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Causette: User-Controlled Rearrangement of Causal Constructs
in a Code Editor
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Stéphane Conversy

Figure 1: Interaction 2. Reordering FSMs: (a) The user hovers over on a declaration of a state (blue) which highlights the in and

out transitions (green); (b) the user clicks on the state, and the system animates a rearrangement of the transitions; (c) the new

y-ordering of the statements matches the causal relationships being analyzed (in-transitions above state above out-transitions).

ABSTRACT

Programming interaction usually involves specifying causal rela-
tionships such as input events triggering a state change or the
propagation of values. Such code may reside in several locations
and its execution is driven by multiple causal chains, which hinders
the programmer’s ability to understand and fix it. We designed
Causette, a set of four novel interaction techniques for a code editor.
They consist in rearranging causal constructs on demand to make
the code representation consistent with the causal chain being ana-
lyzed by the user. We ran an experiment showing that Causette may
be more usable than a regular editor for some code understanding
tasks. This work suggests that rearranging interaction code may
help developers better understand and fix it.

CCS CONCEPTS

• Human-centered computing → Visualization toolkits; User
interface programming; • Software and its engineering →
Development frameworks and environments.
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Interaction programming, code visualization, causality
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1 INTRODUCTION

Programmers of interactive systems e.g. Graphical User Interfaces
that react to input events from the keyboard, the mouse, or the
touchscreen, face specific challenges due to the interrelated be-
havior of numerous components and uncontrolled, unpredictable
flow of external events [37]. A number of textual programming
languages provide dedicated language constructs to tackle the com-
plexity of writing interactive programs. Some of them propose
reactive constructs that avoid the need to write code for updating
outputs when the inputs of a computation change [64]. Others
use traditional object-oriented constructs to describe state-based
behavior [1]. Conceptual frameworks, syntaxes and tools have
been proposed for user interface development [49], natural pro-
gramming [50], interaction-oriented programming [40], or web
programming [4]. Still, most approaches rely on code split over dif-
ferent source files, each dedicated to the description of interactive
behavior at a local level. This breakdown hinders the program-
mer’s ability to understand interactive behavior. As a consequence,
interaction code is hard to debug and maintain.
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The problem: understanding causality

We believe that developers should be able to follow and under-
stand the causal chains to assess whether the code of an interac-
tion will behave correctly. Following the philosopher of science
W. Salmon [57], we take causality as a spatio-temporal process
involving the transmission of “information, structure and causal
influence”. We consider that two processes A and B have a causal
relationship if A always precedes B and B occurs every time A oc-
curs. In other words, “causality” means that the execution of a piece
of code follows the occurrence of an input event. Causal chains are
a set of elementary causal relationships that form a chain.

General-purpose and interaction-oriented programming lan-
guages provide programmerswith "causal programming constructs"
i.e. syntactic expressions that establish a particular causality be-
tween two pieces of code. Some of Java Swing, Qt, SwingStates [2]
or QML APIs and syntaxes can be considered as causal constructs.
With Java Swing, the registering of a listener callback is a causal
construct expressed with source.addListener(listener). With
Qt, the connection between a signal and a slot is expressed with ob-
ject1.signal.connect(object2.slot). With SwingStates, the
transition between two states is expressed with Transition t
= new PressOnShape(BUTTON1, "»menuOn") while with QML
a transition is expressed with DSM.SignalTransition {target-
State:finalState signal:button.clicked}. In Smala[40], the
binding between the activation of two processes is expressed with
p1->p2, an assignment with p1=:p2, a dataflow with p1=>p2 and
a transition with s1->s2(event).

Such causal constructs may have been defined by a programmer
with the same source or destination, over multiple code locations.
They thus implicitly form a "causal chain". The challenge we tackled
here is the programmer’s ability to understand such causal chains.
Since interaction is by nature dependent on external events that
might occur in any order, understanding an FSM requires taking
into account multiple causal chains. Similarly, to understand a data-
flow of connected components, developers must follow the flow of
data across multiple code locations. Few tools have addressed these
difficulties in past work.

Causette

Our goal is to better support programmers when they seek to under-
stand the causal chains involved in interactive programs. Here we
introduce Causette1, a set of interaction techniques and representa-
tions of textual code. With Causette, a programmer is notably able
to bring together the causal relationships that are far away from
each other in the source code, with a visual ordering consistent
with the conceptual causal order (see fig. 1). Our contributions are:

(1) The elicitation of four design principles (4.2) we relied upon to
design four interactions (4) that rearrange interaction code rep-
resentations to support some interaction programming tasks;

(2) The demonstration of the interactions in relevant scenarios (4);
(3) The evaluation of the interactions with a semi-controlled ex-

periment with 12 professional programmers (5).

1Causette is a pun from the French given name Cosette spelled like Causality, and
evoking “*-et” HCI terms such as “widget” or “applet”.

2 RELATEDWORK

We first introduce the terminology we use. As much as functional
programming is about programming functions that run within a
program that compute results [35], interaction programming is
about programming interactions that run within an interactive
program i.e. that reacts to external events such as human input or
network data reception. Interaction code is the code devoted to the
description of interactive programs. Similarly, as much as object-
oriented programming [31] languages have been designed to suit
the programming of “objects”, interaction-oriented [37] program-
ming languages and frameworks [14, 37, 48] have been designed
to suit the programming of “interactions”. Causette is informed
by research in three areas: interaction programming and causality,
augmenting textual code, and code representation and animation.

