
HAL Id: hal-03655570
https://enac.hal.science/hal-03655570v2

Preprint submitted on 12 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NON DEGENERACY OF AFFINELIKE LIE
ALGEBRA

Michel Nguifo, Stephane Puechmorel

To cite this version:
Michel Nguifo, Stephane Puechmorel. NON DEGENERACY OF AFFINELIKE LIE ALGEBRA.
2024. �hal-03655570v2�

https://enac.hal.science/hal-03655570v2
https://hal.archives-ouvertes.fr


NON DEGENERACY OF AFFINELIKE LIE ALGEBRA1

MICHEL NGUIFO BOYOM† AND STEPHANE PUECHMOREL††2

Abstract. The aim of this note is to prove some cohomological vanishing theorems for
non solvable affinelike Lie algebras, say ALLA. There are some relevant consequences of
our vanishing theorems:

(1) Every real non solvable affinelike Lie algebra is formally nondegenerate in the sense
of A. Weinstein, (Theorem 1).

(2) Let G be a non solvable Lie group whose Lie algebra is an affinelike Lie algebra (g,e).
If the radical of [ker(ad(e)),ker(ad(e))] is commutative, then G admits a left invariant
symplectic structure if and only if it has an open coadjoint orbit, (Theorem 2).

(a) In Section 6, we use our vanishing theorems to supply an algebraic proof of the normal
form theorem for Lie non solvable a-algebroids.

1. Introduction3

Given a smooth Riemaniann manifold (𝑀, 𝑔), a gauge structure on 𝑀 is a couple (𝑀,∇)4

where ∇ is a Koszul connection on𝑇𝑀.Using the metric 𝑔, one defines the dual connection5

∇★ of ∇ by the relation:6

(1) 𝑋 (𝑔(𝑌, 𝑍)) = 𝑔 (∇𝑋𝑌, 𝑍) + 𝑔 (𝑌,∇𝑋𝑍) .

with 𝑋,𝑌, 𝑍 arbitrary vector fields. In the field of information geometry, if both ∇ and ∇∗7

are torsionless, the structure (𝑀, 𝑔,∇,∇★) is called a statistical manifold.8

Definition 1. A section \ ∈ Γ(𝑇𝑀∗ ⊗ 𝑇𝑀) is said to be a solution of the gauge equation9

if, for any vector fields 𝑋,𝑌 :10

(2) ∇𝑋\𝑌 = \∇★
𝑋𝑌 .

If \ is an invertible, antisymmetric (with respect to 𝑔) solution of the gauge equation,11

then:12

𝜔 : (𝑋,𝑌 ) ∈ 𝑇𝑀2 ↦→ 𝑔 (\𝑋,𝑌 ) .
is a ∇-parallel symplectic form. In this paper, 𝑀 is a smooth manifold of finite dimension,13

𝑇𝑀 (resp. 𝑇★𝑀) its tangent (resp. cotangent) bundle. A Poisson tensor on 𝑀 , or a14

Poisson bivector, is a smooth section Π ∈ Γ
(∧2 𝑇𝑀

)
of the vector bundle

∧2 𝑇𝑀 that15

satisfies:16

(3) [Π,Π] = 0

with [·, ·] the Schouten bracket [21]. It is, in some sense, a dual notion to a 2-form.17
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2 NON DEGENERACY OF AFFINELIKE LIE ALGEBRA

An example of such a tensor, that in fact has partly motivated this work, arises from the18

2-form 𝜔 defined above. It is given by the relation:19

Π𝜔 (𝑑𝑓 , 𝑑𝑔) = 𝑑𝑔(𝑋 𝑓 ), 𝑓 , 𝑔 ∈ 𝐶∞ (𝑀),
where 𝑋 𝑓 is the Hamiltonian vector field associated to 𝑓 . The couple (𝑀,Π) is called a20

Poisson manifold. It is coherent with the more common definition using the Poisson bracket21

{·, ·} on 𝐶∞ (𝑀)-function by the identification:22

{ 𝑓 , 𝑔} = Π(𝑑𝑓 , 𝑑𝑔).

Remark 1. A Poisson tensor can be expressed in local coordinates as:23

Π = 𝜋𝑖 𝑗𝑋𝑖𝑋 𝑗

where 𝜋𝑖 𝑗 = −𝜙 𝑗𝑖 and 𝑋𝑖 is the 𝑖-th coordinate field.24

A point 𝑥 ∈ 𝑀 is said to be regular for Π if the linear mapping:25

(4) 𝜔 ∈ 𝑇★𝑀 ↦→ Π(𝑥; [, 𝜔)
vanishes identically only when [ = 0. The next definition is dual to the ♯ morphism in the26

context of Riemaniann manifolds.27

Definition 2. For any 𝜔 ∈ 𝑇★𝑀 , the mapping:28

(5) 𝜔♮ : 𝛼 ∈ 𝑇★𝑀 → Π(𝜔, 𝛼)
is an element of 𝑇𝑀.29

Remark 2. The morphism ♮ is commonly represented by ♯. In this paper, we want to30

distinguish it from its metric version, hence the notation.31

Definition 3. A Lie algebroid is a triple (𝐴, 𝑀, 𝜌) where 𝑀 is a smooth manifold, 𝐴 is32

a vector bundle on 𝑀 with a Lie bracket [·, ·] defined on its sections and ♮ : 𝐴 → 𝑇𝑀 a33

vector bundle morphism such that, for any 𝑓 ∈ 𝐶∞ (𝑀) and any vector fields 𝑋,𝑌 ∈ Γ(𝐴):34

(6) [𝑋, 𝑓𝑌 ] = 𝑓 [𝑋,𝑌 ] + 𝜌(𝑋) ( 𝑓 )𝑌 .

The next proposition was obtained in [11][Theorem 8.1]35

Proposition 1. A Poisson manifold (𝑀,Π) gives rise to a Lie algebroid (𝑇★𝑀, 𝑀, ♮) ,36

where:37

♮(𝛼) = 𝑖(𝛼)Π.
and the Lie bracket on sections of 𝑇★𝑀 is given by the relation:38

(7) [𝛼, 𝛽] = 𝑖♮𝛼𝑑𝛽 − 𝑖♮𝛽𝑑𝛼 + 𝑑 (𝑖Π𝛼 ∧ 𝛽)

Let Π be a smooth Poisson tensor on 𝑀 and let:39

𝐴Π = (𝑇∗𝑀, ♮)
be its associated Lie algebroid as in proposition 1. Let 𝑥0 be a singular point of Π, that is40

a point where the Poisson tensor vanishes. In a local coordinate system 𝑥𝑖 , 𝑖 = 1 . . . 𝑛, one41

has the Taylor expansion for each component 𝜋𝑖 𝑗 of Π:42

(8) 𝜋𝑖 𝑗 =
∑︁
𝑘≥1

2∑︁
𝑎1 ,...,𝑎𝑘=1

1
𝑘!

(
𝑋𝑎1 . . . 𝑋𝑎𝑘

𝜋𝑖 𝑗
)
𝑥𝑎1 . . . 𝑥𝑎𝑘 .
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Gathering terms, one can write:43

(9) Π = Π1 + Π2 + . . .

where Π𝑘 stands for the bivector corresponding the homogeneous expansion coefficients44

of order 𝑘. The same expansion can be conducted on ♮. The Taylor expansion of Π (resp.45

♮) at 𝑥0 will be designated in the sequel by Π̃ (resp. 𝐴Π). Both Π̃ and 𝐴Π have the same46

linear part, namely Π1, whose expression in local coordinates is:47

(10) Π1 = 𝑋𝑘 (𝜋𝑖 𝑗 ) (𝑥0)𝑥𝑘𝑋𝑖𝑋 𝑗 .

This linear part defines a Lie algebra structure in the vector space 𝑇∗
𝑥0
𝑀 with structure48

constants 𝑐𝑘
𝑖 𝑗

= 𝑋𝑘 (𝜋𝑖 𝑗 ). We denote this Lie algebra by (𝑇∗
𝑥0
𝑀,Π1) and call it the49

linearization of the Poisson structure.50

Definition 4. A Lie algebra 𝔤 is said to be non-degenerate in the sense of A. Weinstein51

if, for any Poisson structure Π admitting 𝐴 as a linearization at a singular point 𝑥0, there52

exists a local coordinate system 𝑥𝑖 , 𝑖 = 1 . . . 𝑛 such that each 𝜋𝑖 𝑗 is a linear function:53

𝜋𝑖 𝑗 (𝑥) = 𝑎𝑖 𝑗
𝑘
𝑥𝑘 .54

An important and largely open question in the Poisson geometry is to determinate those55

Lie algebras which are non degenerate in the sense of A. Weinstein. If a Lie algebra 𝔤 is56

formally ( resp. analytically or smoothly ) non degenerate in the sense of A. Weinstein,57

then, for every formal (resp. analytic or smooth ) Poisson tensor Π the equality:58

(𝑇∗
𝑥0
𝑀,Π1) = 𝔤

implies the formal (resp. analytic or smooth ) linearization (near 𝑥0) of the Poisson tensor59

Π. Jean-Paul Dufour and Nguyen Tien Zung have proved that for every positive integer m,60

the affine Lie algebra61

Aff(𝑚) = 𝔤𝔩(𝑚) ⋉ R𝑚

is analytically non degenerate in the sense of Weinstein, [13]. The list of known types of62

non degenerate Lie algebras is short, (see [15], [13]). The linearization of Π implies that63

𝐴Π , is linearizable as well. The inverse generally fails to hold. However, Jean-Paul Dufour64

conjectures that the formal linearization would imply the analytic linearization of Poisson65

structures whose ranks are > 2, [14]. In the analytic category, the formal linearization of Π66

implies its analytic linearization whenever the linear part (𝑇∗
𝑥0
𝑀,Π1) is a semi-simple Lie67

algebra, [9, 10]. The formal linearization problem may be considered from two points of68

view. The first one is the splitting problem of extensions of Lie algebras, [27]. The second69

viewpoint is that of formal deformations of Lie algebra structures. Both viewpoints are70

largely governed by the Chevalley-Eilenberg cohomology of Lie algebras, [15, 25].71

The concern of this work is the study of the formal nondegeneracy of a new class of Lie72

algebras, say affinelike Lie algebras, (or ALLA). We recall that in a Lie algebra, the adjoint73

ad𝔤 : Der(𝔤) maps 𝑎 ∈ 𝔤 to the derivation ad(𝑎) : 𝑥 → [𝑎, 𝑥] . A affinelike Lie algebra is a74

