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NON DEGENERACY OF AFFINELIKE LIE ALGEBRA

MICHEL NGUIFO BOYOM† AND STEPHANE PUECHMOREL††

Abstract. The aim of this note is to prove some cohomological vanishing theorems for
non solvable affinelike Lie algebras, say ALLA. There are some relevant consequences of
our vanishing theorems:

(1) Every real non solvable affinelike Lie algebra is formally nondegenerate in the sense
of A. Weinstein, (Theorem 1.1).

(2) Let G be a non solvable Lie group whose Lie algebra is an affinelike Lie algebra (g,e).
If the radical of [ker(ad(e)),ker(ad(e))] is commutative, then G admits a left invariant
symplectic structure if and only if it has an open coadjoint orbit, (Theorem 1.2).

(a) In Section 6, we use our vanishing theorems to supply an algebraic proof of the normal
form theorem for Lie non solvable a-algebroids.

1. Introduction

Let Π be a smooth Poisson tensor on a smooth manifold 𝑀 and let:

𝐴Π = (𝑇∗𝑀, ♮)
be the associated Lie algebroid structure in the cotangent bundle. The anchor map ♮ is the
vector bundle homomorphism from 𝑇∗𝑀 to the tangent bundle 𝑇𝑀 defined by:

♮(𝛼) = 𝑖(𝛼)Π.
Both Π and ♮ have the same singularities. Let 𝑥0 be a singular point of Π. Let us denote
by Π̃ (resp. 𝐴Π) the Taylor expansion at 𝑥0 of 𝜋 (resp. ♮). Both Π̃ and 𝐴Π have the same
linear part, namely Π1. This linear part defines a Lie algebra structure in the vector space
𝑇∗
𝑥0
𝑀 . We denote this Lie algebra structure by (𝑇∗

𝑥0
𝑀,Π1). An important and largely

open question in the Poisson geometry is to determinate those Lie algebras which are non
degenerate in the sense of A. Weinstein. If a Lie algebra 𝔤 is formally ( resp. analytically
or smoothly ) non degenerate in the sense of A. Weinstein, then, for every formal (resp.
analytic or smooth ) Poisson tensor Π the equality:

(𝑇∗
𝑥0
𝑀,Π1) = 𝔤

implies the formal (resp. analytic or smooth ) linearization (near 𝑥0) of the Poisson tensor
Π. Recently, Jean-Paul Dufour and Nguyen Tien Zung have proved that for every positive
integer m, the affine Lie algebra

Aff(𝑚) = 𝔤𝔩(𝑚) ⋉ R𝑚

is analytically non degenerate in the sense of Weinstein, [10]. The list of known types of non
degenerate Lie algebras is short, (see [DUF-MOL], [DUFNGU)]). The linearization of Π
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2 NON DEGENERACY OF AFFINELIKE LIE ALGEBRA

implies that 𝐴Π , is linearizable as well. The inverse generally fails to hold. However, Jean-
Paul Dufour conjectures that the formal linearization would imply the analytic linearization
of Poisson structures whose ranks are > 2, [DUF3]. In the analytic category, the formal
linearization of Π implies its analytic linearization whenever the linear part (𝑇∗

𝑥0
𝑀,Π1) is a

semi-simple Lie algebra, [7, 8]. The formal linearization problem may be considered from
two points of view. The first one is the splitting problem of extensions of Lie algebras, [21].
The second viewpoint is that of formal deformations of Lie algebra structures. The both
viewpoints are largely governed by the Chevalley-Eilenberg cohomology of Lie algebras,
[11, 20]. The concern of this work is the study of the formal nondegeneracy of a new
class of Lie algebras, say affinelike Lie algebras, (or ALLA). Such an algebra 𝔤 contains an
element 𝑒 such that ad(𝑒) satisfies:

ad2 (𝑒) = ad(𝑒)
Let us represent an affinelike Lie algebra by the couple (𝔤, 𝑒). From the Poisson geometry
viewpoint, central results of this work yield the following statements:

Theorem 1. Every non solvable affinelike Lie algebra is formally non degenerate in the
sense of A. Weinstein. A connected Lie group 𝐺 whose Lie algebra 𝔤 is an affinelike Lie
algebra, namely (𝔤, 𝑒), is labelled affinelike Lie group.