2.1 Interaction programming and causality

In the field of interaction-oriented programming, the causal chal-
lenges related to interaction code have been pointed out [14, 37, 47,
48], but few tools have addressed it. TheWhyLine debugger [32, 33]
provides developers with answers to a why?-question regarding
a phenomenon they perceive on a user interface i.e. a causality
question. Outside the scope of interaction programming, many
papers have studied developers’ needs, particularly when debug-
ging [36, 61, 63] and proposed new debugging methods, notably
in the field of functional reactive programming [58, 59]. However,
few of them have been focusing on the debugging of interaction-
oriented programs or causal relationships. Aside the field of pro-
gramming, some work in information visualization have studied the
representation of causality. This includes the exploration of graphs
and diagrams to visualize causality [22, 23, 62], applied to statistics
or to the modelling of distributed systems. However, typical graph
layouts may not be appropriate to follow the control flow of an
application, as they force the readers to visually hop from node to
node in arbitrary directions. Those limits have been addressed by
tools like DA4Java [53] for Java source code. To make the graph
more readable, a set of features allows to incrementally compose
graphs and remove irrelevant nodes and edges from graphs.

2.2 Augmenting textual code in IDEs

Several issues with program understanding motivate work on tex-
tual code augmentation. One issue is related to file-based IDEs. The
literature points out how IDEs lack effective support to browse
complex relationships between source code elements. Developers
are often forced to exploit multiple user interface components at
the same time [34], making the IDE “chaotic” [43]. To prevent time-
consuming navigation between files, CodeBubbles [7, 8, 55, 56]
offers an integrated development environment for Java. With Code-
Bubbles, programmers can build working sets composed of code
fragments (like methods, small classes, notes, documentation, etc.),
displayed in a separate bubble or lightweight window. Programmers
can rearrange the layout of the bubbles to create a logical context.
VSCode offers a functionality called CodeLens [42]: an actionable
contextual information interspersed (from different files) in the
edited code. It differs from Causette in terms of interaction tech-
nique (pop-up window), type of information (e.g. editing history)
and targeted code (imperative code). In the same line of thought, to
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overcome the limits of navigation in IDEs, Hunter [19] is a tool for
the visualization of JavaScript applications that provides a set of
coordinated views that include a node-link diagram that depicts the
dependencies among the components of a system, and a treemap
that helps programmers to orientate when navigating its structure.

We used a different strategy to bring related chunks of code
closer, by inserting “remote” code into the currently edited one.
Similarly, “code portals” [9] embed various types of context infor-
mation uniformly into the main source code view in proximity to
the relevant source code. “Fluid source code views” [18] consists of
insertions of relevant remote lines of code in the edited file. The
aim is to provide the programmer with the control and data flow di-
rectly in the edited code, and thereby minimizing navigation. But it
is applied to object-oriented programming and relies on displaying
hierarchies of methods. SimplyHover [29] is a plug-in for Eclipse
that brings the “if” condition next to its “else” counterpart.

Theseus is an IDE extension that visualizes the run-time be-
havior of a program within a code editor by displaying real-time
information about how the code actually behaves during execu-
tion [39]. It provides the programmer with the number of calls of
a particular function and a collapsible tree of calls. Like Causette,
Theseus augments the textual code being edited, by displaying the
number of calls to the left of the function header. By contrast, we
target another type of information: the causal activation chain. We
also focused on state activations in an FSM, but used a quantita-
tive representation of activation recency instead of a numerical
representation of the number of calls. We took Theseus evaluation
method as inspiration for the evaluation of Causette.

2.3 Code representation and animation

Causette builds upon previous work about graphical code repre-
sentations. For example, InterState [51] is a programming language
and environment that supports developers in writing and reusing
user interface code. InterState mixes texts and graphics to represent
interactive behaviors using a combination of FSMs and constraints.
It also provides programmers with a visual notation to facilitate
code navigation and understanding. SwingStates [2] makes a clever
use of Java anonymous inner classes to describe FSMs. However,
the specification of the interactions is done at a local level, and
SwingStates does not offer support for understanding causal chains.

From a more theoretical standpoint, source code shares a lot with
a text to be read [54]. There is a distinction made in the literature
between textual and visual information. But it is not clear-cut and
it is not obvious to favor the latter or the former. Visual programs
can even be harder to read than textual programs [26]. The cogni-
tive dimensions of notation is a framework that helps designers
analyze interactive tools, including programming environments
and languages, may they be textual or graphical [6]. The Physics
of Notations framework focuses on the properties of graphical no-
tations [44]. Unifying textual and visual languages shows that both
types have much in common and that both should rely on the ca-
pability of the human visual system [17]. More recent work on
code reading is relevant to Causette. There have been studies on
the way programmers read natural language text and code. Some
results indicate that code reading is less linear [12, 52] than prose
reading because programmer focus on the program execution flow,

or that code regularity (same structures repeated time after time)
reduces code reading complexity [30]. The effect of ordering on
comprehension has been studied [30], with a focus on the ordering
of methods. It motivates design principles for Causette, in the sense
that it invites to support the matching between linearity of reading
order and the readability of the execution flow.

An environment and language suitable for programming should
allow one to “follow the flow” and “see the state” [10]. The au-
thor designed several interaction techniques and representations
to support those two concerns. However, they involved following
an imperative flow and data states, while Causette targets the in-
teraction flow or the interactive state. The author claims that the
features of the environment are less important than the particular
ways of thinking they support. This is what we strive to do for
interaction programming: provide programmers with interactions
and representations to better apprehend causal relationships.