Lie algebra that contains contains an element 𝑒 such that ad(𝑒) satisfies:75

ad2 (𝑒) = ad(𝑒)

Let us represent an affinelike Lie algebra by the couple (𝔤, 𝑒).76

From the Poisson geometry viewpoint, central results of this work yield the next two77

theorems:78
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Theorem 1. Every non solvable affinelike Lie algebra is formally non degenerate in the79

sense of A. Weinstein. A connected Lie group 𝐺 whose Lie algebra 𝔤 is an affinelike Lie80

algebra, namely (𝔤, 𝑒), is labelled affinelike Lie group.81

Theorem 2. Let: (𝔤, 𝑒) be the Lie algebra of a connected non solvable affinelike Lie82

group 𝐺. Let us set 𝔤𝑒 = ker(ad(𝑒)) and, Δ𝔤𝑒 = [𝔤𝑒, 𝔤𝑒]. Suppose the radical of Δ𝔤𝑒83

to be commutative. If 𝐺 carries a left invariant symplectic structure, then it has an open84

coadjoint orbit in the dual vector space of its Lie algebra. Moreover, if the ground field85

is the field of complex numbers, then the open coadjoint orbit is unique and everywhere86

dense.87

The paper is organized as follow: In section 2, The notion of affinelike Lie algebra is88

introduced, then in section 3, the cohomology of polynomial maps is defined, with a view89

towards linearization problems. Section 4 is a short one on weak degeneracy.Finally, section90

5 and 6 give the contributions of the paper, the last one being an application of theorem91

4.92

2. Affinelike Lie algebras93

Let K be either the field R of real numbers or the field C of complex numbers. Let 𝔤 be a94

Lie algebra over K. Given 𝑒 ∈ 𝔤 we shall set:95 
Δ𝔤 = [𝔤, 𝔤]
Δ𝑒𝔤 = [𝑒, 𝔤]
𝔤𝑒 = ker(ad(𝑒))

Let𝔖 be a Levi subalgebra of Δ𝔤𝑒. In the sequel, 𝑅(𝔤) will be the radical of the Lie algebra96

𝔤.97

Definition 5. A Lie algebra 𝔤 is called affinelike Lie algebra, ’ALLA’, if it contains an98

element 𝑒 such that:99

(alla 1) ad2 (𝑒) = ad(𝑒).100

(alla 2) 𝔤 = K𝑒 ⊕ Δ𝑔.101

(alla 3) If 𝔤 is non solvable, then 𝐻0 (𝔖, 𝑅(Δ𝑔)) = 0.102

According to property (alla 2) above, 𝔤 is a semi-direct product of Δ𝔤 and K𝑒. Here are103

two elementary properties of affinelike Lie algebras.104

Proposition 2. The subspace Δ𝑒𝔤 is a commutative ideal of 𝔤.105

Proof. Let 𝑎, 𝑏 ∈ Δ𝑒𝔤. Then:106

[𝑒, [𝑎, 𝑏]] = 2[𝑎, 𝑏] .
On the other hand one has:107

[𝑒, [𝑒, [𝑎, 𝑏]]] = [𝑒, [𝑎, 𝑏]] .
Combining the two equalities above one easily sees that:108

[𝑎, 𝑏] = 0,
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proving that Δ𝑒𝔤 is commutative. To see that it is an ideal of 𝔤, we remark that as a vector109

space, 𝔤 admits the following decomposition:110

𝔤 = Δ𝑒𝔤 ⊕ 𝔤𝑒

Now given 𝑥 ∈ 𝔤 let us write it as:111

𝑥 = 𝑢 + 𝑣, 𝑢 ∈ Δ𝑒𝔤, 𝑣 ∈ 𝔤𝑒

Given 𝑎 ∈ Δ𝑒𝔤, one has:112

[𝑒, [𝑥, 𝑎]] = [𝑒, [𝑢, 𝑎]] = [𝑢, [𝑒, 𝑎]] = [𝑢, 𝑎] = [𝑥, 𝑎] .

proving that Δ𝑒𝔤 is an ideal of 𝔤. □113

Proposition 3. Since ad(𝑒) is a derivation of the Lie algebra 𝔤, the subspace 𝔤𝑒 is a114

subalgebra of 𝔤.115

As a Lie algebra, 𝔤 may be presented as the semi-direct product:116

𝔤 = 𝔤𝑒 ⋉ Δ𝑒𝔤.

Putting:117

�̃�𝑒 = 𝔤/Δ𝑒𝔤

we have an exact split sequence of Lie albegras:118

(11) 0 Δ𝑒𝔤 𝔤 �̃�𝑒 0

Remark 3. Under the adjoint representation of 𝔤 in itself, 11 is an exact sequence of119

𝔤-modules which is generally not split. However, it is split as a sequence of 𝔤𝑒-modules.120

Now, let 𝑊 be a finite dimensional 𝔤-module. From 11 we deduce the following exact121

sequence of 𝔤-modules:122

(12) 0 Hom (𝑊,Δ𝑒𝔤) Hom (𝑊, 𝔤) Hom (𝑊, �̃�𝑒) 0

As an exact sequence of 𝔤𝑒-modules, 12 is split. Let us denote by 𝐶∗ (𝔤,Hom (𝑊, 𝔤)) the123

Chevalley-Eilenberg complex of 𝔤 with coefficients in Hom (𝑊, 𝔤), [8]. Then, for every124

non negative integer 𝑘 , we denote by H𝑘 (𝔤,Hom (𝑊, 𝔤)) the 𝑘-th cohomology space of125

H (𝔤,Hom (𝑊, 𝔤)). From Remark 3, one has the following identity:126

H𝑘 (𝔤𝑒,Hom (𝑊, 𝔤)) = H𝑘 (𝔤𝑒,Hom (𝑊,Δ𝑒𝔤)) ⊕ H𝑘 (𝔤𝑒,Hom (𝑊, �̃�𝑒))

This digression might be combined with the Hochschild-Serre spectral sequence to be useful127

in calculating the cohomology spaces H∗ (𝔤,Hom (𝑊, 𝔤)). However, a direct calculation128

of H∗ (𝔤,Hom (𝑊, 𝔤)) is the purpose of the next sections.129
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3. Cohomology of polynomial maps130

Let S(𝔤) be the symmetric algebra of the vector space 𝔤. Our purpose is to calculate131

the cohomology space H2 (𝔤,Hom (𝑊, 𝔤)) where 𝑊 is a homogeneous submodule of the132

graded 𝔤-module:133

S+ (𝔤) =
⊕
𝑖≥0

S𝑖 (𝔤)

In the sequel, we shall identify Hom (𝑊, 𝐹) with𝑊∗ ⊗𝐹, where𝑊∗ is the dual vector space134

of𝑊 and 𝐹 ∈ {Δ𝑒𝔤, 𝔤, �̃�𝑒}. According to the exact sequence 12, we have the classical long135

exact sequence:136

(13)
H𝑖 (𝔤,𝑊∗ ⊗ Δ𝑒𝔤) H𝑖 (𝔤,𝑊∗ ⊗ 𝔤) H𝑖 (𝔤,𝑊∗ ⊗ �̃�𝑒)

H𝑖+1 (𝔤,𝑊∗ ⊗ Δ𝑒𝔤) . . .

Before pursuing, let us give some examples of affinelike Lie algebras.137

Example 1. Let 𝑉 be a vector space over K, then the Lie algebra:138

Aff(𝑉) = 𝔤𝔩(𝑉) ⋉𝑉
is an ALLA where 𝑒 is the identity endomorphism of 𝑉 .139

Example 2. Let (𝑉, ⟨., .⟩) be a real euclidean space. Its Lie algebra of affine endomorphisms140

with conformal linear part is an ALLA.141

Example 3. Let 𝔤 = KIdK𝑚 ⋉ 𝐾𝑚. Then 𝔤 is an ALLA.142

Example 4. Let 𝑀 (𝑚, 𝑛) be the vector space of 𝑚 × 𝑛 matrices with entries in K. Let:143

𝔤𝑚,𝑛 = 𝔤𝔩(K𝑚) ⋉ 𝑀 (𝑚, 𝑛)
with bracket:144

[(𝑎, 𝑏), (𝑎′, 𝑏′)] = ( [𝑎, 𝑎′], 𝑎𝑏′ − 𝑎′𝑏)
Let 𝑒 be the unit matrix in𝔤𝔩(K𝑚). Then (𝔤, 𝑒) is an ALLA.The algebras𝔤𝑚,𝑛 are sometimes145

called affine algebras. Their coadjoint representations are deeply studied in [24].146

Proposition 4. Let 𝔤 be an ALLA. Then:147

H2 (𝔤,K) = H2 ( [𝔤𝑒, 𝔤𝑒],K)

Proof. Let 𝑒 ∈ 𝔤 be an element satisfying properties (alla 1) and (alla 2). Given a scalar148

2-cocyle \ ∈ 𝐶2 (𝔤,K), the cartan formula:149

𝐿 (𝑒) = 𝑖(𝑒)𝜕 + 𝜕𝑖(𝑒)
implies that:150

𝐿 (𝑒)\ = 𝜕𝑖(𝑒)\.
Now, let 𝑥 = 𝑠 + 𝑢, 𝑥 ′ = 𝑠′ + 𝑢′ ∈ 𝔤𝑒 ⊕ Δ𝑒𝔤. One easily verifies that:151

\ (𝑢, 𝑢′) = \ (𝑒, [𝑠, 𝑠′]) = 0
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The restriction map from H2 (𝔤,K) to H2 (𝔤𝑒,K) is thus one-to-one. To see that it is onto,152

we remark that (alla 2) implies that:153

𝔤𝑒 = K𝑒 ⊕ [𝔤𝑒, 𝔤𝑒]

Moreover, the same (alla 2) shows that the Lie algebra [𝔤𝑒, 𝔤𝑒] is perfect. Thus, we have:154

H1 (𝔤𝑒,K) = 0

and155 (
H1 (K𝑒,K)

)𝔤𝑒
= 0

Owing to the Hochschild-Serres exact sequence [18], one sees that the inflation map from156

H2 ( [𝔤𝑒, 𝔤𝑒],K) to H2 (𝔤𝑒,K) is injective, thus proving the claim. □157

In the particular case where 𝔤 = Aff(𝑚) and 𝑒 = 𝐼𝑑K𝑚 , we have 𝑔𝑒 = 𝔤𝔩(𝑚,K) and:158