Theorem 2. Let: (𝔤, 𝑒) be the Lie algebra of a connected non solvable affinelike Lie
group 𝐺. Let us set 𝔤𝑒 = ker(ad(𝑒)) and, Δ𝔤𝑒 = [𝔤𝑒, 𝔤𝑒]. Suppose the radical of Δ𝔤𝑒
to be commutative. If 𝐺 carries a left invariant symplectic structure, then it has an open
coadjoint orbit in the dual vector space of its Lie algebra. Moreover, if the ground field is
the field of complex numbers, then the open coadjoint orbit is unique and everywhere dense

2. Affinelike Lie algebras

Let K be either the field R of real numbers or the field C of complex numbers. Let 𝔤 be a
Lie algebra over K. Given 𝑒 ∈ 𝔤 we shall set:

Δ𝔤 = [𝔤, 𝔤]
Δ𝑒𝔤 = [𝑒, 𝔤]
𝔤𝑒 = ker(ad(𝑒))

Let𝔖 be a Levi subalgebra of Δ𝔤𝑒. In the sequel, 𝑅(𝔤) will be the radical of the Lie algebra
𝔤.

Definition 1. A Lie algebra 𝔤 is called affinelike Lie algebra, ’ALLA’, if it contains an
element 𝑒 such that:

(alla 1) ad2 (𝑒) = ad(𝑒).

(alla 2) 𝔤 = K𝑒 ⊕ Δ𝑔.

(alla 3) If 𝔤 is non solvable, then 𝐻0 (𝔖, 𝑅(Δ𝑔)) = 0.

According to property (alla 2) above, 𝔤 is a semi-direct product of Δ𝔤 and K𝑒. Here are
two elementary properties of affinelike Lie algebras.

Proposition 1. The subspace Δ𝑒𝔤 is a commutative ideal of 𝔤.
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Proof. Let 𝑎, 𝑏 ∈ Δ𝑒𝔤. Then:

[𝑒, [𝑎, 𝑏]] = 2[𝑎, 𝑏] .
On the other hand one has:

[𝑒, [𝑒, [𝑎, 𝑏]]] = [𝑒, [𝑎, 𝑏]] .
Combining the two equalities above one easily sees that:

[𝑎, 𝑏] = 0,

proving that Δ𝑒𝔤 is commutative. To see that it is an ideal of 𝔤, we remark that as a vector
space, 𝔤 admits the following decomposition:

𝔤 = Δ𝑒𝔤 ⊕ 𝔤𝑒

Now given 𝑥 ∈ 𝔤 let us write it as:

𝑥 = 𝑢 + 𝑣, 𝑢 ∈ Δ𝑒𝔤, 𝑣 ∈ 𝔤𝑒

Given 𝑎 ∈ Δ𝑒𝔤, one has:

[𝑒, [𝑥, 𝑎]] = [𝑒, [𝑢, 𝑎]] = [𝑢, [𝑒, 𝑎]] = [𝑢, 𝑎] = [𝑥, 𝑎] .
proving that Δ𝑒𝔤 is an ideal of 𝔤. □

Proposition 2. Since ad(𝑒) is a derivation of the Lie algebra 𝔤, the subspace 𝔤𝑒 is a
subalgebra of 𝔤.

As a Lie algebra, 𝔤 may be presented as the semi-direct product:

𝔤 = 𝔤𝑒 ⋉ Δ𝑒𝔤.

Putting:
𝔤̃𝑒 = 𝔤/Δ𝑒𝔤

we have an exact split sequence of Lie albegras:

(1) 0 Δ𝑒𝔤 𝔤 𝔤̃𝑒 0

Remark 1. Under the adjoint representation of𝔤 in itself, 1 is an exact sequence of𝔤-modules
which is generally not split. However, it is split as a sequence of 𝔤𝑒-modules.

Now, let 𝑊 be a finite dimensional 𝔤-module. From 1 we deduce the following exact
sequence of 𝔤-modules:

(2) 0 Hom (𝑊,Δ𝑒𝔤) Hom (𝑊, 𝔤) Hom (𝑊, 𝔤̃𝑒) 0

As an exact sequence of 𝔤𝑒-modules, 2 is split. Let us denote by 𝐶∗ (𝔤,Hom (𝑊, 𝔤)) the
Chevalley-Eilenberg complex of 𝔤 with coefficients in Hom (𝑊, 𝔤), [6]. Then, for every
non negative integer 𝑘 , we denote by H𝑘 (𝔤,Hom (𝑊, 𝔤)) the 𝑘-th cohomology space of
H (𝔤,Hom (𝑊, 𝔤)). From Remark 1, one has the following identity:

H𝑘 (𝔤𝑒,Hom (𝑊, 𝔤)) = H𝑘 (𝔤𝑒,Hom (𝑊,Δ𝑒𝔤)) ⊕ H𝑘 (𝔤𝑒,Hom (𝑊, 𝔤̃𝑒))

This digression might be combined with the Hochschild-Serre spectral sequence to be useful
in calculating the cohomology spaces H∗ (𝔤,Hom (𝑊, 𝔤)). However, a direct calculation
of H∗ (𝔤,Hom (𝑊, 𝔤)) is the purpose of the next sections.
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3. Cohomology of polynomial maps

