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Abstract

While advanced methods for functional data analysis have recently been
developed in the literature, applications to aircraft trajectories have
remained scarce, despite operational relevance. One reason is the prac-
tical difficulties affiliated with the multivariate nature of trajectories
and associated physical constraints. Indeed, an aircraft trajectory usu-
ally involves three dimensions in space (longitude, latitude, altitude)
but also weather values (say wind speed and direction), each dimen-
sion having its specificities. To name a few, smoothing altitude values
requires to ensure both non-negativity and boundary constraints. Wind
directions have support on the unit circle. Additional to constrained
smoothing challenges, phase variations are to be taken into account as
flights are never of the same duration. To tackle these issues, two smooth-
ing methods respectively based on constrained splines and asymmetric
kernels are implemented on real data. For each approach, two strategies
to handle the circular nature of wind directions are compared. Regis-
tration is performed. A joint pointwise test is proposed to demonstrate
that delayed flights have experienced less favorable wind conditions.

Keywords: Functional Data Analysis, Circular Data, Trajectory, Aircraft
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1 Introduction

Roughly speaking, delay is the time lapse that occurs when a planned event
happens after the planned time. In aviation, delays are easily measurable before
departure, during taxi-out (the aircraft begins moving forward until it reaches
the takeoff position), en-route and during taxi-in. In order to provide some
means of international comparison, a standard set of delay definitions was
introduced by the International Air Transport Association (IATA) Airport
Services Committee. Regarding high-level groupings, one may name airline-
related delays, airport-related delays, en-route delays and weather delays.

As they induce a bad customer perception, direct financial costs, a lack of
efficiency and environmental issues, delays are subject to a quarterly report
drafted by the European Organisation for the Safety of Air Navigation, com-
monly known as Eurocontrol. Crucially in Europe, the Central Office of Delay
Analysis (CODA) is in charge of collecting operational data and drafting
reports.

The transportation literature has mainly revolved around some major
topics in analyzing delays:

e Statistical modeling of delays at the airport level. Mueller and Chat-
terji (2002) analyze delay characteristics for ten major airports in the United
States using departure and arrival data. Focusing on London’s Heathrow
airport, Pejovic et al (2009) study weather-related delays.

¢ Delay prediction. Pérez-Rodriguez et al (2017) use an asymmetric logit
probability model to estimate and predict the daily probabilities of delay in
aircraft arrivals. Yu et al (2019) adopt a deep learning approach using data
from Beijing International Airport. Carvalho et al (2020) present a literature
review of data science techniques used in flight delay prediction.

¢ Impact of Ground Delay Programs (GDP). The effect of weather
conditions on the characteristics of GDP events was investigated by Wang
and Kulkarni (2011), and more recently by Liu et al (2019).

¢ Delay propagation. Wang et al (2022) have recently proposed an algo-
rithm to estimate statistically significant time lags between airport delays
from noisy, aggregate operational data.

Few studies are focusing on en-route delays on the scale of aircraft tra-
jectories. One reason is the irrelevance of the usual statistical frameworks to
model an aircraft trajectory. Indeed, techniques from multivariate statistics
suffer from the high correlation in time that exists between two consecutive
points of a trajectory. More worryingly, when observation times are more
numerous than the number of trajectories, the so-called curse of dimensional-
ity happens. The usual time series approach is not ideal either as trajectories
are multidimensional time series with both irregular sampling and different
durations.

An adapted and well-known framework to tackle the aforementioned issues
is the one of Functional Data Analysis (FDA), popularised by Ramsay and
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Silverman (2005) and Ferraty and Vieu (2006). FDA is an active field of statis-
tics as highlighted by the development of inference procedures by Horvath and
Kokoszka (2012), or more recently, by the blooming of the curve registration
geometric framework of Srivastava and Klassen (2016). A review is proposed
by Wang et al (2016), focusing on FDA concepts.

FDA had an early interest in applications as shown by Ramsay and Sil-
verman (2002) and Valderrama (2007). The framework has been extensively
used in many fields such as chemometrics, e-commerce, econometrics, manage-
ment science and medicine, as recently highlighted by Aneiros et al (2019a)
and Aneiros et al (2019b). Ullah and Finch (2013) pinpoint that applications
of FDA in biomedicine are especially numerous.

The promotion of FDA to study aircraft trajectories was early made by
Puechmorel and Delahaye (2007). Yet, the statistical analysis of aircraft tra-
jectories has been very limited. Currently, the statistical literature focusing on
aircraft trajectories revolves around Functional Principal Component Analysis
(FPCA) carried out by Nicol (2017) and is applied to the detection of atypical
energy behaviours by Jarry et al (2020).

In a recent contribution, Dai and Miiller (2018), have studied trajectories
of 969 commercial flights from Hong Kong to London (long-haul flights). They
specifically take into account the directional nature of the longitude and the
latitude. Spherical Principal Component Analysis (SFPCA) is performed.

An aircraft trajectory is multivariate statistical object as it involves three
dimensions in space (longitude, latitude, altitude). Sometimes, weather values
are also available (say wind speed and direction).

The ultimate goal of this work is to answer the following question from a
statistical point of view:

Given two groups of trajectories, is it possible to state that, on average,
the group with higher en-route delays has experienced less favorable wind
conditions?

In response, a test is proposed in Section 5. Unfortunately, raw trajectory
data must be preprocessed before performing any inference. These preprocess-
ing steps are particularly important and sometimes subtle. They ensure that
conclusions drawn from the test are not fallacious.

Two preprocessing steps are extensively developped.

The first one is the smoothing step that solves the irregular sampling prob-
lem. This smoothing step must account for specific physical constraints. To
name a few:

e Altitude values are non-negative and must be null at takeoff and landing.
e Wind directions have support on the unit circle. It requires specific
smoothing techniques.

If constraints are ignored, the mean trajectories of the two groups will not be
correct and variances will be artificially inflated.

The second one is the registration step that accounts for the fact that
trajectories are of different durations. If this registration step is poorly done,
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the test statistic will basically compare weather values for flight phases that
are very different (say, comparing the en-route wind values with landing wind
values).

Note that taking the functional nature of trajectories is becoming essential
with the generalization of Automatic Dependent Surveillance-Broadcast (ADS-
B), soon mandated for all aircraft in Europe and the United States. As put
in Sun (2021), ADS-B is a surveillance technology designed to allow aircraft
to broadcast their flight state periodically without the need for interrogation.
The position of an equipped aircraft is known almost every second.

The paper is organized as follows. Section 2 describes the two data sources
that have been used as well as the method by which weather and raw tra-
jectories are matched. Upon request, both data sources are in free access for
researchers. Section 3 presents how the multivariate FDA framework can be
used to model trajectories. Section 4 details the registration strategy. Section 5
presents the testing procedures and results.

2 Empirical background

As an empirical background, Subsection 2.1 introduces the data source for
aircraft trajectories. The wind data source is presented in Subsection 2.2. The
procedure to associate each point of a flight to a wind value is detailed in
Subsection 2.3.

