip and Gasser (1992) and Gasser and Kneip (1995). For example,
landmarks may be retrieved from the detection of flight phases based on some algorithms
that exist in the literature as in Sun et al. (2016) or Liu et al. (2020). Yet, in general,
a landmark may not be even available for every curve. If one does not want to rely on
landmarks, a continuous registration may be used.

Continuous registration is about constructing an “optimal” transformation of time
~i for each curve such that the registered curves are given by z}(t) = z; [i(¢)]. In the
literature, v is a time warping function. The family of boundary preserving diffeomor-
phisms I'(g 1] is often considered. The pairwise alignment problem for registering f2 to
f1, two functions in L?, may be written

v* = argmin E [f1, f2 0 7]
Y€l 0,1

where E stands for an optimization criterion. FE is often chosen to be a distance, e.g.,

the usual L? norm. Including a symmetry problem, using the L? norm has undesirable



Statistical Analysis of Aircraft Trajectories 17
effects and a geometric framework has been proposed by Srivastava et al. (2011b) for

separating the phase and the amplitude variability in functional data.

4.3. A geometric framework

The main idea is to take advantage of Square-Root Slope Function (SRSF) representation
of functions, generalised to shape analysis in Srivastava et al. (2011a). Departing from
a function f that is absolutely continuous on [0, 1], the map @ : R — R is defined
as: Q(x) = sign(a:)\/m . The square-root slope function associated to f is defined as
q:[0,1] = R, where q(t) = Q(f(t)). Srivastava and Klassen (2016) have shown that if
the function f is absolutely continuous, then the resulting square-root slope function is
square integrable. For every ¢ € L?([0,1],IR) there exists a function f (unique up to a
constant) such that the given ¢ is the SRSF of that f. If the cost function for registering
f1 and f5 is chosen to be E[f1, f2] = ||g1 — q2||, where ||.|| denotes the L? norm, finding

the optimal registration for f; and fo amounts to solve

‘fh Q2O’Y \fH

argmin E [f1, fo 0 7] = argmin
Y€l 0,1 Y€l 0,1)

In practice, a dynamic programming algorithm (DPA) is used to compute the opti-
mal time-warping function. Crucially, the registration of trajectories is not a pairwise
alignment problem but a joint alignment problem, as there is no such thing as a ref-
erence flight. It requires to properly define the Karcher mean for which details can be
found in Marron and Dryden (2021). The registration is performed using the R package
developed by Tucker (2020).

4.4. Adopted strategy

The goal of the registration is align flight phases. It can be done in several ways. The
most basic one would align wind profiles directly. Yet, as a trajectory is a multivariate
functional object, other solutions may be preferable. To understand other strategies,

one should distinguish between at least four main sources in wind speed variability:

e An altitude-related variability.
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e A location-related variability (for instance, polar jet streams are known to be

stronger than subtropical ones).
e A time-related variability (seasonal patterns).
e An intrinsic variability due to the state of the weather.

If air routes are roughly the same for all flights (delayed or not), the effects of the
position (longitude, latitude) are negligible. It is especially the case for short-distance
flights such as flights between Toulouse-Blagnac and Paris-Orly. Using the longitude
and the latitude is not very relevant to register the wind values.

Two main strategies are compared: a registration based on the wind dimension and
a registration based on the altitude. The former aligns the peaks and valleys of the
wind speed, which is intuitive, as this is what would be done in a univariate functional
data analysis framework. Doing so, the implicit working assumption is that flight phases
are visible in the wind profile of the trajectory, local variations being a small noise for
the registration. The latter strategy makes the most of the multivariate framework.
It aligns altitude profiles and applies the optimal time warping function to the wind
profiles. Doing so, one wishes to withdraw the altitude-related variability of the wind
speed. The two approaches are compared on the illustrative scenarios (see Figure 9). A
good registration should align the flight phases correctly for further inference. In scenario
A (no difference in both altitude and wind speed), the two strategies give the same result.
In scenario B (same altitude profile and a circumstantial higher wind above 10 km for
the red trajectory), the registration is better with the altitude-based strategy as, indeed,
the wind speed was the same before and after the en-route phase. No differences in
amplitude are desirable outside the en-route phase. In scenario C (same altitude profile,
gust of wind for the red trajectory during the en-route phase), the registration is better
with the altitude-based strategy. The area between the two curves is coherent with the
duration and the amplitude of the gust. In scenario D (same altitude profile, gust of
wind for both the green and red trajectory during the en-route phase), the registration
is better with the altitude-based strategy. The area between the curves is related to the

relative duration of the two gusts. Both gusts have amplitude 10 m.s~!' and duration 4
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minutes, respectively representing 40% of the en-route phase duration (green trajectory)
and 8% of the en-route phase duration (red trajectory). In scenario E (different altitude
profile, same wind), both strategies give the same result. The altitude-based strategy
seems to be more relevant to align wind speed values as any difference in wind speed
values is attributable to the altitude-related variability of the wind or to an intrinsic
variability (gusts of wind) even if it is impossible to distinguish between the two sources.

Any pointwise test would be more accurate with the altitude-based strategy.