H2 (𝔤𝔩(𝑚,K),K) =
∑︁

𝑝+𝑞=2

H𝑝 (K𝑒,K) ⊗ H𝑞 (𝔰𝔩(𝑚,K),K) = 0

The reader may consult [1] for another proof of the latter vanishing theorem, namely:159

H2 (Aff(K𝑚),K) = 0

The proof given here is simpler. Another remark to be made is that every affine group:160

Aff(K𝑚) = GL(K𝑚) ⋉ K𝑚

has open coadjoint orbits.In other words, every affine group Aff(𝑉) carries a left invariant161

symplectic structure, [24]. Indeed, it is sufficient to identify the dual vector space of the162

Lie algebra 𝔞𝔣𝔣(𝑚) with itself under the transposition map. In other words, considering163

𝔞𝔣𝔣(𝑚) as a subspace of 𝔤𝔩(𝑚 + 1,K), one deals with the inner product:164

⟨𝐴, 𝐵⟩ = Tr(𝐴𝑡𝐵)

Let:165

(𝐴, 𝑣) ∈ 𝔤𝔩(𝑚) ⋉ K

be a 𝑚-cyclic couple in the following sense: {𝑣, 𝐴𝑣, . . . , 𝐴𝑚−1𝑣} is a basis of the vector166

space 𝐾𝑚. The couple (𝐴, 𝑣) being regarded as an element of 𝔤𝔩(𝑚 + 1,K), its transpose,167

say (𝐴, 𝑣)𝑡 , is an element of the dual space of 𝔞𝔣𝔣(𝑚). The property to be 𝑚-cyclic implies168

that the coadjoint orbit of (𝐴, 𝑣)𝑡 is an open subset of the dual vector space of 𝔞𝔣𝔣(𝑚). For169

instance, take the square 𝑚 × 𝑚 matrix 𝐴 = (𝑎𝑖 𝑗 ) whose nonzero entries are:170 {
𝑎𝑖+1,𝑖 = 1
𝑎1,𝑚 = 1

Thus, 𝐴 is an 𝑚-cyclic matrix. Take the vector 𝑣 = (1, 0, .., 0) ∈ K𝑚. Then, the couple171

(𝐴, 𝑣) being regarded as an element of the dual space of 𝔞𝔣𝔣(𝑚) has an open coadjoint172

orbit.173
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4. Weak nondegeneracy174

Let Π be a smooth Poisson tensor on the smooth manifold K𝑚. Let us suppose 0 to be a175

singularity of Π and let Π̂ be the Taylor expansion at 0 of Π. The linear part of Π, say Π1,176

defines a Lie algebra structure in the vector space of linear functions. Let us denote this177

Lie algebra structure by (K∗𝑚,Π1). Following Weinstein, a Lie algebra 𝔤 is called formally178

(resp. analytically or smoothly) non degenerate if every formal (resp. analytic or smooth)179

Poisson tensor Π satisfying both conditions:180

Π(0) = 0

and181

(K∗𝑚,Π1) = 𝔤

is formally (resp. analytically or smoothly) linearizable at 0. In other words, Π is formally182

(resp. analytically or smoothly) linearizable at 0 if (near 0) there exist a system of formally183

(resp. analytic or smooth) coordinate functions:184

𝐹 := ( 𝑓1, . . . , 𝑗𝑚)

such that:185

Π
(
𝑑𝑓𝑖 , 𝑑𝑓 𝑗

)
=

∑︁
𝑘

𝑐𝑘𝑖 𝑗 𝑓𝑘

with 𝑐𝑘
𝑖 𝑗
∈ K. Now, to every smooth Poisson tensor Π on a smooth manifold 𝑀 is assigned186

the Lie algebroid structure (𝑇∗𝑀, ♮). The anchor map ♮ is the vector bundle homomor-187

phism from 𝑇∗𝑀 to 𝑇𝑀 defined by:188

♮(𝛼) = 𝑖(𝛼)Π.

The anchor map ♮ and the Poisson tensor Π have the same singularities. In particular189

♮(0) = 0. The linear part of the Taylor expansion at 0 of ♮ defines a Lie algebra structure190

in the cotangent space 𝑇∗
0𝑀 . That Lie algebra structure is the same as the one defined by191

Π1. So, it is easy to see that the Taylor expansion at 0 of ♮ defines a formal deformation of192

the linear Lie algebroid:193

𝔤 × 𝑇0𝑀

where:194

𝔤 =
(
𝑇∗

0𝑀,Π
1) .

Definition 6. A Lie algebra 𝔤 is called weakly formally (resp. weakly analytically or weakly195

smoothly) non degenerate in the sense of Weinstein if the following conditions hold: let Π196

be a formal (resp. analytical or smooth) Poisson structure such that:197 {
Π(0) = 0.
𝔤 =

(
𝑇∗

0𝑀,Π
1) .

then the corresponding formal (resp. analytic or smooth) Lie algebroid structure (𝑇∗𝑀, ♮)198

is formally (resp.analytically or smoothly) linearizable at 0.199

The formal (resp. analytic or smooth) linearization at 0 of Π implies the formal (resp.200

analytic or smooth) linearization at 0 of its associated Lie algebroid. The converse doesn’t201

hold, even formally.202
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5. Main results203

From now on, we shall represent an ALLA by the couple (𝔤, 𝑒). We fix once for all an204

homogeneous submodule 𝑊 of the graded 𝔤-module 𝑆+ (𝔤). Then, one has the following205

exact sequence of 𝔤-modules:206

(14) 0 Hom (𝑊,Δ𝑒𝔤) Hom (𝑊, 𝔤) Hom (𝑊, �̃�𝑒) 0

We shall denote by𝑊 𝑙 the subspace of𝑊 consisting of homogeneous elements of degree 𝑙.207

Let 𝑍 (Δ𝑒𝔤) be the centralizer of Δ𝑒𝔤 in the Lie algebra 𝔤 and let 𝑅 (Δ𝑒𝔤) be the radical of208

the Lie algebra Δ𝑒𝔤. Keeping these notations, the main concern of this section is to prove209

the next statements:210

Theorem 3. Let (𝔤, 𝑒) be a non solvable affinelike Lie algebra. Then, for every positive
integer 𝑙, the following Chevalley-Eilenberg cohomology spaces vanish:

H2
(
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

))
,

H2
(
𝔤,Hom

(
𝑊 𝑙 , �̃�𝑒

))
.

Theorem 4. Let (𝔤, 𝑒) be a non solvable affinelike Lie algebra.Then, for every homogeneous211

submodule 𝑉 of the graded 𝔤-module 𝑆+𝔤:212

Ext2𝔤 (𝑉, 𝔤) = 0

Theorem 5. Every non solvable affinelike Lie algebra is formally (resp. analytically)213

weakly non degenerate in the sense of Alan Weinstein.214

Before stating the proofs of the theorems which are stated above, it is useful to fix some215

notations. Let 𝔤𝑒 = 𝑅 (𝔤𝑒) + 𝑆 be a fixed Levi decompsition of 𝔤𝑒. Therefore, the vector216

space 𝔤 may be decomposed as folows:217

𝔤 = Δ𝑒𝔤 + 𝑅 (𝔤𝑒) + 𝑆
Each subspace𝑊 𝑙 is multi-graded as indicated below:218

𝑊 𝑙 =
⊕

𝑊 𝑡 ,𝑟 ,𝑠

where 𝑡, 𝑟 and 𝑠 are non negative integers such that 𝑡 + 𝑟 + 𝑠 = 𝑙 and𝑊 𝑡 ,𝑟 ,𝑠 is a subspace of219

the vector space:220

𝑆𝑡 (Δ𝑒𝔤) ⊗ 𝑆𝑟 (𝑅 (𝔤𝑒)) ⊗ 𝑆𝑠 (𝑆) .
Every vector space 𝐶𝑘

(
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

) )
is a 𝔤-module under the prolongation of the221

adjoint representation. Thus, for each 𝑎 ∈ 𝔤, the action of 𝑎 (resp. the inner product by 𝑎)222

is denoted by 𝐿 (𝑎) (resp. 𝑖(𝑎)). The Chevalley-Eilenberg coboundary operator, namely 𝜕,223

is related to 𝐿 (𝑎) by the next Cartan formula:224

𝐿 (𝑎) = 𝜕𝑖(𝑎) + 𝑖(𝑎)𝜕.
Let b ∈ 𝑊 𝑙 . According to the previous notations, we shall write b as follows:225

b =
∑︁
𝑡 ,𝑟 ,𝑠

b𝑡 ,𝑟 ,𝑠

It is easy to see that 𝐿 (𝑒)b
𝑡 ,𝑟 ,𝑠 = 𝑡b𝑡 ,𝑟 ,𝑠 . Now, let \ ∈ 𝑍2 (

𝔤,𝑊 𝑙 ⊗ Δ𝑒𝔤
)
. Following the226

Cartan formula we get:227

𝐿 (𝑒)\ = 𝜕𝑖(𝑒)\.
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Before pursuing, let
∧𝑘 𝔤 be the 𝑘-th exterior power of the vector space 𝔤. Then, we can228

decompose it as follows:229

(15)
𝑘∧
𝔤 =

⊕ 𝑚∧
Δ𝑒𝔤 ∧

𝑛∧
𝑅 (𝔤𝑒) ∧

𝑝∧
𝑆.

with 𝑚 + 𝑛 + 𝑝 = 𝑘 . We are now in position to prove theorem 3.230

5.1. Proof of theorem 3. The proof has been divided into two parts.231

Part 1
Step 1

Let 𝑢, 𝑣 ∈ Δ𝑒𝔤 and b𝑡 ,𝑟 ,𝑠 ∈ 𝑊 𝑡 ,𝑟 ,𝑠 . A direct calculation of:232 ( (
𝐿 (𝑒)\

)
(𝑢, 𝑣)

) (
b𝑡 ,𝑟 ,𝑠,

)
yields the next result:233 ( (

𝐿 (𝑒)\
)
(𝑢, 𝑣)

) (
b𝑡 ,𝑟 ,𝑠,

)
= (−1 + 𝑡) (\ (𝑢, 𝑣))

(
b𝑡 ,𝑟 ,𝑠

)
For each 𝜙 ∈ 𝑊 𝑙 ⊕ Δ𝑒𝔤, the 𝑊 𝑡 ,𝑟 ,𝑠 component of 𝜙 is denoted by 𝜙𝑡 ,𝑟 ,𝑠 . The calculations234

made above show that for every 2-cocycle:235

\ ∈ 𝐶2
(
𝔤,𝑊 𝑙 ⊕ Δ𝑒𝔤

)
one has:236

(−1 + 𝑡) \𝑡 ,𝑟 ,𝑠 (𝑢, 𝑣) = (𝜕𝑖(𝑒)\) (𝑢, 𝑣).
From the identity above we deduce that if 𝑡 ≠ 1, then the map (𝑢, 𝑣) ↦→ \𝑡 ,𝑟 ,𝑠 (𝑢, 𝑣) coincides237

with the boundary of a 1-cochain.238

Step 2

Let 𝑥, 𝑥 ′ ∈ 𝔤. One has the following identity:239 ( (
𝐿 (𝑒)\

)
(𝑥, 𝑥 ′)

) (
b𝑡 ,𝑟 ,𝑠

)
= (1 + 𝑡) (\ (𝑥, 𝑥 ′))

(
b𝑡 ,𝑟 ,𝑠

)
Since 𝑡 is a non negative integer, the map (𝑥, 𝑥 ′) ↦→ \ (𝑥, 𝑥 ′) coincides with the coboundary240

of a 1-cochain.241

Step 3

It remains to examine \ (𝑥, 𝑢) for (𝑥, 𝑢) ∈ 𝔤𝑒 ⊕ Δ𝑒𝔤. Let us fix b𝑡 ,𝑟 ,𝑠 as above. It242

comes:243 ( (
𝐿 (𝑒)\

)
(𝑥, 𝑢)

) (
b𝑡 ,𝑟 ,𝑠

)
= 𝑡 (\ (𝑥, 𝑢))

(
b𝑡 ,𝑟 ,𝑠

)
.