2.1 R&D data from Eurocontrol (trajectories)

Eurocontrol is an international organisation working to achieve safe and seam-
less air traffic management across Europe. Since 2020, Eurocontrol has given
access to a R&D data archive containing more than six years of data, that is to
say to more than 18 million flights as of January 2023. The data are collected
from all commercial flights operating in and over Europe. To be more specific,
Eurocontrol receives flight plans for all Instrument Flight Rules (IFR) flights.
These flight plans are activated and updated based on live data from air nav-
igation service providers. Data are available for 4 months each year: March,
June, September and December. About 2 to 3 million flights are thus avail-
able each year. For each flight, files include the last-filed flight plan, the actual
route, the airspace and the route network. Because the airspace and the route
network are not of interest here, only two data subsets are used in this work.

¢ Flight metadata. Metadata include (but are not restricted to) a numeric
identifier for each flight, the International Civil Aviation Organization
(ICAO) airport code for the departure airport of the flight and associated
spatial coordinates, the ICAO airport code for the destination airport of the
flight and associated spatial coordinates, filed and actual off-block times and
the filed and actual arrival times.

e Actual flight points. This data set includes a numeric identifier for each
flight (allowing a matching with flight metadata), the time (UTC) at which
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the point was actually crossed and corresponding altitude, longitude and
latitude.

Raw files for the 6 years (2015-2020) amount to almost 38 Go. The adopted
scope for the analysis is as follows:

¢ Temporal scope. We focus on the year 2015. All four months are considered
(March, June, September, December).

¢ Origin-Destination (OD) scope. We focus on flights departing from
Toulouse-Blagnac (LFBO) and landing at Paris-Orly (LFPO). This OD pair
is the most flown over the year 2015. Table 1 gives the number of flights
each year.

Table 1 Number of flights departing from
Toulouse-Blagnac (LFBO) and landing at
Paris-Orly (LFPO) over the time period.

2015 2016 2017 2018 2019 2020

3,161 3,137 3,130 2,972 2,824 991

Note: Only four months are taken into account
each year, as explained in Subsection 2.1.

Flights with less than 12 known positions are not taken into account in this
analysis because there are not reliable enough. The resulting sample consists
in 3,024 trajectories.

2.2 ERAS5 hourly data on pressure levels from 1979 to
present (weather)

ERAS5 is the fifth generation European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis for the global climate and weather for the
past four to seven decades. Reanalysis combines model data with observations
from across the world into a globally complete and consistent data set using
the laws of physics. The data set of interest for trajectories is entitled “ERAb5
hourly data on pressure levels from 1979 to present”. In this data set, several
weather variables are available on an hourly basis for 37 pressure levels on a
0.25° x 0.25° longitude-latitude grid. Note that the longitude-latitude grid is
particularly fine. The time resolution is also very detailed as compared to data
commonly used in the transportation literature. Relative to the work of Liu
et al (2021), our longitude-latitude grid is ten times finer (from 2.5 degrees to
0.25 degrees), weather values are available every hour (not every six hours) for
the 23 pressure levels that are kept.

In this work, only two weather variables are chosen: the eastward compo-
nent of the wind and the northward component of the wind. The former, the
u-component of wind, is the horizontal speed of air moving towards the east
for which a negative sign indicates air moving towards the west. The latter,
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the v-component of wind, is the horizontal speed of air moving towards the
north for which a negative sign indicates air moving towards the south. Both
are expressed in m.s~!.

Combined together, they give the speed of the horizontal wind on each
point of the longitude-latitude grid mentioned above. Let u and v be the two

components of the wind.

® Wind speed. The wind speed ws is computed as ws = vu? +v?% and is
expressed in m.s~!.

¢ Wind direction. The wind direction wd is computed as wd = atan2(v, u)
and is expressed in radians. The wind direction is valued in | — 7, 7]. In this
paper, the wind direction is mapped to |0, 27r]. When the wind direction is m,
air is moving towards the west (east wind); 7 means that the air is moving
towards the north (south wind); 37” means that the air is moving towards
the south (north wind); 0 or 27 translate into the air moving towards the

east (west wind).

Note that, per se, the wind speed and direction are not informative to
unambiguously define favorable/unfavorable wind conditions. To this end, a
following subsection introduces the definition of the crosswind and tailwind
components of the wind.

2.3 Towards augmented trajectories

To associate each point of a trajectory to a weather value, a naive matching
may be done taking the closest altitude, the closest position (longitude, lati-
tude) and the nearest time. A trajectory with weather dimensions is called an
augmented trajectory.

Regarding the altitude, weather data are coming by pressure levels whereas
trajectory data are given in flight levels (in feet). A flight level is an aircraft’s
altitude at standard air pressure. To calculate a standard pressure p at a given
altitude h in meters, the temperature is assumed to be standard and the air
is assumed to be a perfect gas. The air pressure is computed assuming an
International Standard Atmosphere pressure of pg = 1013.25 hPa at sea level.

(g 00065 x 1P
p=DPo T,

where Tj is a baseline temperature equal to 288.15° K.

Approximations are inevitable: the aircraft’s positions are not exactly on
the weather grid. For a given dimension (say time, altitude, longitude, lati-
tude), the magnitude of the approximation is defined as the Euclidean distance
between the query point (from the trajectory) and the closest weather value
(on the grid).

The matching strategy is deterministic (1-nearest neighbor). It does not
involve any statistical model. To ensure that this naive strategy is still accept-
able, we may want to check that the average matching approximation is half
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the value of the worst one. For instance, regarding the time dimension, the
worst approximation is 30 minutes as we deal with hourly data. Hence, on aver-
age, we would hope that the closest available weather value in time is within a
15-minute distance. It seems to be the case looking at the summary statistics
given in Table 2.

Table 2 Summary statistics for matching approximations for the flights departing from
Toulouse-Blagnac (LFBO) and landing at Paris-Orly (LFPO) in 2015.

Time (min) Longitude (deg) Latitude (deg) Pressure (hPa)

Mean 15.05 0.06 0.06 11.5
Standard errort 8.65 0.04 0.04 7.52

IDenominator is n — 1; n being equal to 3,024.

Heading, bearing, crosswind, tailwind

To properly define what are favorable and unfavorable wind conditions, one
may rely on the concept of crosswinds and tailwinds. A crosswind is any wind
that has a perpendicular component to the line or direction of travel. It affects
the aerodynamics. A tailwind has a parallel component to the line or direction
of travel. Note that the direction of travel should be properly defined here.

As explained in the Pilot’s Handbook of Aeronautical Knowledge written
by the Federal Aviation Administration (FAA), for an aircraft, the intended
track (or route) is typically a set of straight-line segments between waypoints.
The pilot determines the bearing (the compass direction from the aircraft’s
current position) of the next waypoint. In navigation, because wind can cause
an aircraft to drift, the pilot sets a course to steer that compensates for drift.
The pilot points the aircraft on a heading that corresponds to the course to
steer. If the predicted drift is correct, then the craft’s track will correspond to
the planned course to the next waypoint.