4.5. Results

Figure 10 shows that the elastic registration does not change the mean altitude profile
very much. It can be explained by the fact that in the raw data, altitude profiles are
already pretty smooth and en-route delays only differ by a few minutes. Yet, the effect
of the registration on the pointwise standard deviation is important. Of course, as all
flights start and end with a null altitude, and because constraint smoothing was used,
the variance is null at the boundaries. From the raw data, it was already clear that the
wind speed was very similar to the altitude profile. Using the altitude to register the
wind profile does not change the mean and the standard deviation by a large amount
(Figure 11). Registering the wind directly may provide a better insight on the true

mean, yet, it is less adapted to perform inference.

5. Testing for a different experienced wind speed

5.1. Statistical framework

Following Zhang (2013), several families of inference techniques can be used for func-
tional data: pointwise, L2-norm-based, F-type, and bootstrap tests. One of the earliest
contribution in the literature is probably the one of Faraway (1997) showing that a usual
multivariate likelihood ratio test is not very adapted to compare nested linear models
in the functional framework. A L?-norm-based test was introduced and a bootstrap
approach allowed to approximate the null distribution of interest. The L2-norm-based
test is extended in Zhang and Chen (2007). The F-type test was first studied by Shen
and Faraway (2004) and other contributions are listed in Zhang (2013). If groups are
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independent but some temporal correlation should be taken into account, a two-sample

test for functional time series is proposed by Horvath et al. (2013).

In what follows, one is interested in proving that the experienced wind speed is greater
for delayed trajectories. The focus is made on a pointwise test as an overall testing
method (probably more powerful) is by nature not very appropriate to emphasize where

the differences are located.

Let }79_\2/11, be the registered reconstructed wind curve for trajectory ¢ in group g. It
is assumed that the Nrpga registered reconstructed wind curves are independent and
identically distributed as 1/’;7;, a L? stochastic process with mean function u,(t) and
covariance function (s, t). A general one-sided pointwise two-sample test for functional

data with a common covariance function can be formulated as follows

Hoy : pa(t) = pa(t)

against

Hyyp:pa(t) < po(t)

for a fixed ¢ € [0, 1]. Let m(t) =+ Zf\il ﬁu(t) be the usual estimator of the mean
function pi(t), ?ng(t) =L Zf\il ?;:U(t) be the usual estimator of the mean function
u2(t) and (s, t) be the pooled estimator of the common covariance function (s, t). The
Ya (1) =Yiu(t)

(% +3)7 (1)
(2013), under the null, as min(N, M) — oo, the pivotal test statistic is asymptotically

pivotal test statistic is given by z(t) = . Under the assumptions of Zhang

Gaussian for any fixed ¢ € [0, 1]. Pointwise p-values can be computed.

Equivalently in a regression framework, this would translate into a pointwise z-test
in the spirit of the pointwise test developed by Ramsay and Silverman (2005). To be
more precise, this framework is the one of the linear model with functional response and
a group covariate being time-independent. The model for the i** trajectory in the gt*
group (Nrotal trajectories in total) is }a/w(t) = pu(t) + xgi0(t) + ngiw(t) for ¢ € [0, 1],
where p denotes a grand mean function that indicates the average wind speed profile
of all trajectories, a a specific effect, 7y ; (%) i SP(0,7), SP standing for stochastic

process. The values of x,; are either 0 (the trajectory is in group g = 1) or 1 (the
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trajectory is in group g = 2). Hypotheses go

Hot:a(t)=0
against
Hl,t : Oé(t) >0

for a fixed t € [0,1].

This pointwise test may not be satisfactory for at least two reasons. First, even if all
the z-tests are significant at a given level, there is no guarantee for an overall significance.
This caveat was early mentioned in Ramsay and Silverman (2005) speaking about the
misleading interpretation of pointwise confidence intervals. It is the reason why, in the
analysis of variance framework (ANOVA), global test statistics were investigated by
Cuevas et al. (2004) using a L?-norm-based test obtained by integrating the numerator
of the pointwise F-test statistic over time. A global test whose test statistic is the
supremum of the pointwise F-test statistic over time is studied by Zhang et al. (2019).
A comparison of tests for the one-way ANOVA problem for functional data is provided
by Gérecki and Smaga (2015). Second, the same sample of trajectories is used to perform
the test at each ¢t € {71, ..., T;n }, the set of evaluation points. In this context, a correction
for the multiple comparisons should be found. Let Cy, = {7}, : Ho 5, is true,1 < k < m}
be the set of grid points for which Hy ,, is true and P (rejectHp -, , V7 € Cy,) be the
family-wise error rate. A correction would ensure that the family-wise error rate is less
than or equal to a;, where « is fixed, no matter what is the set C, of true null hypotheses.
Yet, as put by Cox and Lee (2008), the family-wise error rate depends on the set of
grid points. The famous Bonferroni correction would require to test each individual
hypothesis at a significance level of - — 0. It is an obvious problem for functional
data as m can be very large. Another famous correction is given by Holm (1979). Yet,
both are relevant when rejection regions are disjoint. However, with functional data,
rejection probabilities are likely to be correlated for two consecutive evaluation points.
For functional data, Cox and Lee (2008) showed that the Westfall-Young randomization
method is appropriate if, among other hypotheses, a permutation pivotality condition

holds.