To augment and represent textual code efficiently, we used ani-
mations. Text animations are useful to understand changes of infor-
mation display [16]. Gliimpse [21] or Diffamation [15] share with
our work the use of animations in code: they offer animated tran-
sitions to different parts of text (latex markup code and rendered
document in Gliimpse, revision history of textual documents in
Diffamation). Gliimpse allows users to check and navigate through
the code, without leaving the text editor. However, Gliimpse ani-
mates from code to rendering, and not from code to code. Finally,
animations of word-scale graphics within texts also enable to follow
the rearrangement of graphics and make them easier to compare
thanks to a vertical alignment [25].

3 THE SMALA LANGUAGE

As mentioned in the related work, the problem of describing and
understanding interaction code has been partly addressed with the
design of specific, interaction-oriented textual languages. We used
such a language, Smala, in the remaining of the paper, as it elimi-
nates some interaction programming problems, like the “spaghetti
of call-backs” [46]. Our interaction techniques were designed for
this language, to overcome the remaining difficulties (the tech-
niques may be applied to other languages or toolkits such as Qt).
This section briefly describes Smala to help the reader understand
the code examples.

Smala is a textual, interaction-oriented programming language
dedicated to the development of highly interactive software. It takes
inspiration from classical reactive languages such as Lustre [27]
or Esterel [3], notably adding a specific syntax and a seamless
integration of interactive graphics.

At the conceptual level, a Smala program is a declarative speci-
fication of a graph of coupled processes going from a set of event
sources to a set of output processes. Such specification is akin to the
way causal chains are declared in an imperative language/frame-
work such as Java or Qt: adding listeners (Java), or connecting
signals to slots (Qt) is a way to declare a causal chain during the
initialization of an interactive program. The execution is triggered
by the occurrence of events that are propagated by an activation
vector, resulting from the sorting of the graph of processes.

At the syntactic level, Smala provides specific operators to define
causal links between processes (listing 1). For example, the arrow
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between two processes specifies that each time the left process is
activated then the connected process must be activated (binding).
More complex control structures exist such as FSMs. An FSM con-
sists in declarations of states, followed by declarations of transitions
(listing 2). Each state may include other processes.

The Smala syntax has been designed to facilitate the develop-
ment of interactive software. Indeed, the arrow-based notation is a
representation of the control flow of an interactive software. The
language designers have also reversed the direction of the classical
APL assignment operator (𝑠𝑟𝑐 =: 𝑑𝑠𝑡 instead of 𝑑𝑠𝑡 := 𝑠𝑟𝑐) to make
it consistent with the directions of other types of flow (binding:
− > and data-flow/connector: =>). Smalamakes it easy to combine
data-flows and FSMs: a data-flow can trigger an FSM transition and
an FSM can start or stop a data-flow (as envisioned in [13, 28]).

However, as with Java or C++/Python/Qt programs, the entire
causal chain specification can be spread over several files, which
makes it difficult to understand. The Smala FSM also exhibits some
scaling issues with a large amount of states and transitions, and
with nested FSMs. Even if we believe that dedicated syntax of Smala
is more usable for interaction programming, it is not enough to
understand causality.

Listing 1: Binding & Dataflow

Clock cl (500)
Incr inc
cl.tick -> inc.step
// ^^ binding
// inc is activated every

500ms

Double v (0)
inc.state => v
// ^^ dataflow
// v receives inc value
// every time inc is

incremented

Listing 2: FSM

FillColor f(0,0,0)
Rectangle r(50, 50, 100, 70)
FSM simple_FSM {

State idle {
#000000 =: f.value

}
State hover {

#a0a0a0 =: f.value
}
State pressed {

#ff0000 =: f.value
}
idle ->hover (r.enter)
hover ->idle (r.leave)
hover ->pressed (r.press)
pressed ->hover (r.release)
// ^^ transition

}

4 INTERACTION TECHNIQUES

We devised from the state of the art three requirements for the
design of interaction techniques that would support a programmer
in understanding interaction code. We devised the design principles
to fulfill the requirements. Most design principles and techniques
leverage on a textual code editor. Even if some graphical representa-
tions can be used to represent data-flow or FSMs, text-based editors
are still heavily used as they provide features that are deemed us-
able by many programmers. Still, we hypothesize that the regular,
mostly 1D, textual presentation of causal relationship constructs
spread in multiple files does not help programmers to understand
the causal chain. We demonstrate the interaction techniques in a
concrete way through use cases.

4.1 Requirements

The understanding of interaction code poses specific challenges
arising from the multiplicity of causal chains across files that split
the description of behaviors. We wanted to design interaction tech-
niques directly available in the edited source code file, saving nav-
igation time across files. Although code lines integration within

edited source code is not new, we have not seen such techniques
applied to interaction code and causal relationships understanding.
Hence, our interaction techniques should support programmers in:

• Understanding the causal dependencies [ReqCausal]
• Backtracking the origin of a causal propagation, overcoming the

inconvenience of split code over files [ReqNoSplit]
• Visualizing transitions and states activations dynamically [Req-

DynamicCaus]

4.2 Design principles

The first design principle that we followed to fulfill [ReqCausal] is
to enable the programmer to make the y-ordering of lines of code
consistent with the expected execution ordering [DgnYRearrange].
Reordering is especially important when the programmer wants to
apprehend the multiplicity of execution paths due to uncontrolled
sequences of external events. It is important to note that reordering
only concerns the appearance of the program, not its actual source
code, and it does not change its semantics. The representations of
code change upon users’ request, and can be set back to the original
arrangement upon request.