To summarize, the heading would be the direction of travel. Unfortunately,
it is not available in the R&D data from Eurocontrol. When the wind speed is
small, the bearing and the heading almost coincide. As a first approximation
in this work, the bearing is taken as the direction of travel.

To compute the bearing 8 valued in |—7, 7] from a starting position (A1, 1)
in lon-lat (radians) to a final position (A2, p2), the following formula is used:

B = atan2(sin(Ay — Ap)cos(ips), cos(p1)sin(ps) — sin(py)cos(p2)cos(Aa — A1)).

The result is mapped to ]0, 27r]. With a bearing S, a wind speed ws, and a wind
direction wd as defined in Subsection 2.2, it is possible to define the crosswind
and tailwind components.

¢ Crosswind component. The crosswind component wecross is computed
as weorss = ws sin(wd — B). A positive value means that the wind blows
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westward, perpendicular to the direction of travel. A negative value means
that the wind blows eastward, perpendicular to the direction of travel.

e Tailwind component. The tailwind component wtail is computed as
wtail = ws cos(wd — B). A positive value means that wind blows to the
direction of travel.

3 A functional framework to model trajectories

Now that all data sources have been presented, the functional framework
is introduced. First, Subsection 3.1 highlights that raw augmented data are
discrete. To retrieve a functional sample, the so-called smoothing step is pre-
sented in Subsections 3.2 and 3.3. Smoothing methods in the literature are
reviewed in Subsection 3.3.1. Constrained smoothing is developed in Subsec-
tion 3.3.2. Smoothing circular data is detailed in Subsection 3.3.3. The two
adopted strategies, respectively based on asymmetric kernels and constrained
splines, are to be found in Subsection 3.3.4.

3.1 Raw augmented data

Raw augmented data are stored in a usual matrix format. A raw trajectory i,
denoted traj;, is a set of m; pairs:

traj; = {(Yi,5,ti;),7 ={1,...m;}}

m,; being the number of observation times associated to flight ¢, y; ; being,
a seven-dimensional vector (longitude, latitude, altitude, u-component of the
wind, v-component of the wind, wind speed, wind direction), ¢; ; being a times-
tamp. In what follows, the components of y; ; are respectively denoted y; ; .,
Yigys Yijg.zo Yigous Yigws Yigwss Yigwd-

At first sight, keeping the two horizontal wind components as well as the
speed and direction is useless. This choice is motivated in Subsection 3.3.3.

A few preliminary remarks should be made. First, the duration changes
from one flight to another. As a consequence, the number of observation points
is not the same from a trajectory to another. Second, for a given trajectory,
observation times are not equally spaced. Third, between two trajectories, the
spacing is irregular and is never the same. For a given trajectory, observation
times are the same for all components of y; ;.

Given that most methods in time series and multivariate statistics are
inappropriate in this context, a relevant statistical framework is to study
trajectories from a FDA perspective. The main assumption in FDA is the exis-
tence of an underlying function that has given birth to a set of values the
statistician observes on a discrete grid.
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3.2 The functional perspective

As pinpointed by Hsing and Eubank (2015), there are two approaches to build
the mathematical basis of FDA: the stochastic process perspective and the
random element perspective.

In the stochastic process perspective, a functional data (a curve), is viewed
as a sample trajectory (also called a sample path). Let Y be an indexed col-
lection of random variables defined on a common probability space (€2, F,P).
For a fixed w € 1, the mapping Y (.,w) : E — R is called a trajectory. E is the
index set, often taken as a compact metric space in the stochastic process lit-
erature. In FDA, E is some (closed) interval of the real line. Very often indeed,
E is chosen to be [0, 1]. The stochastic process is assumed to be a second-order
process, so that the mean function of the process Y and its covariance function
are well-defined.

In the sequel, Y is taken to be a mean-square continuous stochastic process,
that is to say with well-defined continuous mean and covariance functions. The
mean of the process is given by:

uwt) =E[Y(t)], t €][0,1].
The variance is denoted:
o?(t) =E [Y(1)*] — p(t)?, t€0,1].

As a trajectory has several dimensions, the multivariate FDA framework is
relevant here. A so-called functional random vector of dimension p is denoted
Y = (Yl,Y27...7Yp)T. Note that Vk € {1,...,p},Yx = (Yi,t)te[0,1]- The mean
vector of Y is given by:

E[Y1(t)]
py (t) = E(Y) = : , t€[0,1].
E [Y, (1)

The covariance of Y involves the auto-covariance and the cross-covariance
functions of the components. An augmented trajectory is modeled as the
realisation of a functional random vector of dimension p = 7.

The first step of most studies in FDA is to reconstruct the continuous

realisations from the raw discrete data. It is the smoothing step introduced in
Subsection 3.3.

3.3 The smoothing step
The main assumption in FDA is the relevance of the following equation:
Yij = filtij)

fi being an underlying function. Two main approaches should be conceptually
distinguished. When the statistician assumes that observations are recorded
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with negligible errors, f; can be retrieved by interpolation. More frequently,
observations y; ; are assumed to be noisy which can be written

Yij = fi(tij) + €45

where €; ; are unobserved errors. In this second case, f; can be approximated
using smoothing techniques.

The smoothing approach has prevailed in the literature following the work
of Ramsay and Silverman (2002) and Ramsay and Silverman (2005) and was
almost viewed as a pre-processing step. This approach has been coined the
“smoothing first, then estimation” strategy by Zhang and Chen (2007) who
carefully investigated the effect of the substitution of the underlying individual
functions by reconstructed functions obtained by Local Polynomial Kernel
(LPK) smoothing.

Yet, as pinpointed by Hall and Van Keilegom (2007), there is rightly a
debate as to whether statistical smoothing should be used at all, in a con-
ventional sense, when constructing two-sample hypothesis tests (which is the
ultimate objective of the paper). Smoothing is relevant if the new observed
times are not too numerous as compared to the original ones and if the same
tuning parameters are used to produce each curve in each group.

When functions are sparsely observed, smoothing should not be applied
to individual sparse trajectories. As put by Kokoszka and Reimherr (2017),
imputed smooth trajectories can be obtained only after information from the
whole sample has been suitably combined. In this case, a two-sample test has
recently been proposed by Wang (2021).

The underlying distinction is the one between the sparse and dense frame-
works in FDA. Although no official definition exists, generally, if all m;
(number of points) are larger than some order of n (number of individuals),
then the functional data are referred to as “dense” data. If all m; are bounded,
the data are commonly considered as “sparse”. Zhang and Wang (2016) have
shown that the two frameworks lead to distinct asymptotic properties and have
an impact on the choice of estimation procedures for the mean and covariance
functions.

In this work, trajectories are assumed to be detailed enough for individual
functions to be reconstructed. In the next section, smoothing methods are
presented for a single dimension of a trajectory. The index ¢ is then dropped
to avoid complicated notations. The number of points in trajectory ¢ is then
simply m = m;. Indications are given when a specific dimension is of interest
(for instance, the altitude).

