
HAL Id: hal-03659579
https://enac.hal.science/hal-03659579

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causette: User-Controlled Rearrangement of Causal
Constructs in a Code Editor

Alice Martin, Mathieu Magnaudet, Stéphane Conversy

To cite this version:
Alice Martin, Mathieu Magnaudet, Stéphane Conversy. Causette: User-Controlled Rearrangement
of Causal Constructs in a Code Editor. ICPC ’22: Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Program Comprehension, IEEE/ACM, May 2022, Pittsburgh, United States.
�10.1145/3524610.3527885�. �hal-03659579�

https://enac.hal.science/hal-03659579
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Causette: User-Controlled Rearrangement of Causal Constructs
in a Code Editor

Alice Martin Mathieu Magnaudet
first.last@enac.fr

ENAC, Université de Toulouse
France

Stéphane Conversy

Figure 1: Interaction 2. Reordering FSMs: (a) The user hovers over on a declaration of a state (blue) which highlights the in and

out transitions (green); (b) the user clicks on the state, and the system animates a rearrangement of the transitions; (c) the new

y-ordering of the statements matches the causal relationships being analyzed (in-transitions above state above out-transitions).

ABSTRACT

Programming interaction usually involves specifying causal rela-
tionships such as input events triggering a state change or the
propagation of values. Such code may reside in several locations
and its execution is driven by multiple causal chains, which hinders
the programmer’s ability to understand and fix it. We designed
Causette, a set of four novel interaction techniques for a code editor.
They consist in rearranging causal constructs on demand to make
the code representation consistent with the causal chain being ana-
lyzed by the user. We ran an experiment showing that Causette may
be more usable than a regular editor for some code understanding
tasks. This work suggests that rearranging interaction code may
help developers better understand and fix it.

CCS CONCEPTS

• Human-centered computing → Visualization toolkits; User
interface programming; • Software and its engineering →
Development frameworks and environments.

KEYWORDS

Interaction programming, code visualization, causality

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527885

ACM Reference Format:

Alice Martin, Mathieu Magnaudet, and Stéphane Conversy. 2022. Causette:
User-Controlled Rearrangement of Causal Constructs in a Code Editor. In
30th International Conference on Program Comprehension (ICPC ’22),May
16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3524610.3527885

1 INTRODUCTION

Programmers of interactive systems e.g. Graphical User Interfaces
that react to input events from the keyboard, the mouse, or the
touchscreen, face specific challenges due to the interrelated be-
havior of numerous components and uncontrolled, unpredictable
flow of external events [37]. A number of textual programming
languages provide dedicated language constructs to tackle the com-
plexity of writing interactive programs. Some of them propose
reactive constructs that avoid the need to write code for updating
outputs when the inputs of a computation change [64]. Others
use traditional object-oriented constructs to describe state-based
behavior [1]. Conceptual frameworks, syntaxes and tools have
been proposed for user interface development [49], natural pro-
gramming [50], interaction-oriented programming [40], or web
programming [4]. Still, most approaches rely on code split over dif-
ferent source files, each dedicated to the description of interactive
behavior at a local level. This breakdown hinders the program-
mer’s ability to understand interactive behavior. As a consequence,
interaction code is hard to debug and maintain.

1

https://orcid.org/0000-0002-9023-506X
https://orcid.org/0000-0002-7548-6274
https://orcid.org/0000-0002-5145-6476
https://doi.org/10.1145/3524610.3527885
https://doi.org/10.1145/3524610.3527885
https://doi.org/10.1145/3524610.3527885

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICPC ’22, May 16–17, 2022, Virtual Event, USA Martin, Magnaudet and Conversy

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The problem: understanding causality

We believe that developers should be able to follow and under-
stand the causal chains to assess whether the code of an interac-
tion will behave correctly. Following the philosopher of science
W. Salmon [57], we take causality as a spatio-temporal process
involving the transmission of “information, structure and causal
influence”. We consider that two processes A and B have a causal
relationship if A always precedes B and B occurs every time A oc-
curs. In other words, “causality” means that the execution of a piece
of code follows the occurrence of an input event. Causal chains are
a set of elementary causal relationships that form a chain.

General-purpose and interaction-oriented programming lan-
guages provide programmerswith "causal programming constructs"
i.e. syntactic expressions that establish a particular causality be-
tween two pieces of code. Some of Java Swing, Qt, SwingStates [2]
or QML APIs and syntaxes can be considered as causal constructs.
With Java Swing, the registering of a listener callback is a causal
construct expressed with source.addListener(listener). With
Qt, the connection between a signal and a slot is expressed with ob-
ject1.signal.connect(object2.slot). With SwingStates, the
transition between two states is expressed with Transition t
= new PressOnShape(BUTTON1, "»menuOn") while with QML
a transition is expressed with DSM.SignalTransition {target-
State:finalState signal:button.clicked}. In Smala[40], the
binding between the activation of two processes is expressed with
p1->p2, an assignment with p1=:p2, a dataflow with p1=>p2 and
a transition with s1->s2(event).

Such causal constructs may have been defined by a programmer
with the same source or destination, over multiple code locations.
They thus implicitly form a "causal chain". The challenge we tackled
here is the programmer’s ability to understand such causal chains.
Since interaction is by nature dependent on external events that
might occur in any order, understanding an FSM requires taking
into account multiple causal chains. Similarly, to understand a data-
flow of connected components, developers must follow the flow of
data across multiple code locations. Few tools have addressed these
difficulties in past work.

Causette

Our goal is to better support programmers when they seek to under-
stand the causal chains involved in interactive programs. Here we
introduce Causette1, a set of interaction techniques and representa-
tions of textual code. With Causette, a programmer is notably able
to bring together the causal relationships that are far away from
each other in the source code, with a visual ordering consistent
with the conceptual causal order (see fig. 1). Our contributions are:

(1) The elicitation of four design principles (4.2) we relied upon to
design four interactions (4) that rearrange interaction code rep-
resentations to support some interaction programming tasks;

(2) The demonstration of the interactions in relevant scenarios (4);
(3) The evaluation of the interactions with a semi-controlled ex-

periment with 12 professional programmers (5).

1Causette is a pun from the French given name Cosette spelled like Causality, and
evoking “*-et” HCI terms such as “widget” or “applet”.

2 RELATEDWORK

We first introduce the terminology we use. As much as functional
programming is about programming functions that run within a
program that compute results [35], interaction programming is
about programming interactions that run within an interactive
program i.e. that reacts to external events such as human input or
network data reception. Interaction code is the code devoted to the
description of interactive programs. Similarly, as much as object-
oriented programming [31] languages have been designed to suit
the programming of “objects”, interaction-oriented [37] program-
ming languages and frameworks [14, 37, 48] have been designed
to suit the programming of “interactions”. Causette is informed
by research in three areas: interaction programming and causality,
augmenting textual code, and code representation and animation.

2.1 Interaction programming and causality

In the field of interaction-oriented programming, the causal chal-
lenges related to interaction code have been pointed out [14, 37, 47,
48], but few tools have addressed it. TheWhyLine debugger [32, 33]
provides developers with answers to a why?-question regarding
a phenomenon they perceive on a user interface i.e. a causality
question. Outside the scope of interaction programming, many
papers have studied developers’ needs, particularly when debug-
ging [36, 61, 63] and proposed new debugging methods, notably
in the field of functional reactive programming [58, 59]. However,
few of them have been focusing on the debugging of interaction-
oriented programs or causal relationships. Aside the field of pro-
gramming, some work in information visualization have studied the
representation of causality. This includes the exploration of graphs
and diagrams to visualize causality [22, 23, 62], applied to statistics
or to the modelling of distributed systems. However, typical graph
layouts may not be appropriate to follow the control flow of an
application, as they force the readers to visually hop from node to
node in arbitrary directions. Those limits have been addressed by
tools like DA4Java [53] for Java source code. To make the graph
more readable, a set of features allows to incrementally compose
graphs and remove irrelevant nodes and edges from graphs.