The second design principle we followed to fulfill [ReqNoSplit]
is to bring together the causal relationships that are far away from
each other in the source code, including in the same file [Dgn-
Together]. This is especially important when coping with causal
relationships that reside in several code locations.

The third design principle is to take advantage of the text repre-
sentation and of the properties of visual variables from Semiology
of Graphics [5] to understand the code and its execution. Notably,
the first three interactions reorder the programming constructs to
display them like an imperative, y-ordered control-flow. Note that
the first design principle can be considered a special case of the third
one, but its importance deserves a proper principle [DgnVisVar].

Finally, the fourth design principle consists in using animations
to help the user apprehend the changes of the representations
[DgnAnim] [16, 60], especially for [ReqDynamicCaus]. We also
took into consideration the guidelines related to animation of lists,
as lines of codes can be considered as lists [60].

To the best of our knowledge, [DgnYRearrange] and [DgnTo-
gether] have never been identified and used in past work. [Dg-
nAnim] is not new, but has not been applied to code-to-code trans-
formation. [DgnVisVar] is not new [17], but has never been applied
to interaction code. Though following the same design principles,
the interaction techniques were not designed to be completely con-
sistent: our goal was to explore a design space and how well the
techniques would support program comprehension. Currently, the
interactions are implemented in a GUI that enables a programmer
to launch a Smala program and explore its source code with the
interactions. Even though the first three interactions may be avail-
able statically (e.g. without running the explored source code), our
implementation relies on the run-time initialization phase of the
tree of processes and the reflexive capabilities of the Smala exe-
cution engine. Only the fourth interaction relies on the run-time
execution. Relying on the execution engine enabled us to prototype
the interactions without implementing a static analyzer.
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Figure 2: Interaction 1. Reordering a data-flow: (a) the user clicks on the left of a connector, an animation inserts the upstream

data-flow construct (b) upon click on the new line, an animation inserts the next upstream construct (c) the user clicks on the

new line, the system animates the line up-and-down to specify that the beginning of the data-flow has been reached.

4.3 Interaction 1: reordering a data-flow

The first interaction technique provides the programmerwithmeans
to navigate inside a data-flow and display it like an imperative
control-flow. A use case is as follows. The programmer of a drone
ground station application is faced with an unexpected behavior
while testing interaction code: some text in the graphical interface
is not updated as it should be, which is likely the symptom of a
broken data-flow. The cause to be identified is a missing connector:
the speed of the drone model displayed in the view is not connected
to the corresponding data from the bus.

We designed an interaction technique to navigate the data-flow
(Figure 2): clicking on a variable on the left-hand side of a data-
flow construct summons an animated apparition of the upstream
construct that is connected to the said variable. The upstream con-
struct appears in a line of code just above the clicked construct. In
a recursive manner, the programmer can click on the summoned
lines to display further upstream constructs. If multiple sources are
connected on a property, they are all shown using a line each. If
there is nothing connected, a short animation quickly bounces the
clicked line up and down. Note that the summoned lines may come
from the current text file being edited but also from other files. In
this case, the source filename is appended to the right of the line as
a hyperlink that enables the programmer to jump to the code.

Step-by-step, the programmer is thus able to trace back the
absence of a causal construct that should have led to the activation
of the line of interest. In our example, we can see that there is
nothing connected to the property named plane.vp. As such, this
cannot be automatically identified as a mistake, since such behavior
could have been perfectly legitimate in some applications (in a
program, many properties are partially connected). The interaction
also works with downstream constructs by clicking on the right
side of the arrow, or on the declaration of a property. It is also
available for transitions in FSMs: one can explore the chain that
leads to or depart from a transition event.

Interaction 1 relies on three design principles to help understand
the data-flow: [DgnTogether], [DgnYArrange] and [DgnVisVar].
Compared to a "Jump to Reference" command in a traditional code
editor which completely changes the content of the window, or
at best provides a transient pop-up on top of the currently edited

window, the insertion above the lines being read keeps the con-
text in which the programmer tries to understand the code, and
displays the lines of code as if they were next to each other. The
resulting sequence of lines of code, perceptually ordered in the y-
dimension and x-aligned [17], is reminiscent of the sequence of lines
of code in an imperative language. However, here the y-dimension
of the source code is mapped to the causal relationships (reactive
language) instead of the program counter (imperative language),
while the x-alignment specifies that all lines belong to a same data-
flow (reactive) instead of control-flow (imperative). This makes the
causal chain directly visible. The same interaction technique makes
it easier to spot a wrong link in the data-flow: the programmer can
quickly identify a process wrongly connected to another one.

4.4 Interaction 2: reordering textual FSMs

In the example in Figure 1, the FSM has 7 states and 20 transitions.
It is thus difficult to apprehend the whole FSM code and understand
its behavior given a particular sequence of events. The use-case is
as follows: there is a suspicious, transient activation of the check-
LoopState state. The user wants to understand the causal events
that lead to this state, what the state is activating in turn, and what
causes its exiting. However, the current graphical state of the FSM
representation makes it difficult to visualize such a sequence as it
forces the user to look for the involved transitions and to hop from
a line to another in arbitrary directions.

We designed an interaction technique based on the reordering
of the elements of an FSM. The programmer can hover over a state,
which highlights with a green background the transitions that go
into or leave the state. S/he can then click on the state and see a
smooth, animated change of the layout of the transitions around
the clicked state, to make ’in’ transitions lie above the state, and
’out’ transitions lie below the state. She can continue exploring the
follow-up causal chains by clicking on another state, and see the
’in’ and ’out’ transitions move around it.