3.3.1 Smoothing methods

Many smoothing methods are available to reconstruct individual trajectories.
The basts expansion approach is probably the most popular one and is at
the heart of the monograph written by Ramsay and Silverman (2005). The
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basic idea is to approximate a functional data by a linear combination of basis
functions.

The basis choice is usually made a priori, motivated by the nature of the
phenomenon under study and the choice to estimate derivatives or not. The
Fourier basis and the B-spline basis are extensively used in the literature. Yet,
wavelets also have a long history in the FDA literature as testified by the early
work of Antoniadis et al (1994). Their use in FDA is not restricted to the curve
estimation problem as illustrated by Morettin et al (2017).

The chosen number of basis functions involves a usual bias/variance trade-
off. Algorithms for choosing the number of functions benefit from the vast
literature on variable selection in multiple regression (e.g. stepwise variable
selection or variable-pruning). Coefficients involved in the linear combination
are often estimated to minimize a least square criterion, possibly penalized.
Adding a penalization may conceptually solve the problem of choosing the
number of basis functions. Indeed, one may depart from a generous choice of
basis functions and exploit a theoretical continuum of smoothing levels. Yet,
the roughness parameter is still to be chosen. In practice, a cross-validation
rule is used.

When the regression B-spline strategy is adopted, the B-spline basis system
developed by de Boor (2001) is commonly used. Good performances require
relevant knot locations as well as a good choice of the number of knots. In the
knots selection literature, the possible knots come from a predetermined set
such as the design points or grid points in the range.

Another approach is based on kernel smoothing which is reviewed by
Zhang (2013) as well as other popular non-parametric techniques used in FDA.
Among the family of Local Polynomial Kernel (LPK) smoothers, the local con-
stant smoother (known as the Nadaraya-Watson estimator) may suffer from
boundary effects problem. This problem is key in FDA as the time interval is
often taken to be [0, 1]. In practice, the local linear smoother is then preferable
as it is known as a smoother with a free boundary effect, as shown by Cheng
et al (1997). Yet, it is not robust against the presence of outliers.

In the multivariate context, two approaches are possible. A simple one is to
obtain a p-dimensional curve by juxtaposition of p separate smoothing of the p
functional coordinates of the curve (basis expansion approach, kernel smooth-
ing or a mix of the two). A more ambitious approach is to go for an estimate
that is itself a proper p-dimensional curve. In this regard, Sangalli et al (2009)
smooth three-dimensional curves and their derivatives by free-knot regression
splines with an application to the analysis of inner carotid artery centrelines.
Pigoli and Sangalli (2012) develop a wavelet-based estimation of multidimen-
sional curves and their derivatives with an application to the modeling of
electrocardiogram records.

Yet, the later p-dimensional method may be hard to implement when spe-
cific constraints must be verified for some dimensions as it is typically the case
for augmented aircraft trajectories.
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3.3.2 Constrained smoothing methods

Smoothed augmented aircraft trajectories must verify some physical con-
strains. These are mainly of two types: non-negativity constraints and boundary
constraints.

® Non-negativity constraints. These constraints refer to the fact that
altitude and wind speed values must be non-negative once smoothed.
There is an early literature in statistics on spline and kernel regression under
shape restrictions. An excellent literature review is given in Chapter 5 of
Schimek (2013). Usual constrained smoothing problems involving splines
may be expressed as follows. Given data {(yj,tj}Tzl with ¢; € [0,1], the
problem is:

1 2
arguiin Y ly; ~ £t +A [ O] du
0

under the constraint that f(")(t) > 0,V € [0,1]. Usual constraints are then
non-negativity (r = 0), monotony (r = 1) and convexity (r = 2). Monotony
and convexity are the two restrictions that have been the most studied.
A common practice is to go for a discretized version of the restrictions,
obtained by choosing a finite number of ¢;. This results in a finite number of
linear constraints that can be included in the minimization problem. Yet, it is
then impossible to ensure that the constraint is globally satisfied. Reversely,
the drawback of most global methods is the lack of a computing algorithm.
In the FDA literature, the non-negativity constraint in the basis expansion
approach is handled following the idea of Ramsay and Silverman (2005)
(Subsection 6.2.1). To ensure that f(t) > 0 ¥Vt € [0,1], f(t) is defined as
the exponential of an unconstrained function. This unconstrained function
is expanded in terms of a set of basis functions. Because the criterion is then
not linear in terms of the coefficients, numerical methods are used.
When several constraints must be met simultaneously, Turlach (2005)
adopted another point of view. He focused on splines of order 4, with
knots located at observation points. Instead of choosing a suitable B-
spline basis and identifying the necessary constraints on the coefficients
of the basis functions, an unconstrained smoothing spline is first fit-
ted. If there are any violations, constraints are added. The process of
verifying-and-adding-new-constraints is iterated until there are no violations
anymore.
On the kernel smoothing side, LPK smoothers may not meet the non-
negativity condition. We may have negative predictions with a local linear
smoother even if y; > 0, Vj. Yet, the Nadaraya-Watson smoother ensures
non-negativity when y; > 0, Vj.

¢ Boundary constraints. These constraints ensure that the altitude must
be zero at the departure (¢t = 0) and at the arrival (¢ = 1). Additionally,
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the first longitude-latitude values must be the ones of the departure air-
port. Respectively, the last longitude-latitude values must be the ones of the
arrival airport.

To ensure that boundary constraints are verified, several approaches are
possible. In the basis expansion approach framework, one may drop some
functions of the basis to ensure that the altitude would be zero at departure
and arrival. Yet, it is not clear how to ensure some general boundary value
constraints in the kernel smoothing approach.

3.3.3 Functional circular data

There is more to handle than the constraints detailed in Subsection 3.3.2.
Strictly speaking, longitude, latitude and wind directions, are angular mea-
surements.

As flights from Toulouse-Blagnac (LFBO) and Paris-Orly (LFPO) are tak-
ing place over Metropolitan France, the angular nature of the longitude and
the latitude is not of paramount importance, as opposed to long-haul flights
studied by Dai and Miiller (2018). Yet, the direction of the wind should be
handled carefully.

Wind directions are famous examples of circular data, that is to say with
support on the unit circle. As put by Ley and Verdebout (2018), directional
statistics probably started in the 1950s thanks to the seminal paper of Fisher
(1953), studying the historic and prehistoric remanent magnetism of Icelandic
lava flows. A famous monograph in directional statistics is the one written
by Jupp and Mardia (1999). Some case studies are developed by Ley and
Verdebout (2018).

When time is involved, circular time series have been early studied as
testifies Fisher and Lee (1994). Unsurprisingly, circular time series of wind
directions are an early application as highlighted by Breckling et al (1989). A
recent literature review on circular time series is provided in Ugwuowo and
Udokang (2022) as well as an application on hourly measurements of wind
direction taken over a period of time at the Energy research Centre of the
University of Nigeria, Nsukka.

When wind directions are not evenly spaced in time (which is the case in
this work), it is natural to consider the framework of functional circular data
that has been less common in the literature.