2.2 Augmenting textual code in IDEs

Several issues with program understanding motivate work on tex-
tual code augmentation. One issue is related to file-based IDEs. The
literature points out how IDEs lack effective support to browse
complex relationships between source code elements. Developers
are often forced to exploit multiple user interface components at
the same time [34], making the IDE “chaotic” [43]. To prevent time-
consuming navigation between files, CodeBubbles [7, 8, 55, 56]
offers an integrated development environment for Java. With Code-
Bubbles, programmers can build working sets composed of code
fragments (like methods, small classes, notes, documentation, etc.),
displayed in a separate bubble or lightweight window. Programmers
can rearrange the layout of the bubbles to create a logical context.
VSCode offers a functionality called CodeLens [42]: an actionable
contextual information interspersed (from different files) in the
edited code. It differs from Causette in terms of interaction tech-
nique (pop-up window), type of information (e.g. editing history)
and targeted code (imperative code). In the same line of thought, to

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Causette: Rearrangement of Causal Constructs ICPC ’22, May 16–17, 2022, Virtual Event, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

overcome the limits of navigation in IDEs, Hunter [19] is a tool for
the visualization of JavaScript applications that provides a set of
coordinated views that include a node-link diagram that depicts the
dependencies among the components of a system, and a treemap
that helps programmers to orientate when navigating its structure.

We used a different strategy to bring related chunks of code
closer, by inserting “remote” code into the currently edited one.
Similarly, “code portals” [9] embed various types of context infor-
mation uniformly into the main source code view in proximity to
the relevant source code. “Fluid source code views” [18] consists of
insertions of relevant remote lines of code in the edited file. The
aim is to provide the programmer with the control and data flow di-
rectly in the edited code, and thereby minimizing navigation. But it
is applied to object-oriented programming and relies on displaying
hierarchies of methods. SimplyHover [29] is a plug-in for Eclipse
that brings the “if” condition next to its “else” counterpart.

Theseus is an IDE extension that visualizes the run-time be-
havior of a program within a code editor by displaying real-time
information about how the code actually behaves during execu-
tion [39]. It provides the programmer with the number of calls of
a particular function and a collapsible tree of calls. Like Causette,
Theseus augments the textual code being edited, by displaying the
number of calls to the left of the function header. By contrast, we
target another type of information: the causal activation chain. We
also focused on state activations in an FSM, but used a quantita-
tive representation of activation recency instead of a numerical
representation of the number of calls. We took Theseus evaluation
method as inspiration for the evaluation of Causette.

2.3 Code representation and animation

Causette builds upon previous work about graphical code repre-
sentations. For example, InterState [51] is a programming language
and environment that supports developers in writing and reusing
user interface code. InterState mixes texts and graphics to represent
interactive behaviors using a combination of FSMs and constraints.
It also provides programmers with a visual notation to facilitate
code navigation and understanding. SwingStates [2] makes a clever
use of Java anonymous inner classes to describe FSMs. However,
the specification of the interactions is done at a local level, and
SwingStates does not offer support for understanding causal chains.

From a more theoretical standpoint, source code shares a lot with
a text to be read [54]. There is a distinction made in the literature
between textual and visual information. But it is not clear-cut and
it is not obvious to favor the latter or the former. Visual programs
can even be harder to read than textual programs [26]. The cogni-
tive dimensions of notation is a framework that helps designers
analyze interactive tools, including programming environments
and languages, may they be textual or graphical [6]. The Physics
of Notations framework focuses on the properties of graphical no-
tations [44]. Unifying textual and visual languages shows that both
types have much in common and that both should rely on the ca-
pability of the human visual system [17]. More recent work on
code reading is relevant to Causette. There have been studies on
the way programmers read natural language text and code. Some
results indicate that code reading is less linear [12, 52] than prose
reading because programmer focus on the program execution flow,

or that code regularity (same structures repeated time after time)
reduces code reading complexity [30]. The effect of ordering on
comprehension has been studied [30], with a focus on the ordering
of methods. It motivates design principles for Causette, in the sense
that it invites to support the matching between linearity of reading
order and the readability of the execution flow.

An environment and language suitable for programming should
allow one to “follow the flow” and “see the state” [10]. The au-
thor designed several interaction techniques and representations
to support those two concerns. However, they involved following
an imperative flow and data states, while Causette targets the in-
teraction flow or the interactive state. The author claims that the
features of the environment are less important than the particular
ways of thinking they support. This is what we strive to do for
interaction programming: provide programmers with interactions
and representations to better apprehend causal relationships.

To augment and represent textual code efficiently, we used ani-
mations. Text animations are useful to understand changes of infor-
mation display [16]. Gliimpse [21] or Diffamation [15] share with
our work the use of animations in code: they offer animated tran-
sitions to different parts of text (latex markup code and rendered
document in Gliimpse, revision history of textual documents in
Diffamation). Gliimpse allows users to check and navigate through
the code, without leaving the text editor. However, Gliimpse ani-
mates from code to rendering, and not from code to code. Finally,
animations of word-scale graphics within texts also enable to follow
the rearrangement of graphics and make them easier to compare
thanks to a vertical alignment [25].

3 THE SMALA LANGUAGE

As mentioned in the related work, the problem of describing and
understanding interaction code has been partly addressed with the
design of specific, interaction-oriented textual languages. We used
such a language, Smala, in the remaining of the paper, as it elimi-
nates some interaction programming problems, like the “spaghetti
of call-backs” [46]. Our interaction techniques were designed for
this language, to overcome the remaining difficulties (the tech-
niques may be applied to other languages or toolkits such as Qt).
This section briefly describes Smala to help the reader understand
the code examples.

Smala is a textual, interaction-oriented programming language
dedicated to the development of highly interactive software. It takes
inspiration from classical reactive languages such as Lustre [27]
or Esterel [3], notably adding a specific syntax and a seamless
integration of interactive graphics.

At the conceptual level, a Smala program is a declarative speci-
fication of a graph of coupled processes going from a set of event
sources to a set of output processes. Such specification is akin to the
way causal chains are declared in an imperative language/frame-
work such as Java or Qt: adding listeners (Java), or connecting
signals to slots (Qt) is a way to declare a causal chain during the
initialization of an interactive program. The execution is triggered
by the occurrence of events that are propagated by an activation
vector, resulting from the sorting of the graph of processes.

At the syntactic level, Smala provides specific operators to define
causal links between processes (listing 1). For example, the arrow

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICPC ’22, May 16–17, 2022, Virtual Event, USA Martin, Magnaudet and Conversy

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

between two processes specifies that each time the left process is
activated then the connected process must be activated (binding).
More complex control structures exist such as FSMs. An FSM con-
sists in declarations of states, followed by declarations of transitions
(listing 2). Each state may include other processes.

The Smala syntax has been designed to facilitate the develop-
ment of interactive software. Indeed, the arrow-based notation is a
representation of the control flow of an interactive software. The
language designers have also reversed the direction of the classical
APL assignment operator (𝑠𝑟𝑐 =: 𝑑𝑠𝑡 instead of 𝑑𝑠𝑡 := 𝑠𝑟𝑐) to make
it consistent with the directions of other types of flow (binding:
− > and data-flow/connector: =>). Smala makes it easy to combine
data-flows and FSMs: a data-flow can trigger an FSM transition and
an FSM can start or stop a data-flow (as envisioned in [13, 28]).

However, as with Java or C++/Python/Qt programs, the entire
causal chain specification can be spread over several files, which
makes it difficult to understand. The Smala FSM also exhibits some
scaling issues with a large amount of states and transitions, and
with nested FSMs. Even if we believe that dedicated syntax of Smala
is more usable for interaction programming, it is not enough to
understand causality.