Given the estimated pointwise standard deviation of the wind speed, it seems that a
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group-specific covariance function would be more realistic. It is a Behrens-Fisher (BF)
problem for functional data that have been investigated by Zhang et al. (2011). With a
Gaussian assumption, a pointwise test would rely, for instance, on the famous approxima-

tion proposed by Welch (1947). Without a Gaussian assumption and if min(N, M) — oo,

z(t) = w is asymptotically Gaussian for any fixed ¢t € [0,1]. Equivalently
T

in a regression framework, a heteroscedastic model can be used. Estimation would

be done with Weighted Least Squares (WLS). Some correction is also needed under
the heteroscedastic assumption. As said, one way to have a global test would be to
use a L2-norm test. Following Horvath et al. (2013), the null hypothesis would be
Hy : uy = po in L%([0,1]) against the alternative that Hy is false.

5.2. Results

There are 3,161 flights in the original data. Twenty of them are removed because the
position of the aircraft is known for less than ten timestamps. Four of them are removed
because there is at least one time gap between two known positions that is above thirty
minutes. There are seven trajectories with a go-around that have been removed. In
total, the test is performed on 3,130 trajectories, departing from Toulouse-Blagnac and
landing at Paris-Orly in 2015. N = 2,510 trajectories are labeled to be on time and
M = 620 are labeled to be delayed.

- - No registration
— Registration from altitude
---- Registration from wind

— Homoscedasticity assumption
Heteroscedasticity assumption

Test statistics

0.00 0.25 0.50 0.75 1.00
Scaled time

Fig. 12. Pointwise 2z statistics with different registration strategies

Regarding at the test statistics on Figure 12, there is a clear difference in performing
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the test with or without registration. Results are also different when comparing the two
registration strategies. From the above illustrative scenarios, it would be relevant to only
focus on the results obtained when wind profiles are aligned using the altitude optimal
time warping. For both assumptions on the covariance functions, p-values are lower
during the climb and the descent. P-values remain very low at the departure suggesting
that delayed flights experience a stronger wind from the beginning of the trajectory. P-
values are higher for the heteroscedastic case as it takes into account a higher variance
in the middle of the flight for delayed trajectories. All p-values are below the Bonferroni

correction value for o« = 0.01.

6. Discussion and future works

In this paper, a multivariate functional data framework is used to model aircraft tra-
jectories. Thanks to the constraint smoothing strategies, altitude and wind speed are
guaranteed to be positive. Longitude and latitude profiles are coherent with the true
locations of departure and arrival airports. Altitude drops to zero at the beginning and
at the end of the flight.

To compare the experienced wind speed of trajectories having different lengths (which
is always the case in practice), registration has to be performed. The optimal altitude
time warping function has been used to register the wind speed profile. Few scenarios
illustrate that it seems to be more efficient for further inference. In this context, effi-
ciency means that differences in wind speed values are not coming from the fact that
trajectories are of different lengths. Doing the test without registration will only prove
that trajectories are of different lengths, which is a no-brainer.

Notably, the test shows that, in 2015, for flights departing from Toulouse-Blagnac and
landing at Paris-Orly, the wind profiles were different for delayed and on time trajectories
with a very high level of confidence. Incorporating a wind speed dimension in models is
likely to enrich the prediction and classification of delays.

Several exciting aspects fall outside the scope of this paper. First, the paper focuses
on a specific year and a specific air link. Given the above methodology, it is effortless

to extend the analysis to other flights and other years. To answer operational concerns,
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it may be of interest to prove that the wind speed impact is positively associated with
the travelled distance and to quantify this association.

Adding international flights require to adapt the registration strategy as the longitude
and the latitude become of key importance. For instance, registering flights between
Paris and New York City must take North Atlantic Tracks (NAT) into account. Adding
new weather dimensions, for example the wind direction, calls for a complete study of a
possible cross-correlation with the usual dimensions of the trajectory. In addition, testing
for a seasonal impact of the wind on delays would require to complement trajectory data,
for instance with Automatic Dependent Surveillance-Broadcast (ADS-B) data. Indeed,
as mentioned earlier, R&D data are only available for four months each year.

Second, the independence assumption that is used in Section 5 could be relaxed. It is
likely that wind speed profiles are temporally correlated. Under necessary assumptions,
the testing procedure proposed in Horvath et al. (2013) can be generalized to functional
time series. Yet, as the functional time series of aircraft trajectories is highly irregular,
some work has to be done. Indeed, departures are not scheduled on a regular time scale.

Finally, the statistical analysis of aircraft trajectories offers a unique opportunity to
make the most of advanced FDA frameworks and to bring together applied statistics

and ATM.
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Fig. 8. lllustration of the five scenarios (A, B, C, D, E)
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Fig. 10. Registered and raw altitude profiles by group for all flights between Toulouse-Blagnac
and Paris-Orly in 2015
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Fig. 11. Registered wind speed profiles by group for all flights between Toulouse-Blagnac and
Paris-Orly in 2015