Smoothing functional circular data can be seen as a non-parametric regres-
sion task involving a circular variable as a response. The later has been
developed by Di Marzio et al (2013) both for circular and real-line predictors.
We consider the [0,1] x T-valued random vector (A, ®), where T is the cir-
cle with unit radius, ® the response and A the predictor. We have a random
sample {(A;, ®;),j =1,...,m} of independent elements from (A, ®).

The regression model is given by:

®; = [f(Aj)+¢j] (mod 27), j=1,....,m
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where random error angles ¢; have zero mean direction (the mean direction of
the resultant vector is null), finite concentration (the mean resultant length is
finite) and are independent of the predictors. The estimator for the regression
function at ¢ € [0,1] is:

() = atan2(41(9), 42(9))

where ¢; and g» are respectively given by:
X 1
9(0) = — > sin(@;)W (A, - 6)
j=1

and
92(6) = % D cos(;)W(A; - 9)
j=1

with W being a local weight.
Because we have redundant information for the wind wvalues, two
approaches are possible.

¢ Component approach. We avoid the directional aspect. First, one
smooths the two (unconstrained) components of the wind. Second, one
computes a smoothed wind speed and direction.

¢ Directional approach. One smooths the constrained wind speed and the
directional wind direction straightaway.

Results may differ.

3.3.4 Adopted strategies and results for the smoothing step

Because raw observation times are not evenly spaced points (and m is not
equal to 27 for some integer J € N), using wavelets to smooth trajectories is
not straightforward.

Yet, a basis expansion approach and a kernel smoothing one are both
interesting. As physical constraints must be verified for some dimensions, the
construction of the functional observations using the discrete data takes place
separately for each flight and for each dimension of a flight. For each strategy,
the component approach and direction approach are implemented.

e Asymmetric kernel smoothing (first strategy).
To ensure that the non-negativity constraint as well as the boundary con-
straints simultaneously hold, asymmetric kernels are used. These are recently
reviewed by Hirukawa (2018). Asymmetric kernels emerged as a way to
tackle the boundary bias problem. Brown and Chen (1999) approximated
regression curves with support on the unit interval using the Bernstein poly-
nomials smoothed by a family of beta densities. As an extension, Chen (1999)
proposed to use a family of beta densities as kernels for density estimation.
Chen (2000) used a beta kernel for the regression task. A weight function
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Ky p(.) is said to be an asymmetric kernel if it possesses the following two
basic properties stated in Hirukawa (2018):

1. The weight function is a probability density function (pdf) with support
either on the unit interval [0, 1] or on the positive half-line RT.

2. Both the location and shape parameters in the weight function are func-
tions of the design point x where smoothing is made and the smoothing
parameter b.

Nonparametric estimators involving asymmetric kernels are free of boundary
bias. Constrary to usual kernels, the shape of a given asymmetric kernel
varies across design points. As a consequence, the amount of smoothing
changes in an adaptive manner. The functional form of the beta kernel
introduced in Chen (1999) is given by the probability density function of
the beta distribution B (% + 1, % + 1). Figure 1 shows the shapes of the
beta kernel for two different values of smoothing.

Design point 20 Design point

x=0 x=0
—x=01 x=01
— x=02 x=02
— x=03 x=03
— x=04 = x=04
— x=05 X x=05
— x=06 x=06
—_x=07 x=07
— x=08 05 = x=08
— x=09 — x=09

[——— -_— =1

Fig. 1 Beta kernels for b = 0.1 [left] and b = 0.8 [right].

The Nadaraya-Watson regression smoother at a given design point ¢ using
the beta kernel (fized design), is defined as:

’\NW(t) _ Z;’ﬂ:l Y; KB(t,b) (tj)
b > K (t))

Note that our asymmetric kernel approach is not the one developed by Fer-
raty and Vieu (2006) or Benhenni et al (2007). These works explore the
regression estimation problem when the explanatory data are curves and
the response is real while we use asymmetric kernels to smooth functional
data. Bandwidth selection is performed using a Generalized Cross-Validation
(GCV). This criterion was introduced by Craven and Wahba (1978) to
choose the correct degree of smoothing using spline functions and has
been defined by Shi and Song (2016) for the Nadaraya-Watson regression
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smoother using the gamma kernel. For the beta kernel, the GCV is written:

mY (Y - S wiaYa)
2
(m D wjj)

GCV(b) =

where

K. p(t
B () jok=1,..,m.

D S Kpg,p(te)”

e Constrained B-spline smoothing (second strategy). We consider the
following minimization problem for the altitude which is a modified version
of the one proposed by Ramsay and Silverman (2005) (Subsection 6.2.1):

wj

PEEEY)

2 2

m K 1 K
argmin Z y; — exp Z apdr(t;) pti(1—t)) —I—)\/ Z akqb,(f) (w)| du.
K j=1 k=1 0 k=1

(e SR

Note that the function g : ¢ — (1 — ¢) imposes the exact value constraint.
This function is non-negative on [0, 1], reaches a maximum value of § when
t= % In practice, a Gauss-Newton algorithm is used to estimate the param-
eters. Figure 2 shows that the two smoothing strategies produce acceptable
results. Constraints are verified. Smoothed trajectories are bumpier when
using the asymmetric kernel smoother associated to the GCV criterion. In
any case, the mean is very similar for the two smoothing strategies.
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Fig. 2 Smoothing results for the first three dimensions using an asymmetric beta kernel
[top row]| and constrained smoothing B-splines [middle row]. Linear interpolation is also
provided [bottom row]. pointwise means are indicated in orange.

® Why is the circular nature of the wind direction important?
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If one decides to work with the wind direction directly, a non-parametric
regression for a circular response will give accurate results. The regression
has been implemented in R thanks to the NPCirc package for which details
can be found in Oliveira et al (2014). Figure 3 shows, for a given flight, that
taking the circular nature of the wind direction is key to smooth values and
account for the discontinuity between 0 and 2.

2 [KPoopgy
[ ] b - - - ——
1.75x e e
o 1511 o by Values
© p a
= 125n i o X Original
c
S ™ s . ® Kemel
5] 1 @ @
_g N ® B-splines
©
- 0.75n 4 ® Linear interpolation
f=4 bl
E 0.51 Ps Circular
0.251 &
=
On X
0.00 0.25 0.50 0.75 1.00
Scaled time

Fig. 3 Smoothing wind directions for a specific flight with several methods. Circular values
refer to smoothed values obtained from a non-parametric regression for circular response
and real-line predictor.

4 Elastic registration

This section details the phase problem associated to the fact that trajectories
are all of different durations.

4.1 The detrimental effect of rescaling

Empirically, two flights never have the exact same duration. To compare tra-
jectories with different durations, a scaling is made to the unified time interval
[0,1]. This transformation is popular in FDA but has a well-known impact
on summary statistics. To better understand, Figure 4 shows two theoretical
trajectories having:

¢ A similar longitude-latitude profile (the path from the departure airport to
the arrival airport is assumed to be the same)

® A similar trapezoid altitude profile except for the en-route phase that is
assumed to be longer for one of the two flights. Specifically, the climb and
the descent are the same.