Listing 1: Binding & Dataflow

Clock cl (500)
Incr inc
cl.tick -> inc.step
// ^^ binding
// inc is activated every

500ms

Double v (0)
inc.state => v
// ^^ dataflow
// v receives inc value
// every time inc is

incremented

Listing 2: FSM

FillColor f(0,0,0)
Rectangle r(50, 50, 100, 70)
FSM simple_FSM {

State idle {
#000000 =: f.value

}
State hover {

#a0a0a0 =: f.value
}
State pressed {

#ff0000 =: f.value
}
idle ->hover (r.enter)
hover ->idle (r.leave)
hover ->pressed (r.press)
pressed ->hover (r.release)
// ^^ transition

}

4 INTERACTION TECHNIQUES

We devised from the state of the art three requirements for the
design of interaction techniques that would support a programmer
in understanding interaction code. We devised the design principles
to fulfill the requirements. Most design principles and techniques
leverage on a textual code editor. Even if some graphical representa-
tions can be used to represent data-flow or FSMs, text-based editors
are still heavily used as they provide features that are deemed us-
able by many programmers. Still, we hypothesize that the regular,
mostly 1D, textual presentation of causal relationship constructs
spread in multiple files does not help programmers to understand
the causal chain. We demonstrate the interaction techniques in a
concrete way through use cases.

4.1 Requirements

The understanding of interaction code poses specific challenges
arising from the multiplicity of causal chains across files that split
the description of behaviors. We wanted to design interaction tech-
niques directly available in the edited source code file, saving nav-
igation time across files. Although code lines integration within

edited source code is not new, we have not seen such techniques
applied to interaction code and causal relationships understanding.
Hence, our interaction techniques should support programmers in:

• Understanding the causal dependencies [ReqCausal]
• Backtracking the origin of a causal propagation, overcoming the

inconvenience of split code over files [ReqNoSplit]
• Visualizing transitions and states activations dynamically [Req-

DynamicCaus]

4.2 Design principles

The first design principle that we followed to fulfill [ReqCausal] is
to enable the programmer to make the y-ordering of lines of code
consistent with the expected execution ordering [DgnYRearrange].
Reordering is especially important when the programmer wants to
apprehend the multiplicity of execution paths due to uncontrolled
sequences of external events. It is important to note that reordering
only concerns the appearance of the program, not its actual source
code, and it does not change its semantics. The representations of
code change upon users’ request, and can be set back to the original
arrangement upon request.

The second design principle we followed to fulfill [ReqNoSplit]
is to bring together the causal relationships that are far away from
each other in the source code, including in the same file [Dgn-
Together]. This is especially important when coping with causal
relationships that reside in several code locations.

The third design principle is to take advantage of the text repre-
sentation and of the properties of visual variables from Semiology
of Graphics [5] to understand the code and its execution. Notably,
the first three interactions reorder the programming constructs to
display them like an imperative, y-ordered control-flow. Note that
the first design principle can be considered a special case of the third
one, but its importance deserves a proper principle [DgnVisVar].

Finally, the fourth design principle consists in using animations
to help the user apprehend the changes of the representations
[DgnAnim] [16, 60], especially for [ReqDynamicCaus]. We also
took into consideration the guidelines related to animation of lists,
as lines of codes can be considered as lists [60].

To the best of our knowledge, [DgnYRearrange] and [DgnTo-
gether] have never been identified and used in past work. [Dg-
nAnim] is not new, but has not been applied to code-to-code trans-
formation. [DgnVisVar] is not new [17], but has never been applied
to interaction code. Though following the same design principles,
the interaction techniques were not designed to be completely con-
sistent: our goal was to explore a design space and how well the
techniques would support program comprehension. Currently, the
interactions are implemented in a GUI that enables a programmer
to launch a Smala program and explore its source code with the
interactions. Even though the first three interactions may be avail-
able statically (e.g. without running the explored source code), our
implementation relies on the run-time initialization phase of the
tree of processes and the reflexive capabilities of the Smala exe-
cution engine. Only the fourth interaction relies on the run-time
execution. Relying on the execution engine enabled us to prototype
the interactions without implementing a static analyzer.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Causette: Rearrangement of Causal Constructs ICPC ’22, May 16–17, 2022, Virtual Event, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 2: Interaction 1. Reordering a data-flow: (a) the user clicks on the left of a connector, an animation inserts the upstream

data-flow construct (b) upon click on the new line, an animation inserts the next upstream construct (c) the user clicks on the

new line, the system animates the line up-and-down to specify that the beginning of the data-flow has been reached.

4.3 Interaction 1: reordering a data-flow

The first interaction technique provides the programmerwithmeans
to navigate inside a data-flow and display it like an imperative
control-flow. A use case is as follows. The programmer of a drone
ground station application is faced with an unexpected behavior
while testing interaction code: some text in the graphical interface
is not updated as it should be, which is likely the symptom of a
broken data-flow. The cause to be identified is a missing connector:
the speed of the drone model displayed in the view is not connected
to the corresponding data from the bus.

We designed an interaction technique to navigate the data-flow
(Figure 2): clicking on a variable on the left-hand side of a data-
flow construct summons an animated apparition of the upstream
construct that is connected to the said variable. The upstream con-
struct appears in a line of code just above the clicked construct. In
a recursive manner, the programmer can click on the summoned
lines to display further upstream constructs. If multiple sources are
connected on a property, they are all shown using a line each. If
there is nothing connected, a short animation quickly bounces the
clicked line up and down. Note that the summoned lines may come
from the current text file being edited but also from other files. In
this case, the source filename is appended to the right of the line as
a hyperlink that enables the programmer to jump to the code.

Step-by-step, the programmer is thus able to trace back the
absence of a causal construct that should have led to the activation
of the line of interest. In our example, we can see that there is
nothing connected to the property named plane.vp. As such, this
cannot be automatically identified as a mistake, since such behavior
could have been perfectly legitimate in some applications (in a
program, many properties are partially connected). The interaction
also works with downstream constructs by clicking on the right
side of the arrow, or on the declaration of a property. It is also
available for transitions in FSMs: one can explore the chain that
leads to or depart from a transition event.

Interaction 1 relies on three design principles to help understand
the data-flow: [DgnTogether], [DgnYArrange] and [DgnVisVar].
Compared to a "Jump to Reference" command in a traditional code
editor which completely changes the content of the window, or
at best provides a transient pop-up on top of the currently edited

window, the insertion above the lines being read keeps the con-
text in which the programmer tries to understand the code, and
displays the lines of code as if they were next to each other. The
resulting sequence of lines of code, perceptually ordered in the y-
dimension and x-aligned [17], is reminiscent of the sequence of lines
of code in an imperative language. However, here the y-dimension
of the source code is mapped to the causal relationships (reactive
language) instead of the program counter (imperative language),
while the x-alignment specifies that all lines belong to a same data-
flow (reactive) instead of control-flow (imperative). This makes the
causal chain directly visible. The same interaction technique makes
it easier to spot a wrong link in the data-flow: the programmer can
quickly identify a process wrongly connected to another one.

4.4 Interaction 2: reordering textual FSMs

In the example in Figure 1, the FSM has 7 states and 20 transitions.
It is thus difficult to apprehend the whole FSM code and understand
its behavior given a particular sequence of events. The use-case is
as follows: there is a suspicious, transient activation of the check-
LoopState state. The user wants to understand the causal events
that lead to this state, what the state is activating in turn, and what
causes its exiting. However, the current graphical state of the FSM
representation makes it difficult to visualize such a sequence as it
forces the user to look for the involved transitions and to hop from
a line to another in arbitrary directions.

We designed an interaction technique based on the reordering
of the elements of an FSM. The programmer can hover over a state,
which highlights with a green background the transitions that go
into or leave the state. S/he can then click on the state and see a
smooth, animated change of the layout of the transitions around
the clicked state, to make ’in’ transitions lie above the state, and
’out’ transitions lie below the state. She can continue exploring the
follow-up causal chains by clicking on another state, and see the
’in’ and ’out’ transitions move around it.

Interaction 2 relies on the same design principles as Interac-
tion 1, but applied to the causal chain related to FSMs (with states,
transitions, events) in lieu of data-flows (with variables and oper-
ators such as connectors, bindings or assignments). Similarly, the
resulting sequence of lines of code, ordered in the y-dimension
and x-aligned, is reminiscent of the sequence of lines of code in an

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICPC ’22, May 16–17, 2022, Virtual Event, USA Martin, Magnaudet and Conversy

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Interaction 3. Reordering an FSM given a path selection: (a) starting from a canonical graphical circle-arrow represen-

tation of an FSM, the user draws a path through states and transitions according to the causal chain she wants to explore; (b)

the system reorders and animates the circles and arrows; (c) the final layout is similar to the corresponding text representation.