Using arguments similar to those used in step 2, we deduce that if 𝑡 is a positive integer,244

then there is a 1-cochain 𝜙(𝑡) ∈ 𝐶1 (
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

) )
such that:245

\ (𝑥, 𝑢) = 𝜕𝜙(𝑡) (𝑥, 𝑢).
Step 4

Now, we take into account the decompsition 15. Given a cochain \ ∈ 𝐶𝑚+𝑛+𝑝 (𝔤,𝑊 ⊗ 𝔤),
its restriction to

∧𝑚,𝑛,𝑝 𝔤 is denoted by \𝑚,𝑛,𝑝 . Therefore, every 𝑘-cochain:

\𝑘 ∈ 𝐶𝑘
(
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

))
is decomposed as follows:246

\𝑘 =
∑︁

𝑚+𝑛+𝑝=𝑘

∑︁
𝑡+𝑟+𝑠=𝑙

\𝑡 ,𝑟 ,𝑠𝑚,𝑛, 𝑝
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In particular, when 𝜙 is a 2-cocyle, step 1, step 2 and step 3 tell us that all its components247

\
𝑡 ,𝑟 ,𝑠
𝑚,𝑛, 𝑝 are exact, except when 𝑡 = 0 or 𝑡 = 1. So, every cohomology class

[
\𝑙

]
∈248

H2 (
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

) )
may be represented by a cocycle of the form:249 ∑︁

𝑟+𝑠=𝑙
\

1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑛+𝑝=1

∑︁
𝑟+𝑠=𝑙−1

\
0,𝑟 ,𝑠
1,𝑛, 𝑝

New, let’s consider the map 𝜒 : 𝑆 → Hom
(
Δ𝑒𝔤 + 𝑅 (𝔤𝑒) , 𝑆0,𝑟 ,𝑠 (𝔤) ⊗ Δ𝑒𝔤

)
that maps 𝑥250

to
∑

𝑚+𝑛=1
∑

𝑟+𝑠=𝑡−1 𝑖(𝑥)\0,𝑟 ,𝑠
𝑚,𝑛,1. By virtue of Cartan formula, this map is a cocycle of251

𝑆. Since 𝑆 is semi-simple, there exists an element 𝜙 ∈ Hom
(
Δ𝑒𝔤 + 𝑅(𝔤𝑒), 𝑆𝑙 (𝔤) ⊗ Δ𝑒𝔤

)
252

whose coboundary is 𝜒. Now, we are in position to prove that the cohomology
[
\𝑘

]
may253

be represented by a cocycle of the form:254 ∑︁
𝑟+𝑠=𝑙−1

\
1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙

\
0,𝑟 ,𝑠
1,1,0.

Indeed, let us consider the cochain ` ∈ 𝐶1 (
𝔤, 𝑆𝑙 (𝔤) ⊗ Δ𝑒𝔤

)
which is defined by:255

`(𝑥, 𝑦) = 𝜙(𝑦).
where 𝑥 ∈ 𝑆 and 𝑦 ∈ Δ𝑒𝔤 + 𝑅 (𝔤𝑒). A direct calculation shows that the component:256 ∑︁

𝑚+𝑛=𝑙

∑︁
𝑟+𝑠=𝑙

\
0,𝑟 ,𝑠
𝑚,𝑛,1

is the coboundary of `.Therefore, the cohomology class of
[
\𝑙

]
may be represented by a257

cocycle of the form:258

(16)
∑︁

𝑟+𝑠=𝑙−1

\
1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙

\
0,𝑟 ,𝑠
1,1,0

For convenience and without loss of generality, we may assume that the ground field K is259

the field of complex numbers C. Fix a Cartan subalgebra 𝔥 ⊂ 𝑆.To the couple (𝔥, 𝑆) we260

assign the roots system R (resp. R 𝑝′)) of the 𝑆-module Δ𝑒𝔤+𝑅 (𝔤𝑒) (resp. 𝑆𝑙𝔤⊗Δ𝑒𝔤). The261

elements ofR (resp.R ′) are labelled 𝛼 𝑗 (resp. 𝛾 𝑗 ). t is to be noticed that the multigraduation262

that we are using is preserved by the action of 𝔤𝑒. Thus, given a cochain \ and a root 𝛾 ∈ R ′,263

the 𝛾-component of \ is denoted by \ (𝛾) ). Now, let 𝛼𝑖 , 𝛼 𝑗 ∈ R, and 𝛾 ∈ R ′. Let 𝐻 ∈ 𝔥.264

Taking into account those notations and the Cartan formula, one easily deduces from the265

expression 16 the following identities;266

𝛾 (𝐻) \ (𝛾)
(
𝑥𝛼𝑖
, 𝑥𝛼𝑗

)
=

(
𝛼𝑖 + 𝛼 𝑗

)
(𝐻)\ (𝛾)

(
𝛼𝑖 , 𝛼 𝑗

)
.

Those identities hold if and only if \ (𝛾) = 0, ∀𝛾 ∈ R ′. That ends the proof of the vanishing267

of H2 (𝔤,𝑊 ⊗ Δ𝑒𝔤).268

Part 2

The concern of Part2 is to prove that ∀𝑙 > 1, the cohomology space H2 (
𝔤,𝑊 𝑙 ⊗ �̃�𝑒

)
van-269

ishes. The proof is similar to that in Part 1 and so we shall keep the same notations.270

Step 1

Let \ be a 2-cocycle in 𝐶2 (
𝔤,𝑊 𝑙 ⊗ �̃�𝑒

)
. Given 𝑢, 𝑣 ∈ Δ𝑒𝔤, using the Cartan formula, a271

direct calculation of
( (
𝐿 (𝑒)\

𝑡 ,𝑟 ,𝑠
) )
(𝑢, 𝑣) yields:272

(𝑡 − 2)\𝑡 ,𝑟 ,𝑠 (𝑢, 𝑣) = (𝜕𝑖(𝑒)\) (𝑢, 𝑣).
Therefore, we deduce that the quantity \ (𝑢, 𝑣) coincides with the coboundary of a 1-cochain273

when 𝑡 ≠ 2. So, except \2,𝑟 ,𝑠
2,0,0, all of the components \𝑡 ,𝑟 ,𝑠2,0,0 are exact.274

Step 2.
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Given 𝑥, 𝑥 ′ ∈ �̃�𝑒, one deduces from the identity:275 ( (
𝐿 (𝑒)\

)
(𝑥, 𝑥 ′)

)
= (𝜕𝑖(𝑒)\) \ (𝑥, 𝑥 ′)

the following relation:276

𝑡\𝑡 ,𝑟 ,𝑠 (𝑥, 𝑥 ′) = (𝜕𝑖(𝑒)\) (𝑥, 𝑥 ′).
So, if 𝑡 ≠ 0, the component \𝑡 ,𝑟 ,𝑠0,𝑛, 𝑝 coincides with the component of an exact cocycle.277

Step 3

Given (𝑥, 𝑢) ∈ �̃�𝑒 ⊕ Δ𝑒𝔤, we have:278

(𝑡 − 1)\𝑡 ,𝑟 ,𝑠 (𝑥, 𝑢) = (𝜕𝑖(𝑒)\) (𝑥, 𝑢).
Thus, except \1,𝑟 ,𝑠

1,𝑛, 𝑝 all of the components \𝑡 ,𝑟 ,𝑠1,𝑛, 𝑝 coincides with the restriction of exact cocy-279

cle. Now, we can conclude from the three steps above that every cohomology class280

[\] ∈ H2
(
𝔤,𝑊 𝑙 ⊗ �̃�𝑒

)
may be represented by a cocycle of the following form:281

\ =
∑︁

𝑟+𝑠=𝑙−2

\
2,𝑟 ,𝑠
2,0,0 +

∑︁
𝑛+𝑝=1

∑︁
𝑟+𝑠=𝑙−1

\
1,𝑟 ,𝑠
1,𝑛, 𝑝 +

∑︁
𝑟+𝑠=𝑙

∑︁
𝑛+𝑝=2

\
0,𝑟 ,𝑠
0,𝑛, 𝑝 .

Now, taking into account this reduced form of \, it is easy to verify that the following282

component of \:283

𝜙 =
∑︁
𝑟+𝑠=𝑙

\
0,𝑟 ,𝑠
0,0,2

is a cocycle of 𝑆. Since 𝑆 is semi-simple, there exists an element 𝜒 ∈ 𝐶1 (
𝔤,𝑊 𝑙 ⊗ �̃�𝑒

)
284

whose boundary is 𝜙. Thus, we can represent the cohomology class of \𝑙 by:285

(17) 𝛾 =
∑︁

𝑟+𝑠=𝑙−2

\
2,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙−1

(
\

1,𝑟 ,𝑠
1,1,0 + \1,𝑟 ,𝑠

1,0,1

)
+

∑︁
𝑟+𝑠=𝑙

(
\

0,𝑟 ,𝑠
0,2,0 + \0,𝑟 ,𝑠

0,1,1

)
.