Interaction 2 relies on the same design principles as Interac-
tion 1, but applied to the causal chain related to FSMs (with states,
transitions, events) in lieu of data-flows (with variables and oper-
ators such as connectors, bindings or assignments). Similarly, the
resulting sequence of lines of code, ordered in the y-dimension
and x-aligned, is reminiscent of the sequence of lines of code in an
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Figure 3: Interaction 3. Reordering an FSM given a path selection: (a) starting from a canonical graphical circle-arrow represen-

tation of an FSM, the user draws a path through states and transitions according to the causal chain she wants to explore; (b)

the system reorders and animates the circles and arrows; (c) the final layout is similar to the corresponding text representation.

Figure 4: Interaction 4. Showing in the text editor the activation of states and transitions during execution. (a) The FSM enters

state play idle, due to activation of the highlighted transition (b) The selected state moves to play hover (c) State play hover is
highlighted and changes in the history sidebars are updated.

imperative language, and allows a developer to better understand
the control-flow and its associated causal chain.

Navigation within FSMs and dataflows can be combined. One can
rearrange transitions around a state (interaction 2), and click on the
process to_check_loop that triggers a transition. . . (interaction 1):

check_state -> checkLoopState(to_check_loop)
. . . to summon the apparition of an upstream binding:
checkSound.t.end -> to_check_loop
check_state-> checkLoopState(to_check_loop)

4.5 Interaction 3: reordering graphical FSMs

The previous interaction techniques are a demonstration of how
text-based representations of interaction code could be re-arranged
to better follow the control-flow. The use-case from Interaction 2
was concerned with the understanding of the control-flow “around”
one particular state. Here the use-case is extended to multiple states.

A popular representation of FSMs relies on circles depicting
states and on arrows depicting transitions, annotated with the event
that fires a transition. Even if the two representations (“textual code”
and “circle-arrow”) seem different, we can smoothly transition from
one to another to adapt the view according to the task at hand.

We designed an interaction technique that rearranges the circle-
arrow representation (Figure 3). Starting from the circle-and-arrow
representation, the user draws a line that passes through states,

transitions and events. The users should specify their gesture ac-
cording to the particular sequence they want to analyze. After the
gesture has been performed, the system animates a rearrangement
of the circle-arrow representation. The final arrangement allows
the programmer to read from the top to the bottom the causal chain
involving a succession of states and events.

Again, such a representation provides the programmer with a
sequential reading of the code, which makes causal ordering salient.
Remarkably, the final circle-arrow representation is similar to the
textual one. This supports the hypothesis that graphical and textual
are not so different [17]): the visual representation reuses the assets
of the textual one, such as selectivity of the x-dimension (i.e. left
alignment [17]) and the ordered perception of the y-dimension to
depict the order of the control-flow.

4.6 Interaction 4: showing the dynamics of FSMs

The dynamic behavior of FSMs can be hard to understand. The use
case is a follows: on a GUI there is a displayed clock, coded with a
FSM, which should switch from clock to timer mode upon request
on a “play” button. But nothing happens. The programmer wants
to check whether the issue is a faulty transition. We designed an
animation that highlights the activation of states and transitions
during execution (see Figure 4). Each time an FSM enters some state,
the state is highlighted and the transition that activated it is both
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highlighted and outlined. States might be declared remotely from
the declaration of the FSM itself, especially in an embedded FSM.
Therefore, the representation also connects the activated state (e.g.,
𝑝𝑙𝑎𝑦_ℎ𝑜𝑣𝑒𝑟 ) to the parent FSM (e.g.,𝑐𝑡𝑟𝑙 ) in which it is declared. As
time goes by during execution, the previous activated states and
transitions are denoted by horizontal sidebars that progressively
fade away and shrink towards the left (see Figure 4), much like a
vertical VU-meter in music players. The progressive fading gives
the user a sense of the history of activations. This representation
also shows whether a state or a transition has been activated at
least once. This is particularly useful when the transition between
states is very fast.

5 EVALUATION

We conducted a study to assess how much more usable would
Causette be compared to a traditional text editor. Due to the nature
of our research (facilitating some program understanding tasks),
we expected that it would be difficult to design a controlled exper-
iment that would be both statistically and practically significant.
We expected that measuring the time of completion of a program
understanding task would be highly dependent on inter-individual
differences. We thus followed the principles of Single-Subject Re-
search [45]. Single-Subject Research involves testing a small number
of participants and focusing intensively on the behavior of each
individual and measuring strong and consistent effects that have
biological or social importance [45]. In the following, we present
the results per-subject, instead of aggregated measures of multi-
ple subjects. To design the experiment and report on its results,
we followed the principles of Fair Statistical Communication in
HCI [20]. In particular, we asked quantitative research questions
when suitable, and we stated the effect size.

5.1 Research questions

We focused on the following research questions:
RQ1. How much would Causette facilitate the understanding of
causal structures in interaction code?
RQ2. How much would Causette make a difference when given a
complex “interactive bug”?
RQ3. How much would programmers benefit from insertion of
related code lines into the source code being analyzed compared to
common methods in text editors (e.g. ‘’‘find”, “jump to definition”)?

5.2 Participants

We recruited 10 participants. All of them were men (more on this
in section 6) and were of age 20-25, 1 of age 25-30, 4 of age 30-
40. They had at least an M.S in Computer Science or HCI, 3 hold a
Ph.D degree. Half of them had more than three years of professional
experience in interaction programmingwith Qt, Javascript or Swing.
All of them were proficient in Smala and were using Sublime Text
as an IDE. Sublime Text is a typical textual code editor, with features
such as those mentioned in RQ3.