Comparing altitude values for a given time is obviously misleading. From
the scaled time version, at each time, the altitude seems higher for the red
trajectory which is obviously wrong from looking at the initial situation.
Intuitively, one wishes to compare trajectories for similar flight phases. This
well-known problem is called a registration problem in FDA.
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Fig. 4 Two theoretical altitude profiles (green and red). Time rescaling [right] imposes a
registration step to avoid misguided interpretations.

4.2 Previous related works on registration - univariate
framework

As put in Chapter 7 of Ramsay and Silverman (2005), registration starts with
the key idea that the rigid metric of physical time may not be directly rel-
evant to the internal dynamics of many real-life systems. To avoid fallacious
comparisons, time should be stretched or shrunk for shapes to be aligned. For
trajectories, one wishes to compare trajectories for the same flight phases.

In general, registration can be as simple as shifting time or as tedious
as finding a continuous transformation of the time scale. One is typically
more interested in creating a continuous transformation of the time scale that
preserves boundaries.

Most registration approaches boil down to the resolution of an optimisation
problem and is traditionally based on Procrustes fitting following Silverman
(1995). An famous exception is landmark registration that has been studied
by Kneip and Gasser (1992) and Gasser and Kneip (1995).

Trajectories are not already labeled: flight phases are not known in the raw
data. A first option is to create landmarks from the detection of flight phases
based on some algorithms that exist in the literature. Two examples are the
ones of Sun et al (2016) and Liu et al (2020).

Yet, continuous registration is preferred as it is more flexible and does not
require an additional pre-processing step. Conceptually, the registration can
be done pairwise or groupwise.

The pairwise alignment problem for registering f2 to f1 (reference), fo and
f1 being two functions in L2, may be written as:

~v* = argmin F [f1, fa 0 7]
Y€ 0,1

where E stands for an optimization criterion and I'|g 1j for the set of boundary-
preserving diffeomorphisms on [0,1]. F is often chosen to be a distance, e.g.,
the usual L2 norm.

The groupwise alignment problem involves a set of functions
{fi,i=1,...,n} and aims at finding a set of warping functions {v;,i =1, ...,n}
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such that, for any ¢ € [0, 1], the values f;(;(t)) are said to be registered with
each other.

Including a symmetry problem (registering fa to f1 is not the same thing
as doing the opposite), using the L? norm has several undesirable effects. A
famous one is the pinching effect: using the L2 allows for squeezing or pinch-
ing a large part of the candidate function to make the cost function arbitrarily
close to zero. In practice, a regularization term is used to constrain the rough-
ness of the warping function. An more elegant solution has been proposed by
Srivastava et al (2011b) for separating the phase and the amplitude variability
in functional data.

4.3 A geometric framework for functions

The main idea of the geometric approach is to take advantage of Square-Root
Slope Function (SRSF) representation of functions. This representation allows
to find the optimal warping function efficiently. Departing from a function f
that is absolutely continuous on [0, 1], the map @ : R — R is defined as

Q(z) = sign(z) /[,

The SRSF associated to f is defined as ¢ : [0,1] — R, where ¢(t) = Q(f(t)).
Srivastava and Klassen (2016) have shown that if the function f is abso-
lutely continuous, then the resulting SRSF is square integrable. For every
q € L2([0, 1]) there exists a function f (unique up to an additive constant) such
that the given ¢ is the SRSF of that f. If the cost function for registering fo
to fi is chosen to be E[f1, fo] = |l¢1 — ¢2|| 2, finding the optimal registration
amounts to solve:

argmin F [f1, fo 0 7] = argmin
YEL 0,1 7€l 0,1)

"h

In practice, a Dynamic Programming Algorithm (DPA) is used to compute
the optimal time-warping function. A common practice is rather to solve:

argmin ‘ql

Y€ 0,1

Regarding the groupwise alignment problem, a template function is required.
Ideally, the template function should not be based on a mean built upon the L2
norm because it does not verify an isometry property under warping. Building
a valid template relies on the Karcher mean, for which details can be found in
Marron and Dryden (2021). In practice, the mean, computed iteratively, may
serve as a reference function to which are registered all functions of the set.
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4.4 Previous related works on registration - multivariate
framework

When it comes to multivariate functional data, the issues of phase and ampli-
tude variations still exist. Yet, phase variation for multivariate functional
data is twofold. The so-called observation phase is the phase variation occur-
ring across all dimensions of a given trajectory. Component phase is the
phase variation occurring for a given dimension across all trajectories. Because
component-wise registration is tempting, it is often assumed that cross-
component variations are uncorrelated. Under this assumption, the registration
of multivariate functional data consists in several univariate registrations: one
should find several warping functions for each trajectory. When it is assumed
that there are no component phase variations, registration is done to account
for the observation phase. In this case, only one warping function is to be found
for each trajectory. For example, Park and Ahn (2017) estimated a conditional
subject-specific warping to compare growth patterns across individuals. Car-
roll et al (2021) accounted for both observation and component phases. In
their work, observation phase variations are taken into account thanks to the
estimation of time shifts, in line with a well-known pattern in pubertal spurts.

To register trajectories, one should take into account the correlation that
exists between all the dimensions: component-wise registration is not an
option. For instance, it is known that the wind speed will change with alti-
tude because of atmospheric layers. Because the dimensions of a trajectory
are the ones of an underlying coordinate system, an universal warping is to be
found for all components. Luckily, there is no observation phase for trajectories
because of the data acquisition process.

As stated by Delahaye et al (2014) an aircraft trajectory is naturally mod-
eled as an open parameterised curve of RP. More rigorously, a trajectory
B :[0,1] — RP has an associated curve 8 : (0,1) — RP (that has no end-
points). While Delahaye et al (2014) focused on the case p = 3 relying on arc
length parametrization, we propose a more flexible representation of aircraft
trajectories.

4.5 A geometric framework for curves

A natural extension of the SRSF to curves has been proposed by Srivastava
et al (2011a). This extension is the Square-Root Velocity Function (SRVF)
and relates to absolutely continuous curves. Let F' : RP — R? be a mapping

given by:
v if |[v]| #0
pioy < [ 2
0 if Jv|=0

where |.| notes the Euclidean norm of RP. The SRVF is defined to be
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The curve S can be reconstructed from ¢ up to a translation. Pairwise registra-
tion of curves in R"” is essentially an extension of the problem studied above.
Likewise, underlying concepts and even algorithms remain mostly the same
for the registration of multiple curves.

4.6 Registration of augmented aircraft trajectories

The goal of the registration is to align flight phases. As flight phases are
determined by the longitude, the latitude and mostly by the altitude, these
dimensions are used to compute the optimal time-warping functions. Results

are shown in Figure 5.
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Fig. 5 Registration results for the first three dimensions when smoothed curves come from
the asymmetric beta kernel [top row] and smoothing B-splines [middle row]. Linear inter-
polation is also provided [bottom row]. Pointwise means are indicated in orange. Optimal
time-warping functions are given in grey. The dashed yellow line is the diagonal (no warp-

ing).