Now, we consider the map ` (resp. a) from 𝑆 to Hom (Δ𝑒𝔤,𝑊 ⊗ �̃�𝑒) (resp. from S to286

Hom (𝑅𝔤𝑒),𝑊 ⊗ �̃�𝑒)) which is defined as follows:287

`(𝑥) =
∑︁

𝑟+𝑠=𝑙−1

𝑖(𝑥)\1,𝑟 ,𝑠
1,0,1

and:288

a(𝑥) =
∑︁
𝑟+𝑠=𝑙

𝑖(𝑥)\0,𝑟 ,𝑠
0,1,1.

Both ` and a are cocycles of the semi-simple Lie algebra 𝑆. Thus, it exists b ∈289

Hom (Δ𝑒𝔤,𝑊 ⊗ �̃�𝑒) (resp. Z ∈ Hom (𝑅(𝔤𝑒),𝑊 ⊗ �̃�𝑒)) whose coboundary is ` (resp. a ).290

Now, let one regard the map [ = b + Z as an element of 𝐶1 (𝔤,𝑊 ⊗ 𝔤𝑒) by setting:291

[(𝑢 + 𝑦 + 𝑥) = b (𝑥) + Z (𝑥), ∀(𝑢, 𝑦, 𝑥) ∈ Δ𝑒𝔤 ⊕ 𝑅(𝔤𝑒) ⊕ 𝑆.
Now, the cocycle \ ′ = 𝛾 − 𝑑[, with 𝛾 as in 17, doesn’t contain any component of type292

\
𝑡 ,𝑟 ,𝑠
0,0, 𝑝 with 𝑝 > 0. Thus, any cohomology class in H2 (

𝔤,𝑊 𝑙 ⊗ �̃�𝑒
)

may be represented by293

a cocycle of the following REDUCED form:294

\ ′ =
∑︁

𝑟+𝑠=𝑙−1

\
1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙

(
\

0,𝑟 ,𝑠
1,1,0 + \0,𝑟 ,𝑠

0,2,0.
)

Step 4.

We assume again K = C. Therefore, we fix a Cartan subalgebra 𝔥 ⊂ 𝑆. We label 𝛼𝑖 (resp.295

𝛾 𝑗 ) the corresponding roots system of the 𝑆-module Δ𝑒𝔤 + 𝑅(𝔤𝑒) ( resp.
∑

𝑟+𝑠=𝑙−1𝑊
1,𝑟 ,𝑠 ⊗296
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�̃�𝑒+
∑

𝑟+𝑠=𝑙𝑊
0,𝑟 ,𝑠⊗�̃�𝑒 ). Now, let𝛼𝑖 , 𝛼𝑖′ and 𝛾 be roots. Taking into account the REDUCED297

form \ ′ of 2-cocycles, we denote by \ ′(𝛾) the 𝛾-component of \ ′. Then the Cartan formula298

implies the following identities:299

𝛾(𝐻)\ ′(𝛾)
(
𝑢𝛼𝑖

, 𝑢𝛼𝑖′
)
= (𝛼𝑖 + 𝛼𝑖′) (𝐻)\ ′(𝛾)

(
𝑢𝛼𝑖

, 𝑢𝛼𝑖′
)
, ∀𝛼𝑖 , 𝛼𝑖′ , 𝛾.

Of course, those identities hold if and only if each \ ′(𝛾) vanishes identically.300

5.2. Proof of theorem 4. The notations used will be the ones previously defined.Fix an301

homogeneous submodule𝑊 ⊆ 𝑆+𝔤 and let 𝑘 be a non negative integer. Owning to Remark302

3, we have:303

Ext𝑘𝔤 (𝑊, 𝐹) =
⊕
𝑙

Ext𝑘𝔤
(
𝑊 𝑙 , 𝐹

)
where 𝑙 runs over the set of positive integers and 𝐹 ∈ {Δ𝑒𝔤, 𝔤, �̃�𝑒}. On one hand, (12) gives304

rise the classical long cohomology exact sequence. In particular, the following sequence is305

exact at the level H2 (
𝔤,Hom

(
𝑊 𝑙 , 𝔤

) )
:306

H2 (𝔤,Hom (𝑊,Δ𝑒𝔤)) H2 (𝔤,Hom (𝑊, 𝔤)) H2 (𝔤,Hom (𝑊, �̃�𝑒))

On the other hand, if 𝐹 is a finite dimensional 𝔤-module, then we have the following307

classical linear isomorphisms:308

Ext𝑘𝔤
(
𝑊 𝑙 , 𝐹

)
∼ H𝑘

(
𝔤,Hom

(
𝑊 𝑙 , 𝐹

))
Thus, owing to Theorem (3), the exact sequence above yields309

Ext2𝔤 (𝑊, 𝔤)

5.3. Proof of theorem 5. Before proceeding, let us recall the meaning of Theorem (5). Let310

Π be a smooth Poisson tensor defined in a 𝑚-dimensional smooth manifold 𝑀 . Theorem311

(5) expresses a local property of Lie algebroids given by Poisson structures (near to their312

singularities). Thus, we shall suppose that 𝑀 is an open neighborhood of the origin of K𝑚.313

Let us suppose thus that Π vanishes at the origin 0 of K𝑚. Let:314

Π̌ =
∑︁
𝐼

Π𝐼

be the Taylor expansion at 0 of Π, where all of the 𝐼 are multi-indices, namely 𝐼 =315

(𝑖1, . . . , 𝑖𝑚). Let Π1 be the linear part of Π. Then, Π1 defines a Lie algebra structure in316

the vector space of linear functions. The Taylor expansion at 0 of Π is regarded as a formal317

deformation of Π1. In fact, we have three Poisson structures in a small neighborhood of318

0, namely, the smooth structure Π, the formal structure Π̌ and the linear structure Π1. So,319

finally, the question boils down to know whether Π (resp. Π̌ )is smoothly (resp. formally)320

isomorphic to Π1.321

We can now proceed to the proof of theorem 5.322

Proof. Given a multi-index 𝐼 =
(
𝑖1, . . . , 𝑖𝑝

)
, we shall set:323

𝑙 (𝐼) =
𝑝∑︁
𝑗=1

𝑖 𝑗
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Let us denote by 𝔤 the Lie algebra defined by Π1. Then, each homogeneous component Π𝐼324

of the Taylor expansion at 0 of Π is an element of 𝐶2 (
𝔤, 𝑆𝑙 (𝐼)𝔤

)
. Let us consider the Lie325

algebroid structure:326

𝐴𝜋 = (𝑇∗𝑀, ♮)
which is defined by (𝑀,Π). Let us recall the following facts. Firstly, the anchor map ♮ is327

the vector bundle map defined by:328

♮(𝛼) = 𝑖(𝛼)Π.

Secondly, given 2 smooth sections of 𝑇∗𝑀 , say 𝛼, 𝛽 their bracket is defined by:329

[𝛼, 𝛽]♮ = 𝑖♮𝛼𝑑𝛽 − 𝑖♮𝛽𝑑𝛼 + 𝑑𝑖Π𝛼 ∧ 𝛽.

Thus, one easily sees that a Poisson tensor and the associated Lie algebroid have the330

same singularities and the same linear part at their singular points. Let �̌�𝜋 , be the Taylor331

expansion at 0 of the anchor map ♮. It may be regarded as a formal deformation of the332

linear Lie algebroid:333

𝔤 =
(
𝑇∗

0𝑀,Π
1) × 𝑇0𝑀

Now, 𝑥 let be a smooth vector field defined near 0, let �̃� be a smooth section of 𝑇∗𝑀 . Let334

us set:335

𝛼 = �̃�(0)
and:336

𝑥 = 𝑥(0)
Then, the expression:337

𝜌(𝛼)𝑥 = [♮(�̃�), 𝑥] (0)
is well defined. It is easy to verify that:338

𝜌

(
[𝛼, 𝛽]♮

)
= [𝜌(𝛼), 𝜌(𝛽)] .

Therefore, the dual vector space:339

𝔤∗ = 𝑇0𝑀

is a𝔤-module, but the action of𝔤 is not the coadjoint action. The (graded)𝔤-module structure340

of 𝑆+𝔤 ⊗ 𝔤∗ is inherited from the tensor product ad𝔤 ⊗𝜌. Moreover, the coefficients of the341

Taylor expansion at 0 of ♮may be regarded as elements of the Spencer prolongations of the342

linear subalgebra 𝜌(𝔤) ⊂ 𝔤𝔩(𝑇0) ⊂ . . . , [17]. From this viewpoint, the algebroid (𝑇∗𝑀, ♮)343

is formally linearizable at 0 if the first prolongation of 𝜌(𝔤) is zero. So it is the case when344

𝜌(𝔤) is compact or when the fundamental form345

𝐵𝜌 (𝛼, 𝛽) = Tr (𝜌(𝛼)𝜌(𝛽))

is non degenerate, [17]. What is just said above is nothing but the algebraic deformation346

theoretic point of view applied to the linearization problem for the anchor map ♮ . We can347

also examine the linearization of (𝑇∗𝑀, ♮) from the abstract algebra viewpoint. Indeed, let348

us denote by Ω(𝑀) the vector space of smooth sections of 𝑇∗𝑀 . For every non negative349

integer 1, we set:350

𝜔 (𝑙) = {𝛼 ∈ Ω(𝑀) | 𝑗 𝑙0𝛼 = 0}
Every Ω(𝑙) is an ideal of the Lie algebra structure associated to the Lie algebroid (𝑇∗𝑀, ♮).351

Therefore, we get a natural filtration:352

Ω(𝑀) ⊃ Ω(1) (𝑀) ⊃ Ω(2) (𝑀) ⊃ . . .
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From now on, we shall keep in mind this filtered Lie algebra structure in Ω(𝑀), [19]. It is353

easily seen that the quotient space Ω(𝑙)/Ω(𝑙+1) may be canonically identified with:354

𝑆𝑙𝑇∗
0𝑀 ⊗ 𝑇∗

0𝑀 = Hom
(
𝑆𝑙𝑇0𝑀,𝑇

∗
0𝑀

)
.

Now, let us denote by grd Ω the graded Lie algebra whose 𝑙-th homogeneous subspace is:355

grd 𝑙Ω = Ω(𝑙)/Ω(𝑙+1) .

In fact, the positive part of grd Ω, namely:356

grd +Ω =
⊕
𝑙≥1

Ω(𝑙)/Ω(𝑙+1)

is an ideal of grd Ω. Moreover, the quotient Lie algebra:357

grd Ω/grd +𝜔

is nothing but the Lie algebra:358 (
𝑇∗

0𝑀, [., .]♮
)
=

(
𝑇∗

0𝑀,Π
1) .