5.3 Experimental design

We are aware of the challenges arising in the design of code compre-
hension tasks and existing work has helped us analyze the limits of
our own evaluation study [24]. Our experimental design is inspired

Figure 5: Air Traffic Control app used for the evaluation

by two papers that evaluate new features for IDEs, Theseus [38]
and CodeBubbles [8]. We thus conceived a set of tasks related to
code comprehension and debugging. We used the code of a real-size
application actually in use in Air Traffic Control (ATC). It consists
of a GUI that supports air traffic controllers in detecting a conflict
between two flights. The source code amounts to approximately
1,000 lines of Smala spread across 7 files.

Participants were given 6 tasks to complete in total (A to F),
those 6 tasks falling into 3 categories (dataflow, value, debug). We
designed the tasks within a category to be equivalent in terms of
difficulty.
• Dataflow comprehension questions (A-B): 2 tasks targeted

the understanding of dataflow and required the participants to
identify what could trigger the activation of a variable or what
the variable could activate down the causal chain.

• Value questions (C-D): 2 tasks asked what values a variable
could take.

• Complex comprehension and debugging tasks (E-F): Finally,
2 tasks involved a complex bug to fix. The tasks require a deeper
understanding of the overall behavior of the program.

E.Missing textual object:The task involved solving a dataflow
problem, where the value of the flight callsign was not correctly
connected to the textual property of the GUI. The error was a
property naming problem due to a former incorrect copy/paste.
F. Faulty alarm: The participant was asked to debug a FSM

in charge of the sound management of the application. That
FSM had an embedded FSM, with 20 transitions and 9 states. We
introduced an error in the code, by deleting one transition of the
FSM. As a consequence, the FSM ended up stuck in some state
𝑅𝑎𝑑𝑎𝑟𝐿𝑜𝑜𝑝𝑆𝑡𝑎𝑡𝑒 and an alarm kept ringing. Participants had to
figure that out and fix it.
There were 2 conditions: a control condition with the partici-

pants’ usual editor (here Sublime), and a condition with Causette.
Sublime is not a full-blown IDE, and we discuss the reasons of
choosing it for control condition in section 6. To facilitate within-
subjects comparison, each participant was assigned three (from
each category) tasks in the control condition and three tasks using
Causette. To counterbalance an order effect, half of the participants
completed all of their control tasks first, while the other half com-
pleted all of their Causette tasks first. The selection of the tasks
across categories was randomized.

Before the evaluation, each participant was given a 10 minutes
summary of the code: an overview of the architecture and the func-
tions of the app, and the ATC vocabulary to understand identifiers
in the code. The code itself did not include any comments. Once
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the participant had read the question and was ready to perform
the task, a timer was launched. All the interaction techniques were
available for each task. Up to seven minutes were allowed for each
of the A-B and C-D tasks, while fifteen minutes were allowed for
E-F tasks. When participants felt they completed the tasks, they
told us, we stopped the task, recorded the duration regardless of
the correctness of the answer, and asked for a confidence rate. Par-
ticipants were also able to give up a task if they felt they could
not perform it. If the timer reached the maximum allowed time,
we interrupted the task. In total, up to one hour was devoted to
the tasks. At the end of the experiment, we made the participants
fill a System Usability Scale (SUS) [11] questionnaire on Causette,
followed by a 30 minutes interview to get qualitative feedback.

Figure 6: Completion time for the first category of tasks

(dataflow questions), comparing control condition (Sublime)

and Causette condition. By default, the absence of a red sym-

bol means the answer is correct.

Figure 7: Completion time for the second category of tasks

(value questions), comparing control condition (Sublime) and

Causette condition.

Figure 8: Completion time for the third category of tasks (de-

bugging problems), comparing control condition (Sublime)

and Causette condition.

5.4 Results

The complete results of the study 2 include completion time, com-
pletion success, confidence rate and SUS score. Figures 6, 7, 8 shows
the completion time and completion success per participant for
each type of tasks and according to the two conditions.

2All data anonymously available here: https://doi.org/10.5281/zenodo.6396517

5.4.1 Effectiveness - Degree of achievement. The participants were
all able to correctly complete the tasks in the Causette condition.
This contrasts with the completion rate in the Control condition,
where many participants could not provide a correct answer or just
gave up. In particular, 9 participants out of 10 performed partially
correctly the dataflow tasks, as their answers were not exhaustive
(they did not mention all paths of the dataflow, and remarkably
all but S8 felt confident). Except S1, each participant at least made
an error or gave up in the Control condition. 4 participants could
not complete the debugging tasks (2 gave incorrect answers, and 2
gave up). This suggests that users are not completely effective with
a traditional code editor for these tasks, supporting our analysis
of the problems encountered by programmers. This also suggests
that our interaction techniques make users more effective than a
traditional code editor for all types of task.

Participantswere always confident in their answers in the Causette
condition. 4 of them (S3, S5, S6, S8) were not confident in some of
their answers in the Control condition.

5.4.2 Efficiency - Time of completion. Figure 9 represents the time
percentage gain per participant and task groups. Except S1 and S4
in debugging tasks, all participants perform their tasks faster in
Causette conditions.

Figure 9: Time percentage gain per participant and per task

groups when using Causette compared to Control (Sublime).