Figure 4: Interaction 4. Showing in the text editor the activation of states and transitions during execution. (a) The FSM enters

state play idle, due to activation of the highlighted transition (b) The selected state moves to play hover (c) State play hover is
highlighted and changes in the history sidebars are updated.

imperative language, and allows a developer to better understand
the control-flow and its associated causal chain.

Navigation within FSMs and dataflows can be combined. One can
rearrange transitions around a state (interaction 2), and click on the
process to_check_loop that triggers a transition. . . (interaction 1):

check_state -> checkLoopState(to_check_loop)
. . . to summon the apparition of an upstream binding:
checkSound.t.end -> to_check_loop
check_state-> checkLoopState(to_check_loop)

4.5 Interaction 3: reordering graphical FSMs

The previous interaction techniques are a demonstration of how
text-based representations of interaction code could be re-arranged
to better follow the control-flow. The use-case from Interaction 2
was concerned with the understanding of the control-flow “around”
one particular state. Here the use-case is extended to multiple states.

A popular representation of FSMs relies on circles depicting
states and on arrows depicting transitions, annotated with the event
that fires a transition. Even if the two representations (“textual code”
and “circle-arrow”) seem different, we can smoothly transition from
one to another to adapt the view according to the task at hand.

We designed an interaction technique that rearranges the circle-
arrow representation (Figure 3). Starting from the circle-and-arrow
representation, the user draws a line that passes through states,

transitions and events. The users should specify their gesture ac-
cording to the particular sequence they want to analyze. After the
gesture has been performed, the system animates a rearrangement
of the circle-arrow representation. The final arrangement allows
the programmer to read from the top to the bottom the causal chain
involving a succession of states and events.

Again, such a representation provides the programmer with a
sequential reading of the code, which makes causal ordering salient.
Remarkably, the final circle-arrow representation is similar to the
textual one. This supports the hypothesis that graphical and textual
are not so different [17]): the visual representation reuses the assets
of the textual one, such as selectivity of the x-dimension (i.e. left
alignment [17]) and the ordered perception of the y-dimension to
depict the order of the control-flow.

4.6 Interaction 4: showing the dynamics of FSMs

The dynamic behavior of FSMs can be hard to understand. The use
case is a follows: on a GUI there is a displayed clock, coded with a
FSM, which should switch from clock to timer mode upon request
on a “play” button. But nothing happens. The programmer wants
to check whether the issue is a faulty transition. We designed an
animation that highlights the activation of states and transitions
during execution (see Figure 4). Each time an FSM enters some state,
the state is highlighted and the transition that activated it is both

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Causette: Rearrangement of Causal Constructs ICPC ’22, May 16–17, 2022, Virtual Event, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

highlighted and outlined. States might be declared remotely from
the declaration of the FSM itself, especially in an embedded FSM.
Therefore, the representation also connects the activated state (e.g.,
𝑝𝑙𝑎𝑦_ℎ𝑜𝑣𝑒𝑟) to the parent FSM (e.g.,𝑐𝑡𝑟𝑙) in which it is declared. As
time goes by during execution, the previous activated states and
transitions are denoted by horizontal sidebars that progressively
fade away and shrink towards the left (see Figure 4), much like a
vertical VU-meter in music players. The progressive fading gives
the user a sense of the history of activations. This representation
also shows whether a state or a transition has been activated at
least once. This is particularly useful when the transition between
states is very fast.

5 EVALUATION

We conducted a study to assess how much more usable would
Causette be compared to a traditional text editor. Due to the nature
of our research (facilitating some program understanding tasks),
we expected that it would be difficult to design a controlled exper-
iment that would be both statistically and practically significant.
We expected that measuring the time of completion of a program
understanding task would be highly dependent on inter-individual
differences. We thus followed the principles of Single-Subject Re-
search [45]. Single-Subject Research involves testing a small number
of participants and focusing intensively on the behavior of each
individual and measuring strong and consistent effects that have
biological or social importance [45]. In the following, we present
the results per-subject, instead of aggregated measures of multi-
ple subjects. To design the experiment and report on its results,
we followed the principles of Fair Statistical Communication in
HCI [20]. In particular, we asked quantitative research questions
when suitable, and we stated the effect size.

5.1 Research questions

We focused on the following research questions:
RQ1. How much would Causette facilitate the understanding of
causal structures in interaction code?
RQ2. How much would Causette make a difference when given a
complex “interactive bug”?
RQ3. How much would programmers benefit from insertion of
related code lines into the source code being analyzed compared to
common methods in text editors (e.g. ‘’‘find”, “jump to definition”)?

5.2 Participants

We recruited 10 participants. All of them were men (more on this
in section 6) and were of age 20-25, 1 of age 25-30, 4 of age 30-
40. They had at least an M.S in Computer Science or HCI, 3 hold a
Ph.D degree. Half of them had more than three years of professional
experience in interaction programmingwith Qt, Javascript or Swing.
All of them were proficient in Smala and were using Sublime Text
as an IDE. Sublime Text is a typical textual code editor, with features
such as those mentioned in RQ3.

5.3 Experimental design

We are aware of the challenges arising in the design of code compre-
hension tasks and existing work has helped us analyze the limits of
our own evaluation study [24]. Our experimental design is inspired

Figure 5: Air Traffic Control app used for the evaluation

by two papers that evaluate new features for IDEs, Theseus [38]
and CodeBubbles [8]. We thus conceived a set of tasks related to
code comprehension and debugging. We used the code of a real-size
application actually in use in Air Traffic Control (ATC). It consists
of a GUI that supports air traffic controllers in detecting a conflict
between two flights. The source code amounts to approximately
1,000 lines of Smala spread across 7 files.

Participants were given 6 tasks to complete in total (A to F),
those 6 tasks falling into 3 categories (dataflow, value, debug). We
designed the tasks within a category to be equivalent in terms of
difficulty.
• Dataflow comprehension questions (A-B): 2 tasks targeted

the understanding of dataflow and required the participants to
identify what could trigger the activation of a variable or what
the variable could activate down the causal chain.

• Value questions (C-D): 2 tasks asked what values a variable
could take.

• Complex comprehension and debugging tasks (E-F): Finally,
2 tasks involved a complex bug to fix. The tasks require a deeper
understanding of the overall behavior of the program.

E.Missing textual object:The task involved solving a dataflow
problem, where the value of the flight callsign was not correctly
connected to the textual property of the GUI. The error was a
property naming problem due to a former incorrect copy/paste.
F. Faulty alarm: The participant was asked to debug a FSM

in charge of the sound management of the application. That
FSM had an embedded FSM, with 20 transitions and 9 states. We
introduced an error in the code, by deleting one transition of the
FSM. As a consequence, the FSM ended up stuck in some state
𝑅𝑎𝑑𝑎𝑟𝐿𝑜𝑜𝑝𝑆𝑡𝑎𝑡𝑒 and an alarm kept ringing. Participants had to
figure that out and fix it.
There were 2 conditions: a control condition with the partici-

pants’ usual editor (here Sublime), and a condition with Causette.
Sublime is not a full-blown IDE, and we discuss the reasons of
choosing it for control condition in section 6. To facilitate within-
subjects comparison, each participant was assigned three (from
each category) tasks in the control condition and three tasks using
Causette. To counterbalance an order effect, half of the participants
completed all of their control tasks first, while the other half com-
pleted all of their Causette tasks first. The selection of the tasks
across categories was randomized.