4.7 Descriptive statistics

Now that augmented aircraft trajectories have been registered, summary
statistics can be computed. The crosswind and tailwind components of the
wind are computed at each moment of the flight.

As one notices from Figure 6, the latest trajectories have greater tailwind
values for most part of the flight. Reversely, earliest trajectories have highly
negative tailwind values. Regarding the crosswind component, earliest trajec-
tories have experienced smaller values. The next section develops a rigorous
testing framework to prove it.
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Fig. 6 Mean tailwind values by duration deciles computed from the asymmetric ker-
nel approach [left] and mean crosswind values by duration deciles [right]. The directional
approach was used.

5 Testing for a different experienced wind

Now that trajectories are smoothed taking constraints into account (Section 3)
and that the registration has been done (Section 4), we wish to prove that
delayed flights have experienced less favorable wind conditions. We define the
on time and delayed flights in Subsection 5.1. Subsection 5.2 presents some
inference procedures for functional data. Subsection 5.3 motivates the use of a
pointwise test, implements and comments on the results of several procedures.

5.1 Definition of delayed and on time flights

Two groups can easily be made based on the duration of the flights. Note that
the duration of a given flight is computed as the elapsed time between takeoff
and landing. In what follows, the groups of delayed and on time flights are
made according to the 8" decile of flight durations as shown in Figure 7.
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Fig. 7 Empirical density (Gaussian kernel smoothing) of all flight durations.

The goal of this section is to present the statistical framework to test for a
different experienced wind between the two groups.
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5.2 Statistical framework

Following Zhang (2013), several families of inference techniques can be used
for functional data: pointwise, L? norm-based, F-type, and bootstrap tests.
One of the earliest contribution in the literature is probably the one of Far-
away (1997) showing that a usual multivariate likelihood ratio test is not very
adapted to compare nested linear models in the functional framework. Far-
away (1997) motivates a L2 norm-based test and a bootstrap approach to
approximate the null distribution of interest. The L2 norm-based test was
extended in Zhang and Chen (2007). The F-type test was first studied by Shen
and Faraway (2004). Other contributions are listed in Zhang (2013). If groups
are independent but some temporal correlation should be taken into account
in each group, a two-sample test for functional time series was proposed by
Horvath et al (2013).

In what follows, one is interested in proving that the experienced wind was
less favorable for delayed trajectories.

5.3 Pointwise tests for the crosswind and tailwind
components

We chose to define a favorable/unfavorable experienced wind relying on the
tailwind and crosswind components of the wind. Our working assumptions,
motivated by summary statistics, are as follows:

® At each moment of the flight, tailwind values are higher, on average, for the
on time group.

® At each moment of the flight, crosswind values are closer to zero, on average,
for the on time group.

In this subsection, the focus is made on pointwise tests. An overall testing
method (say, based on the L? norm) is by nature not very appropriate to
emphasize at which moment of the flight the differences between the two groups
are important. Bigger differences in tailwind values are likely to happen in the
middle of the flight, at high altitudes.

We have a sample of ny = 2,419 on time trajectories and a sample of
ng = 605 delayed trajectories.

The tailwind component

We have two functional samples of tailwind values. The on time sample
{Yff;” :L:I , is made of independent stochastic processes identically distributed
with mean function pi*!(#) and covariance 7'#i!(s,¢). The sample for the
delayed group {Y;‘;ﬂ}z L is made of independent stochastic processes iden-
tically distributed with mean function u$*!(¢) and covariance ~'il(s,t). By

assumption, the covariance is the same for the two groups.
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A general one-sided pointwise two-sample test for functional data with a
common covariance function can be formulated as follows:

Ho s (1) = s (1)
against
Hy s (0 > ()

for a fixed t € [O 1]. Let utall( ) be the usual estimator of the mean func-
tion pil(t), ugaﬂ( ) be the usual estimator of the mean function p&(t) and
~tail(s ¢) be the pooled estimator of the common covariance function. The
pivotal test statistic for each t € [0,1] is given by:

—

Sail(g) — Htall() (s (t) '
T am

Let’s make additional assumptions:

um‘l( ). pi(t) € L2([0,1])

fo At 1) dt < oo

min(ny,nay) — 00, ny and ny go to infinity proportionally
The two groups are independent

If these assumptions hold, Zhang (2013), shows (Theorem 5.2, page 134),
under the null, that the pivotal test statistic is asymptotically Gaussian for
any fixed ¢ € [0, 1]. Pointwise p-values can be computed.

Yet, a pointwise test is not entirely satisfactory for at least two reasons.
First, even if all the z-tests are significant at a given level, there is no guar-
antee for an overall significance. This caveat was early mentioned in Ramsay
and Silverman (2005) speaking about the misleading interpretation of point-
wise confidence intervals. Second, the same sample of trajectories is used to
perform the test at each t € {71, ..., 7}, the set of evaluation points for which
curves have been sampled. In this context, a correction for the multiple com-
parisons should be found. Let C,, = {7 : Ho -, is true,1 < k <m} be the
set of grid points for which Hy ,, is true and P (rejectHy -, , V7 € Cp,) be the
family-wise error rate. A correction would ensure that the family-wise error
rate is less than or equal to «;, where « is fixed, no matter what is the set C,,
of true null hypotheses. Yet, as put by Cox and Lee (2008), the family-wise
error rate depends on the set of grid points. The famous Bonferroni correc-
tion would require to test each individual hypothesis at a significance level of
. Yet, there is an obvious problem for functional data when m is very large:

— 0. Another famous correction is given by Holm (1979). Both correc-
m—o0

tions are relevant when rejection regions are disjoint. However, with functional
data, rejection probabilities are likely to be correlated for two consecutive eval-
uation points in {7y, ..., 7 }. For functional data, Cox and Lee (2008) showed

3e3le
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that the Westfall-Young randomization method is appropriate if, among other
hypotheses, a permutation pivotality condition holds.

More realistically, a group-specific covariance function is needed. Let
ytail(s 1) be the covariance function of the first group and v4*!(s, ) the covari-
ance function of the second group. The pivotal test statistic, for each ¢ € [0, 1]
is now: - -
iail(t) _ /iﬁ\all(t) _ ngli(t) )

\/ P () | 3y ()

ni nz

z

With similar assumptions, the pivotal test statistic is asymptotically Gaussian
for any fixed ¢ € [0, 1].

o

o

— Same covariance
/\& — Group-specific covariance

v
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(4]

1.645

o

Fig. 8 Pointwise values of the test statistic for 50 values of ¢ € [0,1]. The horizontal red
line is the quantile that should be used to reject the null hypothesis at 5% level when no
correction for multiple comparisons is taken into account. The test statistics are computed
using asymmetric kernel smoothing with the directional approach.