In the dataflow tasks, users were able to perform 93% faster with
Causette on average. In these tasks, users were only able to answer
partially, but we think that the time of completion is meaningful,
since they felt they have completed the tasks. Had they resumed
the tasks to find out all paths in the dataflow, they would have spent
even more time.

In the value tasks, users were able to perform 77% faster with
Causette on average.

The results of the debugging tasks are more contrasted. As a re-
minder, in the control condition, S1 performed better, S4 performed
equally, but two participants gave up and two gave incorrect an-
swers. S1 is slower with Causette in the debugging tasks. S1 told us
he was familiar with dataflow issues, and less familiar with FSMs
bugs, which could explain this outlier. S4 is as fast with Sublime
as with Causette. S4 told us he had been focusing on FSMs in his
code for two months before the experiment, which could explain
his proficiency with Sublime at finding bugs. Except for S1 and S4,
the 8 other participants performed faster with Causette. Ignoring
incorrect answers, only five participants (S2, S3, S5 S7 and S9) per-
formed significantly faster with Causette with respect to effect size.
S6, S8 and S10 performed faster with Causette but with a smaller
effect size.
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All in all, these results tend to suggest that Causette makes
programmers faster at fulfilling the dataflow and value tasks. It
may make them faster at debugging with a smaller time gain for
half of the participants.

5.4.3 Satisfaction. We gathered the SUS scores for Causette only. 7
out of 10 are higher than 90, the remaining 3 (S1, S6, S7) range from
62,5 to 72,5. S1, S6 and S7 thought that they may need the support
of a technical person to use Causette (score 3). S7 eventually stated
that he would be able to learn to use it quickly. S1 and S6 did not
feel very confident (score 3). S1 and S7 thought the system is not
well integrated (score 3). S6 did not think he would use it frequently.
We present Causette in this paper as a set of interactions, and not
as a system. If we polished the interactions as much as we could,
the system itself that embeds them is still not very usable. We
hypothesize that the comments of S1, S6 and S7 reflect the usability
of the system more than the interactions per se.

5.4.4 Internal validity assessment. We examined whether the de-
sign of our experiment exhibits any bias with respect to task equiv-
alence or order (see Figures 10, 11).

In the two conditions, the completion time means between A-B,
C-D and E-F tasks tend to confirm that the two tasks within each
three categories were of the same difficulty.

In the Causette condition, the order seems to have no effect.
There could be an order effect on the completion time of the Sublime
condition. It looks as if the use of Causette in a first place had a
positive impact on the performances in the Control conditions
for the data-flow and value tasks, while it is the opposite for the
debugging tasks. However, the computed average times involve
at most 3 values, even less when participants gave up or gave an
incorrect answer. It is thus difficult to be conclusive or to comment.

Figure 10: Condition ordering effect: completion timemeans

(upper figure) and answer incorrectness (lower figure) per

task in Sublime condition.

Figure 11: Condition ordering effect and completion time

means per task in Causette condition.

5.4.5 Qualitative results. After each session with a participant,
we conducted an interview to get qualitative feedback. Our three
research questions RQ1, RQ2, RQ3 target all of the tasks.

RQ1. How much would Causette facilitate the understanding of
causal structures in interaction code?

Participants mentioned that they felt Causette saved them time
to understand the dataflow (all the participants, except S6). The
reordering of the in- and out- transitions was also described as time
saving (S1, S4, S8, S10). S1 mentioned that he usually needs to draw
FSMs when he got confused about the transitioning between states.
Participants S1, S8, S10 pointed out that it was interesting to display
the current state of an FSM (in the real-time animation of the FSM)
instead of printing it in the console.

The issue about the declarative style of interaction code and how
it prevents easy causal understanding was brought up: “Because
what’s difficult is the declarative aspect, without logical links. You
can write it in any order you want.” (S8). S8 also developed an issue
for FSMs: “with nested FSMs, after a moment I’m lost in the file, and
having something that allows to put logical order between states
and transitions, that helps.”

A few participants mentioned that the tool helped them construct
or get quick access to a “mental picture” of the causal relationships:
“I don’t have to have a mind map all the time [...], there is no
need to make drawings.” (S4). Another finding was that 6 out of 10
participants underlined what they felt would be the main use of the
tool: to get into someone else’s code or one’s own former project.

The animated insertions were described as presenting the causal
relationships effectively. For the dataflow, participants mentioned
they felt reassured being provided with a guaranteed, exhaustive
list of sources and destinations (S1, S10, S3, S8, S4). S1 and S10 com-
mented on the fact that with a traditional editor, they usually feel
unsure whether they figured out completely the dataflow, and they
took time to check that the property under study is not dependent
on another file or is renamed somewhere else. Such comments are
consistent with the confidence rates we measured.

RQ2. How much would Causette make a difference when given
a complex “interactive bug”?

The two complex comprehension and debugging tasks were com-
mented by some participants as really reminiscent of the problems
they usually face. Several comparisons and equivalent use cases
were provided. S3 said “it reminds me of many cases [...] : I was
creating my graphical objects, but they were aligned at the top left
of my interface, and it took me time to understand that I had not
initialized their length and height”.

In the debugging task, S5 said he could have answered the last
task he gave up in control condition, seeing clearly that the FSM
was stuck in a state, but he got tangled up in staying focused on the
wrong state. S4 and S7 elaborated on that aspect, saying the FSM
animations are useful to locate which state it is blocked in. They
found the real time animation and the history bar even more useful
“to really see it”. S1, S4, S5, S6 found that reordering FSMs make
transition errors more salient.