Before the evaluation, each participant was given a 10 minutes
summary of the code: an overview of the architecture and the func-
tions of the app, and the ATC vocabulary to understand identifiers
in the code. The code itself did not include any comments. Once

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICPC ’22, May 16–17, 2022, Virtual Event, USA Martin, Magnaudet and Conversy

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

the participant had read the question and was ready to perform
the task, a timer was launched. All the interaction techniques were
available for each task. Up to seven minutes were allowed for each
of the A-B and C-D tasks, while fifteen minutes were allowed for
E-F tasks. When participants felt they completed the tasks, they
told us, we stopped the task, recorded the duration regardless of
the correctness of the answer, and asked for a confidence rate. Par-
ticipants were also able to give up a task if they felt they could
not perform it. If the timer reached the maximum allowed time,
we interrupted the task. In total, up to one hour was devoted to
the tasks. At the end of the experiment, we made the participants
fill a System Usability Scale (SUS) [11] questionnaire on Causette,
followed by a 30 minutes interview to get qualitative feedback.

Figure 6: Completion time for the first category of tasks

(dataflow questions), comparing control condition (Sublime)

and Causette condition. By default, the absence of a red sym-

bol means the answer is correct.

Figure 7: Completion time for the second category of tasks

(value questions), comparing control condition (Sublime) and

Causette condition.

Figure 8: Completion time for the third category of tasks (de-

bugging problems), comparing control condition (Sublime)

and Causette condition.

5.4 Results

The complete results of the study 2 include completion time, com-
pletion success, confidence rate and SUS score. Figures 6, 7, 8 shows
the completion time and completion success per participant for
each type of tasks and according to the two conditions.

2All data anonymously available here: https://doi.org/10.5281/zenodo.6396517

5.4.1 Effectiveness - Degree of achievement. The participants were
all able to correctly complete the tasks in the Causette condition.
This contrasts with the completion rate in the Control condition,
where many participants could not provide a correct answer or just
gave up. In particular, 9 participants out of 10 performed partially
correctly the dataflow tasks, as their answers were not exhaustive
(they did not mention all paths of the dataflow, and remarkably
all but S8 felt confident). Except S1, each participant at least made
an error or gave up in the Control condition. 4 participants could
not complete the debugging tasks (2 gave incorrect answers, and 2
gave up). This suggests that users are not completely effective with
a traditional code editor for these tasks, supporting our analysis
of the problems encountered by programmers. This also suggests
that our interaction techniques make users more effective than a
traditional code editor for all types of task.

Participantswere always confident in their answers in the Causette
condition. 4 of them (S3, S5, S6, S8) were not confident in some of
their answers in the Control condition.

5.4.2 Efficiency - Time of completion. Figure 9 represents the time
percentage gain per participant and task groups. Except S1 and S4
in debugging tasks, all participants perform their tasks faster in
Causette conditions.

Figure 9: Time percentage gain per participant and per task

groups when using Causette compared to Control (Sublime).

In the dataflow tasks, users were able to perform 93% faster with
Causette on average. In these tasks, users were only able to answer
partially, but we think that the time of completion is meaningful,
since they felt they have completed the tasks. Had they resumed
the tasks to find out all paths in the dataflow, they would have spent
even more time.

In the value tasks, users were able to perform 77% faster with
Causette on average.

The results of the debugging tasks are more contrasted. As a re-
minder, in the control condition, S1 performed better, S4 performed
equally, but two participants gave up and two gave incorrect an-
swers. S1 is slower with Causette in the debugging tasks. S1 told us
he was familiar with dataflow issues, and less familiar with FSMs
bugs, which could explain this outlier. S4 is as fast with Sublime
as with Causette. S4 told us he had been focusing on FSMs in his
code for two months before the experiment, which could explain
his proficiency with Sublime at finding bugs. Except for S1 and S4,
the 8 other participants performed faster with Causette. Ignoring
incorrect answers, only five participants (S2, S3, S5 S7 and S9) per-
formed significantly faster with Causette with respect to effect size.
S6, S8 and S10 performed faster with Causette but with a smaller
effect size.

8

https://doi.org/10.5281/zenodo.6396517

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Causette: Rearrangement of Causal Constructs ICPC ’22, May 16–17, 2022, Virtual Event, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

All in all, these results tend to suggest that Causette makes
programmers faster at fulfilling the dataflow and value tasks. It
may make them faster at debugging with a smaller time gain for
half of the participants.

5.4.3 Satisfaction. We gathered the SUS scores for Causette only. 7
out of 10 are higher than 90, the remaining 3 (S1, S6, S7) range from
62,5 to 72,5. S1, S6 and S7 thought that they may need the support
of a technical person to use Causette (score 3). S7 eventually stated
that he would be able to learn to use it quickly. S1 and S6 did not
feel very confident (score 3). S1 and S7 thought the system is not
well integrated (score 3). S6 did not think he would use it frequently.
We present Causette in this paper as a set of interactions, and not
as a system. If we polished the interactions as much as we could,
the system itself that embeds them is still not very usable. We
hypothesize that the comments of S1, S6 and S7 reflect the usability
of the system more than the interactions per se.

5.4.4 Internal validity assessment. We examined whether the de-
sign of our experiment exhibits any bias with respect to task equiv-
alence or order (see Figures 10, 11).

In the two conditions, the completion time means between A-B,
C-D and E-F tasks tend to confirm that the two tasks within each
three categories were of the same difficulty.

In the Causette condition, the order seems to have no effect.
There could be an order effect on the completion time of the Sublime
condition. It looks as if the use of Causette in a first place had a
positive impact on the performances in the Control conditions
for the data-flow and value tasks, while it is the opposite for the
debugging tasks. However, the computed average times involve
at most 3 values, even less when participants gave up or gave an
incorrect answer. It is thus difficult to be conclusive or to comment.

Figure 10: Condition ordering effect: completion timemeans

(upper figure) and answer incorrectness (lower figure) per

task in Sublime condition.

Figure 11: Condition ordering effect and completion time

means per task in Causette condition.

5.4.5 Qualitative results. After each session with a participant,
we conducted an interview to get qualitative feedback. Our three
research questions RQ1, RQ2, RQ3 target all of the tasks.

RQ1. How much would Causette facilitate the understanding of
causal structures in interaction code?

Participants mentioned that they felt Causette saved them time
to understand the dataflow (all the participants, except S6). The
reordering of the in- and out- transitions was also described as time
saving (S1, S4, S8, S10). S1 mentioned that he usually needs to draw
FSMs when he got confused about the transitioning between states.
Participants S1, S8, S10 pointed out that it was interesting to display
the current state of an FSM (in the real-time animation of the FSM)
instead of printing it in the console.

The issue about the declarative style of interaction code and how
it prevents easy causal understanding was brought up: “Because
what’s difficult is the declarative aspect, without logical links. You
can write it in any order you want.” (S8). S8 also developed an issue
for FSMs: “with nested FSMs, after a moment I’m lost in the file, and
having something that allows to put logical order between states
and transitions, that helps.”

A few participants mentioned that the tool helped them construct
or get quick access to a “mental picture” of the causal relationships:
“I don’t have to have a mind map all the time [...], there is no
need to make drawings.” (S4). Another finding was that 6 out of 10
participants underlined what they felt would be the main use of the
tool: to get into someone else’s code or one’s own former project.

The animated insertions were described as presenting the causal
relationships effectively. For the dataflow, participants mentioned
they felt reassured being provided with a guaranteed, exhaustive
list of sources and destinations (S1, S10, S3, S8, S4). S1 and S10 com-
mented on the fact that with a traditional editor, they usually feel
unsure whether they figured out completely the dataflow, and they
took time to check that the property under study is not dependent
on another file or is renamed somewhere else. Such comments are
consistent with the confidence rates we measured.

RQ2. How much would Causette make a difference when given
a complex “interactive bug”?

The two complex comprehension and debugging tasks were com-
mented by some participants as really reminiscent of the problems
they usually face. Several comparisons and equivalent use cases
were provided. S3 said “it reminds me of many cases [...] : I was
creating my graphical objects, but they were aligned at the top left
of my interface, and it took me time to understand that I had not
initialized their length and height”.

In the debugging task, S5 said he could have answered the last
task he gave up in control condition, seeing clearly that the FSM
was stuck in a state, but he got tangled up in staying focused on the
wrong state. S4 and S7 elaborated on that aspect, saying the FSM
animations are useful to locate which state it is blocked in. They
found the real time animation and the history bar even more useful
“to really see it”. S1, S4, S5, S6 found that reordering FSMs make
transition errors more salient.