Figure 8 shows that the on time group has an average tailwind that
is greater than the delay group for most parts of the flight. Assuming a
group-specific covariance lowers the test statistics. When asymmetric kernel
smoothing is used and one uses the u and v component of the wind (compo-
nent approach), results are very similar. Differences in test statistics are not
very visible to the naked eye. If one looks at the test statistics obtained with
the constrained splines approach, the global shape is the same. Yet, it is not
possible to reject the null at 5% close to the landing phase.

The crosswind component

Note that any crosswind value that is too large in absolute value would affect
the aerodynamics of the aircraft. The on time sample of absolute crosswind
values {Yf?“}ﬁ is assumed to be made of independent stochastic processes

identically distributed with mean function 1§ (t) and covariance §7%5(s, t).
The sample of absolute crosswind values for the delayed group {Yﬁ"ss}?zl is
assumed to be made of independent stochastic processes identically distributed

Cross

with mean function p§™*(¢) and covariance v§%(s,t). Note a group-specific
covariance is assumed. Regarding the crosswind component in absolute value,
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a pointwise two-sample test should be written:

Ho o g (1) = 5o (1)
against
H o (1) < s (1)

for a fixed ¢ € [0,1].

— Same covariance
— Group-specific covariance

Test statistics

1.645
of 7 \

0.00 0.25 0.50 0.75 1.00
Scaled time

Fig. 9 Pointwise values of the test statistic for 50 values of ¢ € [0, 1]. The horizontal red
line is the quantile that should be used to reject the null hypothesis at 5% level when no
correction for multiple comparisons is taken into account. The test statistics are computed
using asymmetric kernel smoothing with the directional approach.

Figure 9 shows that the delay group has an average absolute value of the
crosswind component that is greater than the on time group except during
landing and takeoff. Assuming a group-specific covariance lowers the test statis-
tics at high altitudes. Again, results are similar to the component approach.
If one looks at the test statistics obtained with constrained splines approach,
the global shape is the same. Yet, it worth mentioning that one may reject
the null at 5% for the takeoff and landing in this case. The splines and kernel
approaches may lead to different conclusions at the boundaries.

A joint approach

We have two bivariate functional samples of wind component values. The
one-time sample {(Yfﬁﬂ Yfﬁoss)}j:ll is assumed to be made of independent
bivariate stochastic processes identically distributed with mean vector func-
tion p1(t) and covariance matrix function I'(s,t). The sample for the delayed
group {(Y;’?ﬂ 1”;2055) }ji , 1s made of independent bivariate stochastic pro-
cesses identically distributed with mean vector function ps(t) and covariance
matrix function I'(s, t). The pointwise two-sample joint test can be formulated
as follows:
Hot @ pa(t) = pa(t)
against
Hy g s p(1) > (1) amd g™ (1) > pu§ros (1)
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A pivotal test statistic, for each t € [0,1] is

~tail ~tail tail tail
Loint (1) = mn2 g5t I = [ N % iy 2
- 7 Cross / CTOSSs Cross Cross
n1 + ng Ha — H1 H2 — M1

1 -1
-1 1
product. Under Hy;, with similar assumptions as above, the test statistic is
asymptotically bivariate Gaussian for any fixed ¢ € [0, 1]. Details can be found
in Appendix A. In practice, we choose, for each ¢ € [0, 1], under the null:

where ¥ is an estimator of ¥ = ( ) ® I'(t,t), ® being the Hadamard

szoint (t)Hz d X%

min (n1,n2)—00

n w N
=3 S S
S =3 =3

Test statistics

=)
S

5.991

0.00 0.25 0.50 0.75 1.00
Scaled time

Fig. 10 Pointwise values of the test statistic for 50 values of t € [0,1]. The horizontal red
line is the quantile that should be used to reject the null hypothesis at 5% level when no
correction for multiple comparisons is taken into account. The test statistics are computed
using asymmetric kernel smoothing with the directional approach.

Figure 10 shows that the delay group has, on average, less favorable
wind conditions. Again, results are very similar with component approach.
Constrained splines smoothing does not change the results.

6 Conclusion

In this paper, a multivariate functional data framework is used to model air-
craft trajectories. Thanks to the constraint smoothing strategies, altitude and
wind speed are guaranteed to be non-negative. Smoothed altitude drops to
zero at the beginning and at the end of the flight.

Provided a good choice of bandwidth and roughness parameters, asymmet-
ric kernel smoothing and constrained B-spline smoothing give similar results
from a visual perspective.

It happens that the circular nature of the wind direction values must be
handled carefully. Fortunately, it is also possible to depart from smoothed wind
components to get similar results. Note that wind components are not always
available. In ADS-B data, wind speed and direction are directly given.
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Notably, a pointwise test allows to identify the time of the trajectory at
which the wind was significantly less favorable for the delay group.

Promising results may stem from the developed multivariate functional
data framework. For example, one may associate fuel consumption or noise
emission values to each point of the flight instead of wind values. Doing so, it
would be possible to check that one group has consumed more fuel.

Several exciting aspects fall outside the scope of this paper. A monthly
study may help to detect any seasonal pattern. From a statistical point of
view, the independence assumption that is used for the pointwise tests could
be relaxed. It is likely that wind profiles are temporally correlated based on
the takeoff time. One would deal with functional time series. Because depar-
tures are not scheduled on a regular time scale, relaxing the independence
assumption requires some additional work.

Appendix A Asymptotic distribution

From the Central Limit Theorem, for each ¢ € [0, 1], we have:

ni—o0

[ (FEERE)- ()] o
and

ng—00

Los~m2 ytail(y) tail (1)
iy - (12 — 4 N5(0,T(t,8)).
\/7 |:<nz Z Y’;goss( )) (Maross(t))] 2( 5 ( 5 ))
With the assumptions of Zhang (2013) (Theorem 5.2, page 134), we have:

ning ( Yltail(t) - YZtail(t) > % N2(Ml(t) — p2(t), (L, 7))

ni _|_ no Y'lcross(t) _ Y'choss(t) min (n1,7L2)—>oo

Let f : R?> — R? be the function f(z,y) = (z,—y) with Jacobian matrix
J = ((1) 01> For 0(t) = p1(t) — pa(t), let Js¢;) denotes the differential of f at
6(t) € R% As Js) # 0, the Multivariate Delta Method gives:

nina ﬂﬁdll ﬂtall ) ( Mgail M;ail ) :| d
7\11 cross ross ross ross — N 0 I
V n1+no [(N — [ 5% — pig min (n1,n2)—00 20, 1)

where U = ( 11 1 ) ©T(t,t). Let ¥ be the estimator of ¥ involving the pooled

covariance matrix ['(t,t) = W Using the law of large numbers

and Slutsky’s theorem, one shows that pooled covariance matrix converges to
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the covariance matrix I'(¢,¢) in probability. Again using Slutsky’s theorem,

~tail ~tail tail tail
nina \ij%l N’lal _ lu2a1 B ,ulal _ lu2a1 d N2(0 12)
ny + no ‘a%ross _ laiross M;ross _ M?ross min (nl,ng)—mo} )
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