RQ3. How much would programmers benefit from insertion of
related code lines into the source code being analyzed?

First, participants brought up that Causette avoids navigating
at length: “with the tool we avoid unnecessary navigation. When
you use diverse “find” functions, you often end up having too many
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occurrences” (S4). This could be supported by the difference in
response time we found. Comparisons with search functions in dif-
ferent IDEs were often conducted, to the point where Causette was
described as a “super fast search tool” (S5). S2, S3, S4, S5 and S8 liked
the simplicity of the triggering of the animated insertion, because it
avoided the use of a menu. As one of our participants commented,
the interactions involving line insertions might look unusual in
the beginning, but it seems easy to get into the habit. Since code is
rearranged, it is worth noting users may be disorientated. This was
mentioned by one participant: “I clicked unintentionally, and I had
trouble finding myway around, I didn’t knowwhat I had clicked on”
(S9). This is especially true in interactions with FSMs as the layout
may end up very different from the initial arrangement. We used
animations to mitigate this aspect. We also provided an "original
view" button to get the layout back to its original form. As for the
FSM, the real-time animation was appreciated but the reordered
FSM animation was also found useful. S1 who liked the graphical
FSM underlined that the reordered FSM was very interesting.

6 THREATS TO VALIDITY

Participants. The number of participants in the experiment is low,
and they are all men. We could not avoid this sample bias, as the
users of the Smala language happen to be men. Still, we do not have
any plausible hypothesis about the effect of genre on the results of
the experiments. As noted by Feitelson [24], the effect of genre is
not clear and requires further investigation.

Size of code. The application used during the evaluation is 1,000
lines of code only. One can wonder if the interaction techniques
would scale to larger code bases. 1,000 lines seem small, but they
are written in a specialized, interaction-oriented programming lan-
guage which is expressive and should not be compared to the size
of code written in a general-purpose language such as Java. Still,
the FSM of the example has a moderate complex behavior. Scaling
up the number of states to a dozen would make it more difficult to
perform interaction 3. Besides, our representations have limits: for
example, Interaction 1 and 2 only display one causal chain at a time,
and do not allow exploring multiple chains simultaneously. But
the control condition does not facilitate exploring one causal chain
only neither, and we think that it would scale even more badly, as
one would have to navigate more files with longer causal chains.

Tasks. The tasks only partially represent the programming ac-
tivity. We are aware that the evaluation has limits and should be
complemented with other experiments. In particular, tasks A-B and
C-D where the results were the most in favor of Causette, may
seem idiosyncratic. However, the tasks represent a typical problem
encountered by programmers of interactive programs. We designed
the interactions to support solving those problems, hence it is not
surprising that the evaluation suggests that Causette offers support.
Nevertheless, it had to be demonstrated.

Control condition.The choice of a limited set of Sublime Text
interactions as the control condition is disputable. Causette is a set
of interaction techniques that may have been compared to those
of a full-featured IDE. Still, we left the participants choose the
Sublime Text interactions they use in their real-world activities. In
particular, one can debug program with Sublime Text. However,
such a debugger is of little help for the interaction code problems.

Understanding. A general pitfall of comprehension evalua-
tion [24] applies to our work: does the study actually tell something
about comprehension? It could turn out that some participants, es-
pecially for task A-B and C-D, found the correct answers about
the causal chains in code, without properly understanding them.
Addressing that issue would require further investigation.

Reading/Writing. Finally, the study suggests that Causette
support code reading, but not code writing. Since developers read
10 times more code than they write [24, 41], our results suggest
that at least Causette could be useful. Further work is needed to
assess whether Causette could support code writing.

Generalizability. The interactions may be too specialized to
the particular language we used. Some languages or toolkits pro-
vide some of Smala’s features e.g. Qt’s signal/slot, JavaFX binding,
SwingState’s FSMs. We think that most of the interactions could be
applied to these features e.g. navigating the chain of signal/slots in
Qt or SwingState’s FSMs. However, this necessitates appropriate
analysis and introspection tools. For example, one could use the
Qt’s MetaObject system to gather dependency information, and use
the API provided by some text editors to insert the upstream and
downstream signal/slots where a particular connection is created in
the code. Similarly, the QML or SwingStates run-times could record
the parameters of the transitions and inform Causette. With this, it
would be possible to adapt Causette interactions to an editor of Qt
code: clicking on 𝑜𝑏 𝑗𝑒𝑐𝑡1.𝑠𝑖𝑔𝑛𝑎𝑙 in this line of code. . . :

object1.signal.connect(object2.slot)
. . . could summon the apparition of an upstream construct above:
object0.signal.connect(object1.slot)
object1.signal.connect(object2.slot)
Similarly, since QML and Swingstates provide explicit FSMs

syntaxes, an editor of such languages could rearrange the order of
transitions as in interaction 2.

7 CONCLUSION AND FUTUREWORK

We presented Causette, a set of four interaction techniques for a
textual and graphical code editor. The interactions rearrange and
animate textual code in a way that makes the causal relationships
more understandable. An evaluation with professional program-
mers suggests that Causette may be more usable than a regular
text editor for some interaction programming tasks. This work indi-
cates that rearranging interaction code may help developers better
understand and fix it. This work can be continued by exploring
unanswered questions on scalability, generalization, disorientation,
and ecological validity. Instead of running another controlled ex-
periment, we plan to provide our participants with a better, more
robust, and more integrated version of our tool and observe its use
in practice during a longitudinal study. This should also provide us
with new insights on how to best support interaction programmers.
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