RQ3. How much would programmers benefit from insertion of
related code lines into the source code being analyzed?

First, participants brought up that Causette avoids navigating
at length: “with the tool we avoid unnecessary navigation. When
you use diverse “find” functions, you often end up having too many

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICPC ’22, May 16–17, 2022, Virtual Event, USA Martin, Magnaudet and Conversy

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

occurrences” (S4). This could be supported by the difference in
response time we found. Comparisons with search functions in dif-
ferent IDEs were often conducted, to the point where Causette was
described as a “super fast search tool” (S5). S2, S3, S4, S5 and S8 liked
the simplicity of the triggering of the animated insertion, because it
avoided the use of a menu. As one of our participants commented,
the interactions involving line insertions might look unusual in
the beginning, but it seems easy to get into the habit. Since code is
rearranged, it is worth noting users may be disorientated. This was
mentioned by one participant: “I clicked unintentionally, and I had
trouble finding myway around, I didn’t knowwhat I had clicked on”
(S9). This is especially true in interactions with FSMs as the layout
may end up very different from the initial arrangement. We used
animations to mitigate this aspect. We also provided an "original
view" button to get the layout back to its original form. As for the
FSM, the real-time animation was appreciated but the reordered
FSM animation was also found useful. S1 who liked the graphical
FSM underlined that the reordered FSM was very interesting.

6 THREATS TO VALIDITY

Participants. The number of participants in the experiment is low,
and they are all men. We could not avoid this sample bias, as the
users of the Smala language happen to be men. Still, we do not have
any plausible hypothesis about the effect of genre on the results of
the experiments. As noted by Feitelson [24], the effect of genre is
not clear and requires further investigation.

Size of code. The application used during the evaluation is 1,000
lines of code only. One can wonder if the interaction techniques
would scale to larger code bases. 1,000 lines seem small, but they
are written in a specialized, interaction-oriented programming lan-
guage which is expressive and should not be compared to the size
of code written in a general-purpose language such as Java. Still,
the FSM of the example has a moderate complex behavior. Scaling
up the number of states to a dozen would make it more difficult to
perform interaction 3. Besides, our representations have limits: for
example, Interaction 1 and 2 only display one causal chain at a time,
and do not allow exploring multiple chains simultaneously. But
the control condition does not facilitate exploring one causal chain
only neither, and we think that it would scale even more badly, as
one would have to navigate more files with longer causal chains.

Tasks. The tasks only partially represent the programming ac-
tivity. We are aware that the evaluation has limits and should be
complemented with other experiments. In particular, tasks A-B and
C-D where the results were the most in favor of Causette, may
seem idiosyncratic. However, the tasks represent a typical problem
encountered by programmers of interactive programs. We designed
the interactions to support solving those problems, hence it is not
surprising that the evaluation suggests that Causette offers support.
Nevertheless, it had to be demonstrated.

Control condition.The choice of a limited set of Sublime Text
interactions as the control condition is disputable. Causette is a set
of interaction techniques that may have been compared to those
of a full-featured IDE. Still, we left the participants choose the
Sublime Text interactions they use in their real-world activities. In
particular, one can debug program with Sublime Text. However,
such a debugger is of little help for the interaction code problems.

Understanding. A general pitfall of comprehension evalua-
tion [24] applies to our work: does the study actually tell something
about comprehension? It could turn out that some participants, es-
pecially for task A-B and C-D, found the correct answers about
the causal chains in code, without properly understanding them.
Addressing that issue would require further investigation.

Reading/Writing. Finally, the study suggests that Causette
support code reading, but not code writing. Since developers read
10 times more code than they write [24, 41], our results suggest
that at least Causette could be useful. Further work is needed to
assess whether Causette could support code writing.

Generalizability. The interactions may be too specialized to
the particular language we used. Some languages or toolkits pro-
vide some of Smala’s features e.g. Qt’s signal/slot, JavaFX binding,
SwingState’s FSMs. We think that most of the interactions could be
applied to these features e.g. navigating the chain of signal/slots in
Qt or SwingState’s FSMs. However, this necessitates appropriate
analysis and introspection tools. For example, one could use the
Qt’s MetaObject system to gather dependency information, and use
the API provided by some text editors to insert the upstream and
downstream signal/slots where a particular connection is created in
the code. Similarly, the QML or SwingStates run-times could record
the parameters of the transitions and inform Causette. With this, it
would be possible to adapt Causette interactions to an editor of Qt
code: clicking on 𝑜𝑏 𝑗𝑒𝑐𝑡1.𝑠𝑖𝑔𝑛𝑎𝑙 in this line of code. . . :

object1.signal.connect(object2.slot)
. . . could summon the apparition of an upstream construct above:
object0.signal.connect(object1.slot)
object1.signal.connect(object2.slot)
Similarly, since QML and Swingstates provide explicit FSMs

syntaxes, an editor of such languages could rearrange the order of
transitions as in interaction 2.

7 CONCLUSION AND FUTUREWORK

We presented Causette, a set of four interaction techniques for a
textual and graphical code editor. The interactions rearrange and
animate textual code in a way that makes the causal relationships
more understandable. An evaluation with professional program-
mers suggests that Causette may be more usable than a regular
text editor for some interaction programming tasks. This work indi-
cates that rearranging interaction code may help developers better
understand and fix it. This work can be continued by exploring
unanswered questions on scalability, generalization, disorientation,
and ecological validity. Instead of running another controlled ex-
periment, we plan to provide our participants with a better, more
robust, and more integrated version of our tool and observe its use
in practice during a longitudinal study. This should also provide us
with new insights on how to best support interaction programmers.

ACKNOWLEDGMENTS

We thank our participants and colleagues for their advices and com-
ments. This work was partly supported by the French « Programme
d’Investissements d’avenir » ANR-17-EURE-0005 conducted by
ANR and by Agence de l’Innovation de Défense.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Causette: Rearrangement of Causal Constructs ICPC ’22, May 16–17, 2022, Virtual Event, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES

[1] Caroline Appert and Michel Beaudouin-Lafon. 2006. SwingStates: Adding State
Machines to the Swing Toolkit. In Proceedings of the 19th Annual ACM Symposium
on User Interface Software and Technology (Montreux, Switzerland) (UIST ’06).
Association for Computing Machinery, New York, NY, USA, 319–322. https:
//doi.org/10.1145/1166253.1166302

[2] Caroline Appert and Michel Beaudouin-Lafon. 2008. SwingStates: Adding state
machines to the swing toolkit. In UIST 2006: Proceedings of the 19th Annual ACM
Symposium on User Interface Software and Technology. https://doi.org/10.1145/
1166253.1166302

[3] Gérard Berry. 2000. The Foundations of Esterel. In Proof, Language and Interaction:
Essays in Honour of Robin Milner, C. Stirling G. Plotkin and M. Tofte (Eds.). MIT
Press.

[4] Gérard Berry and Manuel Serrano. 2020. HipHop.Js: (A)Synchronous Reac-
tive Web Programming. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA, 533–545.
https://doi.org/10.1145/3385412.3385984

[5] Jacques Bertin. 1983. Semiology of Graphics. University of Wisconsin Press.
[6] Alan Blackwell and Thomas Green. 2003. Chapter 5 - Notational Systems - The

Cognitive Dimensions of Notations Framework. In HCI Models, Theories, and
Frameworks, John M. Carroll (Ed.). Morgan Kaufmann, San Francisco, 103–133.
https://doi.org/10.1016/B978-155860808-5/50005-8

[7] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code bubbles: Rethinking the user interface paradigm of integrated
development environments. In Proceedings - International Conference on Software
Engineering. https://doi.org/10.1145/1806799.1806866

[8] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
Laviola. 2010. Code bubbles: A working set-based interface for code understand-
ing and maintenance. In Conference on Human Factors in Computing Systems -
Proceedings. https://doi.org/10.1145/1753326.1753706

[9] Alexander Breckel and Matthias Tichy. 2016. Embedding programming context
into source code. In IEEE International Conference on Program Comprehension.
https://doi.org/10.1109/ICPC.2016.7503732

[10] Victor Bret. 2012. Learnable Programming–Designing a programming system
for understanding programs. http://worrydream.com/LearnableProgramming.
http://worrydream.com/LearnableProgramming Accessed: 2021-08-20.