So, we have the following exact sequence of Lie algebras359

(18) 0 → grd +Ω → grd Ω →
(
𝑇∗

0𝑀, [., .]♮
)
→ 0

The problem to know whether the sequence above (Lie) splits is the formal linearization360

problem for the Poisson structure (𝑀,Π), see [27]. The study of this problem involves361

the cohomology space H2 (𝔤, grd+Ω), [23, 25]. So, by the virtue of Theorem (4), the exact362

sequence of Lie algebras 18 splits. In other words, there exists a Lie algebra homomorphism363

𝜚 from
(
𝑇∗

0𝑀, [., .]♮
)

to the formal Poisson algebra
(
𝑗∞0 (𝐶∞ (𝑀,R)) , [., .]

)
such that364

𝑑0𝜚(_) = _, ∀_ ∈ 𝑇∗
0𝑀 . Of course, the bracket on power series is induced by the Poisson365

structure (𝑀,Π), viz:366 [
𝑗∞0 𝑓 , 𝑗∞0 𝑔

]
= 𝑗∞0 (Π( 𝑓 , 𝑔))

Since Π( 𝑓 , ℎ) depends only on the differential of the both 𝑓 and ℎ, we may restrict our367

attention to the set𝐶∞
0 (𝑀,R) of real valued smooth or analytic functions which vanish at the368

point 0 ∈ 𝑀 . The differentiation at 0 ∈ 𝑀 , say 𝑑0, induces a Lie algebra homomorphism369

from 𝐶∞
0 (𝑀,R) onto

(
𝑇∗

0𝑀, [., .]♮
)
. So, the smooth or analytic linearization problem for370

Π is to know whether the following exact sequence of Lie algebra splits:371

0 ker(𝑑0) 𝐶∞
0 (𝑀,R)

(
𝑇∗

0𝑀, [., .]♮
)

0

On the other side, from the deformation theory viewpoint, a sufficient condition for the372

formal linearization of (𝑇∗𝑀, ♮) (resp. Π) is the vanishing of the cohomology space373

H2 (𝔤,Hom (𝑊, 𝔤)) (resp. H2 (𝔤,𝑊∗)) for every homogeneous submodule𝑊 of the graded374

𝔤-module 𝑆+ (𝔤∗). Now, let us suppose the Lie algebra:375

𝔤 =
(
𝑇∗

0𝑀,Π
1)

to have an affinelike Lie algebra structure, namely (𝔤, 𝑒). Let us denote by 𝔤 𝑓 the formal376

deformation of 𝔤 defined by the Taylor expansion at 0 of the anchor map ♮. Its bracket is in377

a basis (𝑑𝑥1, . . . , 𝑑𝑥𝑚) is defined as follows:378 [
𝑑𝑥𝑖 , 𝑑𝑥 𝑗

]
=

∑︁
𝑘

(∑︁
𝐼

𝑐
𝐼,𝑘
𝑖 𝑗

(0)𝑥𝐼
)
𝑑𝑥𝑘
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Where 𝑐𝐼,𝑘
𝑖 𝑗

(0) is regarded as an element of Hom
(
𝑆𝑙 (𝐼)𝔤∗, 𝔤

)
. Keeping the notations of the379

previous sections, we deduce from Theorem (4) that380

H2 (𝔤,Hom (𝑊, 𝔤)) = 0.

Thus, the formal Lie algebra structure 𝔤 𝑓 is formally isomorphic to its linear part, namely381 (
𝑇∗

0𝑀,Π
1) □382

Remark 4. When the Lie algebra (𝑇∗𝑀, ♮) is an affinelike Lie algebra, it is more relevant383

to deal with the splitting problem of 18 rather than to deal with formal diffeomorphisms as384

Conn (resp. Nguyen Tien Zung) does in the case where 𝔤 is semi-simple. Indeed, when 𝔤385

is semi-simple, one has Casimir elements which permit to construct an explicit homotopy386

operator. That operator yields an explicit formal diffeomorphism linearizing formally the387

Poisson structure. If 𝔤 is an non solvable affinelike Lie algebra, one proceeds as it follows.388

For every non negative integer 𝑘 , let 𝑆𝑘 = 𝑆∞
𝑘
(𝑀,R) be the set of formal power series389

whose orders are at least equal to 𝑘 + 1. Every 𝑆𝑘 is an ideal of the Lie algebra 𝑆0 and the390

quotient Lie algebra 𝔤𝑘 = 𝑆0/𝑆𝑘 may be identified with the vector space
∑

1≤ 𝑗≤𝑘 𝑆
𝑗 (𝔤). In391

particular one has 𝔤0 = 𝔤. Moreover, one has the following exact sequence of Lie algebras:392

0 𝑆𝑘+1 (𝔤) 𝔤𝑘 𝔤𝑘−1 0

If 𝑗 < 𝑘 , the canonical projection of 𝔤𝑘 onto 𝔤 𝑗 is denoted by 𝑝 𝑗𝑘 . It is easily seen that393

𝑝𝑖 𝑗 𝑝 𝑗𝑘 = 𝑝𝑖𝑘 . Thereby, one has the projective system (𝔤𝑘 , 𝑝 𝑗𝑘). In particular the following394

exact sequence of Lie algebras splits:395

0 𝑆2 (𝔤) 𝔤1 𝔤 0

Thus, one constructs inductively an Lie algebra monomorphism 𝜚 𝑗 : 𝔤 → 𝔤 𝑗 such that for396

𝑗 < 𝑘 , one has 𝑝 𝑗𝑘 𝜚𝑘 = 𝜚 𝑗 . Those considerations yield a Lie algebra monomorphism 𝜚397

from 𝔤 to the inverse limit of (𝔤𝑘 , 𝑝 𝑗𝑘), which is 𝑗∞0
(
𝐶∞

0 (𝑀,R)
)
. That is nothing but the398

formal linearization of the Poisson structure, [27].399

Now, suppose the Poisson tensor Π to be analytic. Then, the corresponding Lie algebroid400

is analytic as well. If 𝔤 =
(
𝑇∗

0𝑀, [., .]
)

is semi-simple or if 𝔤 = 𝔤𝑛,1, then the analytic401

counterparts of Theorem 5 are nothing but Conn’s linearization theorem of analytic Poisson402

structure, [9,10,22] and the recent analytic non degeneracy theorem for 𝔞𝔣𝔣(𝑛) by Jean-Paul403

Dufour and Nguyen Tien Zung, [13]. If 𝔤 is an affinelike Lie algebra, we know how to404

construct a Lie algebra monomorphism from 𝔤 to 𝔤. Indeed, let:405

𝜎 : 𝔤 ↦→ 𝔤1

be a linear monomorphism such that 𝑝01𝜎 is the identity endomorphism of 𝔤; the bilinear406

map:407

𝜔(𝑎, 𝑏) = 𝜎( [𝑎, 𝑏]) − [𝜎(𝑎), 𝜎(𝑏)] , 𝑎, 𝑏 ∈ 𝔤

is a 𝑆2 (𝔤)-valued 2-cocyle of 𝔤 whose cohomology class doesn’t depend on the choice of408

𝜎. On one side, the linear map:409

�̄�(𝑎) = (𝑎 − 𝜎(𝑝01 (𝑎))) + 𝑝01 (𝑎)
is a Lie algebra isomorphism from 𝔤1 onto the semi direct product 𝑆2 (𝔤) ⋉ 𝔤. On the other410

side, there is an element \ ∈ Hom
(
𝔤, 𝑆2 (𝔤)

)
such that:411

𝜔(𝑎, 𝑏) = [𝜎(𝑎), \ (𝑏)] − [𝜎(𝑏), \ (𝑎)] − \ ( [𝑎, 𝑏]) .
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The map 𝜚1 assigning to every 𝑎 ∈ 𝔤 the element 𝜚1 (𝑎) = \ (𝑎) + 𝑎 is an Lie algebra412

monomorphism from 𝔤 to the semi-direct product 𝑆2 (𝔤) ⋉ 𝔤. What is just done is nothing413

but the first step yielding a Lie algebra monomorphism 𝜚 from 𝔤 to 𝑗∞
(
𝐶∞

0 (𝑀,R)
)
. Thus,414

let 𝑥1, . . . , 𝑥𝑛 be a basis of 𝔤; let 𝑐𝑘
𝑖 𝑗

be the structure constants of 𝔤 in the basis (𝑥𝑖)𝑖=1...𝑛 ,415

viz:416 [
𝑥𝑖 , 𝑥 𝑗

]
=

∑︁
𝑘

𝑐𝑘𝑖 𝑗𝑥𝑘

then one has also:417 [
𝜚(𝑥𝑖), 𝜚(𝑥 𝑗 )

]
=

∑︁
𝑘

𝑐𝑘𝑖 𝑗 𝜚(𝑥𝑘)

So, the analytic linearization problem is to prove that one can choose the basic data 𝜎418

and \ to make sure that the formal series 𝜚(𝑥1), . . . , 𝜚(𝑥𝑛) are convergent. By the virtue419

of Conn’s theorem (resp. Dufour-Nguen tien Zung’s Theorem) such data can be chosen420

whenever 𝔤 is semi-simple (resp. 𝔤 is the affine Lie algebra 𝔞𝔣𝔣(𝑛)).421

Remark 5. We conjecture that the same conclusion holds for non solvable affinelike Lie422

algebras.423

Finally, as a by product, we have the proof of theorem 1. In fact, this is the Poisson424

counterpart of Theorem 5. Mutatis mutandis, the same arguments used in the proofs of425

Theorem 5 yield:426

H2 (
𝔤, 𝑆+ (𝔤)

)
= 0

for every non solvable affinelike Lie algebra (𝔤, 𝑒). Therefore, such an affinelike Lie algebra427

is formally nondegenerate. Let us now give the proof of Theorem 2.428

5.4. Prof of 2. We have already proved the equality:429

H2 (𝔤,K) = H2 (Δ𝔤𝑒,K)

We denote the radical of Δ𝑒𝔤 by 𝑅 (Δ𝔤𝑒). Lyndon-Hocschild-Serre spectral sequence430

yields:431

H2 (Δ𝔤𝑒,R) = H0 (
Δ𝔤𝑒,H2 (𝑅 (Δ𝔤𝑒) ,R)

)
Without loss of generality, we may suppose the ground field to be the field of complex432

numbers. Let 𝑆 ⊂ Δ𝔤𝑒 a Levi sub-algebra of Δ𝔤𝑒, and let 𝔥 ⊂ 𝑆 be a Cartan sub-433

algebra. Let 𝛼 be a weigh of the 𝑆-module 𝑅(Δ𝔤𝑒) and let us denote by 𝑟𝛼 ∈ 𝑅(Δ𝔤𝑒)434

be a non zero element such that [𝐻, 𝑟𝛼] = 𝛼(𝐻)𝑟𝛼, ∀𝐻 ∈ 𝔥, It is a straight consequence435

of (alla 3) that 𝑅(Δ𝔤𝑒) is spanned by the elements 𝑟𝛼. Thus, every cohomology class436

[\] ∈ H0 (
Δ𝔤𝑒,H2 (𝑅 (Δ𝔤𝑒) ,R)

)
may be represented by a cocycle \ ∈ Hom (𝑅(Δ𝔤𝑒),R)437

such that ∀𝐻 ∈ 𝔥, 𝐿𝐻\ is the differential of a 𝜙𝐻 ∈ Hom (𝑅(Δ𝔤𝑒),R). . So, given two438

elements 𝑟𝛼, 𝑟𝛼′ as defined above, one has:439

(𝛼 + 𝛼′) (𝐻)\ (𝑟𝛼, 𝑟𝛼′) = 𝜙𝐻 ( [𝑟𝛼, 𝑟𝛼′]) .