[11] John Brooke. 1986. SUS: A ‘Quick and Dirty’ Usability Scale. In Usability
Evaluation In Industry, McClelland A.L. Jordan P.W., Thomas B, Weerdmeester
B.A. (Ed.). Taylor and Francis, London.

[12] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pa-
terson, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements
in Code Reading: Relaxing the Linear Order. In IEEE International Conference on
Program Comprehension. https://doi.org/10.1109/ICPC.2015.36

[13] Stéphane Chatty. 1994. Extending a Graphical Toolkit for Two-Handed In-
teraction. In Proceedings of the 7th Annual ACM Symposium on User Inter-
face Software and Technology (Marina del Rey, California, USA) (UIST ’94). As-
sociation for Computing Machinery, New York, NY, USA, 195–204. https:
//doi.org/10.1145/192426.192500

[14] Stéphane Chatty. 2008. Programs = data + algorithms + architecture: Conse-
quences for interactive software engineering. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). https://doi.org/10.1007/978-3-540-92698-6_22

[15] Fanny Chevalier, Pierre Dragicevic, Anastasia Bezerianos, and Jean Daniel Fekete.
2010. Using text animated transitions to support navigation in document histories.
In Conference on Human Factors in Computing Systems - Proceedings. https:
//doi.org/10.1145/1753326.1753427

[16] Fanny Chevalier, Nathalie Henry Riche, Catherine Plaisant, Amira Chalbi, and
Christophe Hurter. 2016. Animations 25 Years Later: New Roles and Oppor-
tunities. In Proceedings of the International Working Conference on Advanced
Visual Interfaces, AVI 2016, Bari, Italy, June 7-10, 2016, Paolo Buono, Rosa
Lanzilotti, Maristella Matera, and Maria Francesca Costabile (Eds.). ACM, 280–
287. https://doi.org/10.1145/2909132.2909255

[17] Stéphane Conversy. 2014. Unifying textual and visual: A theoretical account of
the visual perception of programming languages. In Onward! 2014 - Proceedings
of the 2014 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Part of SPLASH 2014. https://doi.org/
10.1145/2661136.2661138

[18] Michael Desmond, Margaret Anne Storey, and Chris Exton. 2006. Fluid source
code views. In IEEE International Conference on Program Comprehension. https:
//doi.org/10.1109/ICPC.2006.24

[19] Martin Dias, Diego Orellana, Santiago Vidal, Leonel Merino, and Alexandre
Bergel. 2020. Evaluating a visual approach for understanding javascript source
code. In IEEE International Conference on Program Comprehension. https://doi.
org/10.1145/3387904.3389275

[20] Pierre Dragicevic. 2016. Fair Statistical Communication in HCI. In Modern
Statistical Methods for HCI. Springer, 291 – 330. https://doi.org/10.1007/978-3-
319-26633-6_13

[21] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse: Ani-
mating from markup code to rendered documents and vice versa. In UIST’11 -
Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology. https://doi.org/10.1145/2047196.2047229

[22] Niklas Elmqvist and Philippas Tsigas. 2003. Causality visualization using an-
imated Growing Polygons. In Proceedings - IEEE Symposium on Information
Visualization, INFO VIS. https://doi.org/10.1109/INFVIS.2003.1249025

[23] Niklas Elmqvist and Philippas Tsigas. 2003. Growing Squares: Animated Vi-
sualization of Causal Relations. In Proceedings of ACM Symposium on Software
Visualization.

[24] Dror G. Feitelson. 2021. Considerations and Pitfalls in Controlled Experiments
on Code Comprehension. In IEEE International Conference on Program Compre-
hension. https://doi.org/10.1109/ICPC52881.2021.00019 arXiv:2103.08769

[25] Pascal Goffin, Wesley Willett, Jean Daniel Fekete, and Petra Isenberg. 2014. Ex-
ploring the placement and design of word-scale visualizations. IEEE Transactions
on Visualization and Computer Graphics (2014). https://doi.org/10.1109/TVCG.
2014.2346435

[26] T.R.G. Green and M. Petre. 1992. When Visual Programs are Harder to Read than
Textual Programs. Human-Computer Interaction: Tasks and Organisation (1992).

[27] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The
Synchronous Data Flow Programming Language LUSTRE. Proc. IEEE 79, 9 (1991),
1305–1320.

[28] R. Jacob. 1996. A visual language for non-WIMP user interfaces. Proceedings
1996 IEEE Symposium on Visual Languages (1996), 231–238.

[29] Ahmad Jbara. 2020. SimplyHover: Improving comprehension of else statements.
In IEEE International Conference on Program Comprehension. https://doi.org/10.
1145/3387904.3389297

[30] Ahmad Jbara and Dror G. Feitelson. 2014. On the effect of code regularity on
comprehension. In 22nd International Conference on Program Comprehension,
ICPC 2014 - Proceedings. https://doi.org/10.1145/2597008.2597140

[31] Alan C. Kay. 1993. The Early History of Smalltalk. SIGPLAN Not. 28, 3 (March
1993), 69–95. https://doi.org/10.1145/155360.155364

[32] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A debugging
interface for asking questions about program behavior. In Conference on Human
Factors in Computing Systems - Proceedings.

[33] Andrew J. Ko and Brad A. Myers. 2008. Debugging reinvented: Asking and
answering why and why not questions about program behavior. In Proceedings
- International Conference on Software Engineering. https://doi.org/10.1145/
1368088.1368130

[34] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on Software Engineering
(2006). https://doi.org/10.1109/TSE.2006.116

[35] P. J. Landin. 1966. The next 700 Programming Languages. Commun. ACM 9, 3
(March 1966), 157–166. https://doi.org/10.1145/365230.365257

[36] Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability
questions. In Proceedings - International Conference on Software Engineering.
https://doi.org/10.1145/1806799.1806829

[37] Catherine Letondal, Stéphane Chatty, W Greg Phillips, and Fabien André. 2010.
Usability requirements for interaction-oriented development tools. In PPIG.

[38] Tom Lieber, Joel Brandt, and Robert C. Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Conference on Human
Factors in Computing Systems - Proceedings. https://doi.org/10.1145/2556288.
2557409

[39] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing Misconceptions
about Code with Always-on Programming Visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA,
2481–2490. https://doi.org/10.1145/2556288.2557409

[40] Mathieu Magnaudet, Stephane Chatty, Stephane Conversy, Sebastien Leriche,
Celia Picard, and Daniel Prun. 2018. Djnn/smala: A conceptual framework and
a language for interaction-oriented programming. Proceedings of the ACM on
Human-Computer Interaction (2018). https://doi.org/10.1145/3229094

[41] Robert C. Martin. 2014. Clean Code - A Handbook of Agile Software Craftmanship.
arXiv:arXiv:1011.1669v3

[42] Microsoft. 2013. CodeLens. https://docs.microsoft.com/en-us/visualstudio/ide/
find-code-changes-and-other-history-with-codelens?view=vs-2022

[43] RobertoMinelli, AndreaMocci, Romain Robbes, andMichele Lanza. 2016. Taming
the IDE with fine-grained interaction data. In IEEE International Conference on
Program Comprehension. https://doi.org/10.1109/ICPC.2016.7503714

[44] D. Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering 35, 6 (2009), 756–779. https://doi.org/10.1109/TSE.2009.67

[45] David L. Morgan and Robin K. Morgan. 2017. Single-Case Research Methods for
the Behavioral and Health Sciences. In Research Methods in Psychology. https://

11

https://doi.org/10.1145/1166253.1166302
https://doi.org/10.1145/1166253.1166302
https://doi.org/10.1145/1166253.1166302
https://doi.org/10.1145/1166253.1166302
https://doi.org/10.1145/3385412.3385984
https://doi.org/10.1016/B978-155860808-5/50005-8
https://doi.org/10.1145/1806799.1806866
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1109/ICPC.2016.7503732
http://worrydream.com/LearnableProgramming
http://worrydream.com/LearnableProgramming
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1145/192426.192500
https://doi.org/10.1145/192426.192500
https://doi.org/10.1007/978-3-540-92698-6_22
https://doi.org/10.1145/1753326.1753427
https://doi.org/10.1145/1753326.1753427
https://doi.org/10.1145/2909132.2909255
https://doi.org/10.1145/2661136.2661138
https://doi.org/10.1145/2661136.2661138
https://doi.org/10.1109/ICPC.2006.24
https://doi.org/10.1109/ICPC.2006.24
https://doi.org/10.1145/3387904.3389275
https://doi.org/10.1145/3387904.3389275
https://doi.org/10.1007/978-3-319-26633-6_13
https://doi.org/10.1007/978-3-319-26633-6_13
https://doi.org/10.1145/2047196.2047229
https://doi.org/10.1109/INFVIS.2003.1249025
https://doi.org/10.1109/ICPC52881.2021.00019
https://arxiv.org/abs/2103.08769
https://doi.org/10.1109/TVCG.2014.2346435
https://doi.org/10.1109/TVCG.2014.2346435
https://doi.org/10.1145/3387904.3389297
https://doi.org/10.1145/3387904.3389297
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1145/155360.155364
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/1806799.1806829
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/3229094
https://arxiv.org/abs/arXiv:1011.1669v3
https://docs.microsoft.com/en-us/visualstudio/ide/find-code-changes-and-other-history-with-codelens?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/find-code-changes-and-other-history-with-codelens?view=vs-2022
https://doi.org/10.1109/ICPC.2016.7503714
https://doi.org/10.1109/TSE.2009.67
https://opentext.wsu.edu/carriecuttler/chapter/overview-of-single-subject-research/
https://opentext.wsu.edu/carriecuttler/chapter/overview-of-single-subject-research/

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICPC ’22, May 16–17, 2022, Virtual Event, USA Martin, Magnaudet and Conversy

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

opentext.wsu.edu/carriecuttler/chapter/overview-of-single-subject-research/
[46] Brad A. Myers. 1991. Separating application code from toolkits: Eliminating the

Spaghetti of call-backs. In Proceedings of the 4th Annual ACM Symposium on User
Interface Software and Technology, UIST 1991.

[47] Brad A. Myers. 2013. Improving program comprehension by answering questions
(keynote). In IEEE International Conference on Program Comprehension. https:
//doi.org/10.1109/ICPC.2013.6613827

[48] Brad A. Myers, Dario Giuse, AndrewMickish, Brad Vander Zanden, David Kosbie,
Richard McDaniel, James Landay, Matthew Goldberg, and Rajan Pathasarathy.
1994. The garnet user interface development environment. In Conference on
Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/
259963.260472

[49] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew
Faulring, and Bruce D. Kyle. 1997. The amulet environment: New models for
effective user interface software development. IEEE Transactions on Software
Engineering (1997). https://doi.org/10.1109/32.601073

[50] Brad A. Myers, John F. Pane, and Andy Ko. 2004. Natural programming languages
and environments. https://doi.org/10.1145/1015864.1015888

[51] Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: A language and
environment for expressing interface behavior. In UIST 2014 - Proceedings of
the 27th Annual ACM Symposium on User Interface Software and Technology.
https://doi.org/10.1145/2642918.2647358

[52] Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What drives the reading
order of programmers? an eye tracking study. In IEEE International Conference
on Program Comprehension. https://doi.org/10.1145/3387904.3389279

[53] Martin Pinzger, Katja Gräfenhain, Patrick Knab, and Harald C. Gall. 2008. A
tool for visual understanding of source code dependencies. In IEEE International
Conference on Program Comprehension. https://doi.org/10.1109/ICPC.2008.23

[54] Darrell R Raymond. 1991. Reading source code. Proc. CASCON (1991).
[55] Steven P. Reiss, Jared N. Bott, and Joseph J. Laviola. 2012. Code bubbles: A

practical working-set programming environment. In Proceedings - International
Conference on Software Engineering. https://doi.org/10.1109/ICSE.2012.6227235

[56] Steven P. Reiss and Alexander Tarvo. 2013. Tool demonstration: The visualiza-
tions of code bubbles. In 2013 1st IEEE Working Conference on Software Visual-
ization - Proceedings of VISSOFT 2013. https://doi.org/10.1109/VISSOFT.2013.
6650521

[57] Wesley C. Salmon. 1984. Scientific Explanation and the Causal Structure of the
World. Princeton University Press.

[58] Guido Salvaneschi and Mira Mezini. 2016. Debugging for reactive programming.
In Proceedings - International Conference on Software Engineering. https://doi.
org/10.1145/2884781.2884815

[59] Guido Salvaneschi and Mira Mezini. 2016. Debugging reactive programming
with reactive inspector. In Proceedings - International Conference on Software
Engineering. https://doi.org/10.1145/2889160.2893174

[60] Céline Schlienger, Stéphane Conversy, Stéphane Chatty, Magali Anquetil, and
Christophe Mertz. 2007. Improving Users’ Comprehension of Changes with
Animation and Sound: An Empirical Assessment, Vol. 4662. 207–220. https:
//doi.org/10.1007/978-3-540-74796-3_20

[61] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions program-
mers ask during software evolution tasks. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. https://doi.org/10.1145/
1181775.1181779

[62] Dong Bach Vo, Kristina Lazarova, Helen C. Purchase, andMarkMcCann. 2020. Vi-
sual Causality: Investigating Graph Layouts for Understanding Causal Processes.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-
030-54249-8_26

[63] Anneliese Von Mayrhauser and A. Marie Vans. 1997. Program understanding
behavior during debugging of large scale software. In Papers Presented at the
7th Workshop on Empirical Studies of Programmers, ESP 1997. https://doi.org/10.
1145/266399.266414

[64] Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Programming from
First Principles. SIGPLAN Not. 35, 5 (May 2000), 242–252. https://doi.org/10.
1145/358438.349331

12

https://opentext.wsu.edu/carriecuttler/chapter/overview-of-single-subject-research/
https://doi.org/10.1109/ICPC.2013.6613827
https://doi.org/10.1109/ICPC.2013.6613827
https://doi.org/10.1145/259963.260472
https://doi.org/10.1145/259963.260472
https://doi.org/10.1109/32.601073
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/2642918.2647358
https://doi.org/10.1145/3387904.3389279
https://doi.org/10.1109/ICPC.2008.23
https://doi.org/10.1109/ICSE.2012.6227235
https://doi.org/10.1109/VISSOFT.2013.6650521
https://doi.org/10.1109/VISSOFT.2013.6650521
https://doi.org/10.1145/2884781.2884815
https://doi.org/10.1145/2884781.2884815
https://doi.org/10.1145/2889160.2893174
https://doi.org/10.1007/978-3-540-74796-3_20
https://doi.org/10.1007/978-3-540-74796-3_20
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1007/978-3-030-54249-8_26
https://doi.org/10.1007/978-3-030-54249-8_26
https://doi.org/10.1145/266399.266414
https://doi.org/10.1145/266399.266414
https://doi.org/10.1145/358438.349331
https://doi.org/10.1145/358438.349331

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interaction programming and causality
	2.2 Augmenting textual code in IDEs
	2.3 Code representation and animation

	3 The Smala language
	4 Interaction techniques
	4.1 Requirements
	4.2 Design principles
	4.3 Interaction 1: reordering a data-flow
	4.4 Interaction 2: reordering textual FSMs
	4.5 Interaction 3: reordering graphical FSMs
	4.6 Interaction 4: showing the dynamics of FSMs

	5 Evaluation
	5.1 Research questions
	5.2 Participants
	5.3 Experimental design
	5.4 Results

	6 Threats to validity
	7 Conclusion and Future Work
	Acknowledgments
	References