Since 𝑅(Δ𝔤𝑒) is commutative, the last identity implies the following one:440

(𝛼 + 𝛼′) (𝐻)\ (𝑟𝛼, 𝑟𝛼′) = 0.

Thus we see that H2 (𝑅(Δ𝔤𝑒),R) = 0. So, if𝜔 is a left invariant symplectic form on𝐺, then441

𝜔 is the differential of a left invariant 1-form \ Thereby, the orbit of \ under the coadjoint442

action of 𝐺 is an open set in the dual vector space 𝔤∗. If the ground field K is the field of443
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complex numbers, then Ad∗𝐺 (\) is the complement of an algebraic variety. Indeed, given444

an element [ ∈ 𝔤∗, let 𝑥[ , be the element of 𝔤 defined by:445

𝑖(𝑥[)𝜔 = [.

Let \ ∈ 𝔤∗,let us define the linear endomorphism Φ\of 𝔤∗ by setting:446

Φ\ ([) = ad∗ (𝑥[\).
The orbit of \ is an open set in 𝔤∗ if and only if Φ\ is injective; in this case, Ad∗𝐺 (\) is an447

open and dense orbit. Since we assumed the ground field to be C, it is unique.448

Theorem 2 yields the following statement.449

Theorem 6. Let (𝑛, 𝑚) be a pair of positive integers. If 𝑛 > 2, then one has:450

H2 (
𝔤𝑛,𝑚,R

)
= 0

In particular, ( [24]) those of the 𝑔𝑛,𝑚 which admit symplectic forms are Frobenius algebras.451

6. a-algebroids452

This section will be devoted to a relevant application of Theorem 4. To begin with,453

let us recall the following normal forms theorem of Jean-Paul Dufour, [12] ( see also454

[2, 5–7, 20]).455

Theorem 7. DUF2 Let (𝐴, 𝑎) be a Lie algebroid of rank 𝑛 over a smooth 𝑚- dimensional456

manifold 𝑀 . Let 𝑟 be the rank of the anchor map 𝑎 at the point 𝑝 ∈ 𝑀 . Then, on an open457

neighborhood𝑈 of 𝑝, there exist:458

(1) A basis of local sections of 𝐴, say {𝜎1, . . . , 𝜎𝑟 , 𝜏1, . . . , 𝜏𝑛−𝑟 },459

(2) A system of local coordinate functions on 𝑀 , say {𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑚−𝑟 }460

Such that the next conditions are satisfied for any 𝑗 = 1, . . . , 𝑟 ; 𝑘, 𝑙 = 1, . . . , 𝑛 − 𝑟:461

i) 𝑎(𝜎𝑗 ) = 𝜕𝑥 𝑗 and 𝑎(𝜏𝑘) (𝑝) = 0,462

ii) 𝑎(𝜏𝑘) doesn’t depend on 𝑥1, . . . , 𝑥𝑟 ,463

iii) [𝜎𝑗 , 𝜏𝑘] = 0,464

iv) [𝜏𝑘 , 𝜏𝑙] =
∑

𝑣 𝑐
𝑣
𝑘𝑙
𝜏𝑣 , the functions 𝑐𝑣

𝑘𝑙
depending only on 𝑦1, . . . , 𝑦𝑚−𝑟 .465

In [6], R. Wolak and the author given an another proof of Theorem 7 which works for466

Koszul-Vinberg algebroids as well. Both proofs in [12] and in [6] are based in differential467

geometry arguments. The author intends to read the theorem of J-P Dufour from the sheaf468

theoretic point of view. Really, Theorem 7 is different from the local decomposition of469

Poisson manifolds, [26].470

Let (𝐴, 𝑎) be a smooth or analytic algebroid over a smooth or analytic manifold 𝑀 . Let us471

denote by Γ(𝐴) (resp. Γ(𝑇𝑀)) the sheaf of local smooth sections of 𝐴 (resp. 𝑇𝑀). Because472

the anchor map 𝑎 may have non constant rank, the following exact sequence:473

ker(𝑎) 𝐴 𝑇𝑀

is not a sequence a vector bundles over 𝑀 . However, the anchor map induces a sheaf474

homomorphism:475

Γ(𝐴) → Γ(𝑇𝑀)
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which is still denoted by 𝑎. The kernel of the last sheaf homomorphism is a sub-sheaf476

of Γ(𝐴), denoted Ker(𝑎). It is not locally trivial. However, Γ(𝐴) is a sheaf of Ker(𝑎)-477

modules. Let 𝜏 ∈ Γ(𝐴), 𝑋 ∈ Γ(𝑇𝑀). Setting 𝜏.𝑋 = [𝑎(𝜏), 𝑋] makes Γ(𝑇𝑀) inherit478

the trivial Ker(𝑎)-module structure. So, one points out the following exact sequence of479

Ker(𝑎)-modules:480

0 Ker(𝑎) Γ(𝐴) 𝑎 (Γ(𝐴)) 0

Now, let us point out the following observation. The algebraic counterpart of Theorem 7481

is that the cohomology class in H1 (Ker(𝑎),Hom (𝑎 (Γ(𝐴)) ,Ker(𝑎))) whichis represented482

by the extension above is zero. So, in some particular cases, that algebraic counterpart of483

Theorem 7 can be proved directly. In the next, we intend to give such a proof for stratified484

𝑎-algebroids.Let us consider the Leibniz axiom of (𝐴, 𝑎). Then, given two sections 𝑠, 𝑠′ of485

𝐴 and a smooth function 𝑓 , one has:486

[𝑠, 𝑓 𝑠′] = 𝑓 [𝑠, 𝑠′] + (𝑎(𝑠) 𝑓 ) 𝑠′.

It is a straight consequence of the identity above that the bracket of sections of 𝐴 induces a487

Lie algebra structure on the vector space:488

ker(𝑎) (𝑝) = span{𝜏1 (𝑝), . . . , 𝜏𝑛−𝑟 (𝑝)}

Definition 7. A lie algebroid (𝐴, 𝑎) over a smooth manifold 𝑀 is called 𝑎-algebroid (resp.489

non solvable 𝑎-algebroid) if ∀𝑝 ∈ 𝑀, 𝑘𝑒𝑟 (𝑎) (𝑝)) is an affinelike Lie algebra (resp. non490

solvable affinelike Lie algebra).491

Our aim is to show how in the case of non solvable a-algebroids, one can use the vanishing492

theorems of Section 5 to supply an algebraic proof of Theorem 7. Now, let (𝐴, 𝑎) be an493

a-algebroid over the manifold 𝑀; Forall 𝑝 ∈ 𝑀 , the bracket of sections of 𝐴 induces an494

affinelike Lie algebra structure on ker(𝑎) (𝑝). Let 𝑟 (𝑝) = rank(𝑎(𝑝)). We put:495

𝑟1 (𝑎) = max
𝑝

(𝑟 (𝑝)).

The singular points of (𝐴, 𝑎) are elements of the subset Σ(𝑎) which consists of those 𝑝 ∈ 𝑀496

where 𝑟 (𝑝) < 𝑟1. Of course 𝑀 − Σ(𝑎) is a open subset of 𝑀 . Let 𝑝 ∈ 𝑀 − Σ(𝑎) and let497

𝑉 ⊂ 𝑀 − Σ(𝑎) be an connected open neighborhood of 𝑝. Then, over the sub-manifold 𝑉 ,498

we get the following exact sequence of vector bundles:499

0 ker(𝑎) 𝐴 𝑎(𝐴) 0

On one side, the sub-vector bundle 𝑎(𝐴) ⊂ 𝑇𝑉 defines a regular foliation on 𝑉 . On the500

other side, 𝑘𝑒𝑟 (𝑎) is a locally trivial bundle ( over𝑉) of non solvable affinelike Lie algebras.501

Indeed, we know that ∀𝑝 ∈ 𝑉 one has:502

H2 (ker(𝑎) (𝑝), ker(𝑎) (𝑝)) = 0.

So, all of the Lie algebras 𝑘𝑒𝑟 (𝑎) (𝑝) are rigid, [3, 23]. Thus, ∀𝑝, 𝑝′ ∈ 𝑉 , the Lie algebras503

𝑘𝑒𝑟 (𝑎) (𝑝) and 𝑘𝑒𝑟 (𝑎) (𝑝′) are isomorphic. Over the open set 𝑉 , the action of Ker(𝑎) =504

Γ(𝑘𝑒𝑟 (𝑎)) on 𝑋 (𝑉) is trivial. Re- stricting ourself to𝑉 , we regard 𝑎(𝐴) and 𝑇𝑉 as bundles505

of Ker(𝑎)-modules. For our purpose, we shall need the following result.506

Theorem 8. If 𝑇 is a trivial module of a non solvable affinelike Lie algebra (𝔤, 𝑒), then507

Ext1
Δ𝔤
(𝑇, 𝔤) = 0.508
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Proof. Keeping the notations of section 2, we consider the following exact sequence of509

Δ𝑔-modules:510

(19) 0 Hom
(
𝑇,Δ𝔤

)
Hom (𝑇, 𝔤) Hom (𝑇, 𝔤/Δ𝔤) 0

Step 1.

Let us show that:511

H1 (Δ𝔤,Hom (𝑇,Δ𝔤)) = 0.
To do that, we assume again the ground field to be the field of complex numbers. Let us fix512

a Levi subalgebra 𝑆( [𝔤𝑒, 𝔤𝑒]) and a Cartan subalgebra 𝔥 ⊂ 𝑆. To (𝔥, 𝑆) we shall also assign513

a fixed weights system {𝛼, 𝛽, . . . } (for the 𝑆-module Δ𝔤). Let \ ∈ Hom (Δ𝔤,Hom (𝑇,Δ𝔤))514

be a cocycle of Δ𝔤. There exists an element b ∈ Hom (𝑇,Δ𝔤) such that ∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇 , one515

has:516

(\ (𝑠)) (𝑡) = (𝐿𝑠b) (𝑡) = [𝑠, b (𝑡)] .
Now, let (𝛼, 𝛽) be a couple of weights of the 𝑆-module Δ𝔤 and let 𝑟𝛼 be a non zero element517

of Δ𝔤 whose weight is 𝛼. Pour tout 𝑡 ∈ 𝑇 et 𝐻 ∈ 𝔥, we have:518

[𝐻, (\ (𝑟𝛼)) (𝑡)] [𝑟𝛼, (\ (𝐻)) (𝑡)] = (\ ( [𝐻, 𝑟𝛼])) (𝑡).
Let us compute the 𝛽-component of the identity just set. The calculation yields the following519

identity:520

(𝛽 − 𝛼) \𝑏 (𝑟𝛼) = [𝑟𝛼, (\ (𝐻)) (𝑡)]𝛽 =
[
𝑟𝛼,

[
𝐻, (b (𝑡))𝛽−𝛼

] ]
= (𝛽 − 𝛼) (𝐻)

[
𝑟𝛼, b𝛽−𝛼 (𝑡)

]
The last identity will hold if and only if ∀𝛼,∀𝑡 ∈ 𝑇 , one has:521

\ (𝑟𝛼) (𝑡) = [𝑟𝛼, b (𝑡)] .
So we have to conclude that:522

H1 (Δ𝔤,Hom (𝑇,Δ𝔤)) = 0.

Step 2.

It is convenient now to observe that the structure of Δ𝔤-module of Hom (𝑇, 𝔤,Δ𝔤) is523

trivial. Thus, we can identify H1 (Δ𝔤,Hom (𝑇, 𝔤/Δ𝔤)) with
(
H1 (Δ𝔤,K)

)dim𝑇 .Since the524

Lie algebra Δ𝔤 is perfect, H1 (Δ𝔤,K) = 0. Taking into account both Step 1 and Step2525

above, we deduce from the exact cohomology sequence given by the exact sequence 19 that526

H1 (Δ𝔤,Hom (𝑇, 𝔤)) = 0. □527

An algebraic proof of theorem 7

Proof. Let us keep the notations already used above. Let us fix a connected open set528

𝑉 ⊂ 𝑀 − Σ(𝑎). From the sheaf theoretic point of view, one is interested in the following529

sheaf cohomology:530

H1 (ΔKer(𝑎), Γ (Hom (𝑎(𝐴),Ker(𝑎)))) .
By taking into account Theorem 8, one sees that:531

H1 (ΔKer(𝑎), Γ (Hom (𝑎(𝐴),Ker(𝑎)))) = 0.

In other words, one has:532

Ext1
ΔKer(𝑎) ((𝑎 (Γ(𝐴)) ,Ker(𝑎))) = 0.

Thereby, the following exact sequence of ΔΓ(𝑘𝑒𝑟 (𝑎))- modules splits:533

0 Ker(𝑎) Γ(𝐴) 𝑎 (Γ(𝐴)) 0
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The last assertion means that every point 𝑝 ∈ 𝑉 has an open neighborhood𝑈 on which the534

following claims hold:535

(a) It exists a partial basis of local sections of 𝐴, say (𝜎𝑖)𝑖=1...𝑟 , such that:536

∀𝑝 ∈ 𝑈, rank{𝑎(𝜎1) (𝑝), . . . , 𝑎(𝜎𝑟 ) (𝑝)} = 𝑟;

(a) It exists a basis of local sections of ΔKer(𝑎), say (𝜏𝑗 ) 𝑗=1...𝑛−𝑟−1 satisfying:537 [
𝜎𝑖 , 𝜏𝑗

]
= 0.

To yield the normal forms theorem of [12], let us assume the domain 𝑈 of
(
𝜎𝑖 , 𝜏𝑗

)
to be538

also a domain of local coordinate functions of 𝑉 , say (𝑥𝑖 , 𝑦𝑙)𝑖=1...𝑟 ,𝑙=1· · ·−𝑟 such that the539

connected components of the leaves of 𝑎(𝐴) which are included in 𝑈 are defined by the540

following systems:541

𝑦𝑙 = cte, 𝑙 = 1 . . . 𝑚 − 𝑟
Thereby, one can choose the local basis (𝜎𝑖) such that:542

𝑎(𝜎𝑖) = 𝜕𝑥𝑖 , 𝑖 = 1 . . . 𝑟 .

The last conditions imply that:543

[𝜎𝑖 , 𝜎𝑖′ = 0] .
Therefore, the property []𝜎𝑖 , 𝜏𝑙] = 0 implies that:544

[𝜏𝑙 , 𝜏𝑙′] =
∑︁
𝑙′′
𝑐𝑙

′′

𝑙𝑙′ (𝑦1, . . . , 𝑦𝑚−𝑟 )𝜏𝑙′′ .

To end the ”algebraic” proof of Theorem 7, let us remind that all of the fibers of545

(ker(𝑎)) (𝑝), 𝑝 ∈ 𝑉 , are isomorphic to a fixed non solvable affinelike Lie algebra (𝔤, 𝑒).546

So, Ker(𝑎) may be regarded as a (𝔤, 𝑒)-Current algebra over𝑉 , [16]. Now, to end the proof,547

let us assume that𝑈 is also a domain of trivialization of (𝐴, 𝑎) as well. So, as vector bundle548

over𝑈, ker(𝑎) isomorphic to𝑈𝑥(𝔤, 𝑒). Let 𝜏0 be the section of 𝐴 defined by:549

𝜏0 (𝑝) = (𝑝, 𝑒),∀𝑝 ∈ 𝑈.

Now, to every couple (𝑢, 𝑠) ∈ Δ𝑒𝔤 × 𝑆, we assign the couple (𝑣, 𝜏) of sections of 𝐴 which
is defined by:

a(𝑝) = (𝑝, 𝑢)
𝜏(𝑝) = (𝑝, 𝑠)

Actually, one easily sees that for 𝑖 = 1 . . . 𝑟, [𝜏0, 𝜎𝑖] ∈ Γ (ker(𝑎)). On one hand, the550

identity:551

[𝜏, [𝜏0, 𝜎𝑖]] = 0

shows that [𝜏0, 𝛼𝑖] ∈ ΔKer(𝑎). On the other hand, the identity:552

[𝜏, [𝜏0, 𝜎𝑖]] = 0

shows that ∀𝑝 ∈ 𝑉 , [𝜏0, 𝜎𝑖] (𝑝) ∈ H0 (𝑆,Δ𝔤). Since (𝔤, 𝑒) is non solvable, one has to553

conclude that:554

[𝜏0, 𝜎𝑖] = 0.

Thus, the system:555

{𝜏𝑙 , 𝜎𝑖}𝑙=0...𝑛−𝑟 ,𝑖=1...𝑟
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is a basis of local sections of 𝐴 satisfying the properties required in Theorem 7.To get the556

general case, let us assume that the 𝑎-algebroid (𝐴, 𝑎) is stratified in following sense. The557

manifold M admits a filtration:558

𝑀 = Σ0 ⊃ Σ1 ⊃ · · · ⊃ Σ𝑖 ⊃ . . .

with the next property. Let (𝐴𝑖 , 𝑎𝑖; ) be the pull back of (𝐴, 𝑎) by the inclusion map of Σ𝑖559

in 𝑀 . Then:560

(Str 1) Σ𝑖=1 consists of singular points of (𝐴𝑖 , 𝑎𝑖).561

(Str 2) The family Σ𝑖 − Σ𝑖+1 is locally finite.562

Claim (Str 1) implies that 𝑎𝑖 (𝐴𝑖) defines a regular foliation on Σ𝑖 − Σ𝑖+1. Our algebraic563

proof of Theorem 7 works for the restriction Σ𝑖 −Σ𝑖+1 of (𝐴𝑖 , 𝑎𝑖). Actually all of the Σ𝑖 are564

closed sub-manifolds of 𝑀 . Let 𝑑𝑖 be the dimension of 𝜎𝑖 . Every point of 𝑀 has an open565

neighborood 𝑈 which is the domaine of local coordinate functions of 𝑀 , say (𝑥1, . . . , 𝑥𝑚)566

such that the connected components of𝑈 ∩ Σ𝑖 are defined by the system567

𝑥𝑑𝑖+1 = cte, . . . , 𝑥𝑚 = cte.
The last assertion yields Theorem 7 for stratified 𝑎-algebroid. □568

Let us make the following observations. Firstly, a Lie algebroid (𝐴, 𝑎) over the manifold569

𝑀 is called 𝑠 — algebroid if ∀𝑝 ∈ 𝑀, ker(𝑎) (𝑝) is a semi-simple Lie algebra. Now, we570

observe that all of the cohomology arguments which are used in the alge- braic proof of571

Theorem 7 work for 𝑠-algebroids. Secondly, R. Wolak and the author have proved the572

analogue to Theorem 7 for Koszul-Vinberg algebroids, [6]. Our analytic proof of normal573

forms theorem for Koszul-Vinberg algebroids might have its algebraic counterpart in KV-574

cohomolgy [3–5].575

7. Conlusion576

In information geometry, the divergence function defines a regular Poisson structure in the577

neighborood of the diagonal, which becomes a Lagragian sub-manifold for it. Poisson578

tensors are also encountered when dealing with antisymmetric (1, 1)-tensors satisfying a579

gauge equation, as indicated in the introduction. It it thus relevant to study such strutures,580

especially from the standing viewpoint of linearization. Within this frame, as pointed out by581

A. Weinstein, understanding the question of degeneracy of Lie algebra is a key ingredient.582

Our treatment of the problem makes use of cohomological machineries culminating in583

theorem 5 stating that any non solvable affinelike Lie algebra is non-degenerate. This result584

is part of a larger program for understanding Poisson structures in information geometry,585

that will be adressed in future works.586
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