Let S(𝔤)) be the symmetric algebra of the vector space 𝔤. Our purpose is to calculate
the cohomology space H2 (𝔤,Hom (𝑊, 𝔤)) where 𝑊 is a homogeneous submodule of the
graded 𝔤-module:

S+ (𝔤) =
⊕
𝑖≥0

S𝑖 (𝔤)

In the sequel, se shall identify Hom (𝑊, 𝑓 ) with𝑊∗ ⊗ 𝐹, where𝑊∗ is the dual vector space
of 𝑊 and 𝐹 ∈ {Δ𝑒𝔤, 𝔤, 𝔤̃𝑒} According to the exact sequence 2, we have the classical long
exact sequence:

(3)
H𝑖 (𝔤,𝑊∗ ⊗ Δ𝑒𝔤) H𝑖 (𝔤,𝑊∗ ⊗ 𝔤) H𝑖 (𝔤,𝑊∗ ⊗ 𝔤̃𝑒)

H𝑖+1 (𝔤,𝑊∗ ⊗ Δ𝑒𝔤) . . .

Before pursuing, let us give some examples of affinelike Lie algebras.

Example 1. Let 𝑉 be a vector space over K, then the Lie algebra:

Aff(𝑉) = 𝔤𝔩(𝑉) ⋉𝑉

is an ALLA where 𝑒 is the identity endomorphism of 𝑉 .

Example 2. Let (𝑉, ⟨., .⟩) be a real euclidean space. Its Lie algebra of affine endomorphisms
with conformal linear part is an ALLA.

Example 3. Let 𝔤 = KIdK𝑚 ⋉ 𝐾𝑚. Then 𝔤 is an ALLA.

Example 4. Let 𝑀 (𝑚, 𝑛) be the vector space of 𝑚 × 𝑛 matrices with entries in K. Let:

𝔤𝑚,𝑛 = 𝔤𝔩(K𝑚) ⋉ 𝑀 (𝑚, 𝑛)

with bracket:
[(𝑎, 𝑏), (𝑎′, 𝑏′)] = ( [𝑎, 𝑎′], 𝑎𝑏′ − 𝑎′𝑏)

Let 𝑒 be the unit matrix in𝔤𝔩(K𝑚). Then (𝔤, 𝑒) is an ALLA.The algebras𝔤𝑚,𝑛 are sometimes
called affine algebras. Their coadjoint representations are deeply studied in [19].

Remark 2. Let 𝔤 be an ALLA. Then:

H2 (𝔤,K) = H2 ( [𝔤𝑒, 𝔤𝑒],K)

In fact, let 𝑒 ∈ 𝔤 be an element satisfying properties (alla 1) and (alla 2). Given a scalar
2-cocyle 𝜃 ∈ 𝐶2 (𝔤,K), the cartan formula:

𝐿 (𝑒) = 𝑖(𝑒)𝜕 + 𝜕𝑖(𝑒)

implies that:
𝐿 (𝑒)𝜃 = 𝜕𝑖(𝑒)𝜃.

Now, let 𝑥 = 𝑠 + 𝑢, 𝑥 ′ = 𝑠′ + 𝑢′ ∈ 𝔤𝑒 ⊕ Δ𝑒𝔤. One easily verifies that:

𝜃 (𝑢, 𝑢′) = 𝜃 (𝑒, [𝑠, 𝑠′]) = 0
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The restriction map from H2 (𝔤,K) to H2 (𝔤𝑒,K) is thus one-to-one. To see that it is onto,
we remark that (alla 2) implies that:

𝔤𝑒 = K𝑒 ⊕ [𝔤𝑒, 𝔤𝑒]

Moreover, the same (alla 2) shows that the Lie algebra [𝔤𝑒, 𝔤𝑒] is perfect. Thus, we have:

H1 (𝔤𝑒,K) = 0

and (
H1 (K𝑒,K)

)𝔤𝑒
= 0

Owing to the Hochschild-Serres exact sequence [14], one sees that the inflation map from
H2 ( [𝔤𝑒, 𝔤𝑒],K) to H2 (𝔤𝑒,K) is injective, thus proving the claim.

In the particular case where 𝔤 = Aff(𝑚) and 𝑒 = 𝐼𝑑K𝑚 , we have 𝑔𝑒 = 𝔤𝔩(𝑚,K) and:

H2 (𝔤𝔩(𝑚,K),K) =
∑︁

𝑝+𝑞=2

H𝑝 (K𝑒,K) ⊗ H𝑞 (𝔰𝔩(𝑚,K),K) = 0

The reader may consult [MED-REV] for another proof of the latter vanishing theorem,
namely:

H2 (Aff(K𝑚),K) = 0

The proof given here is simpler. Another remark to be made is that every affine group:

Aff(K𝑚) = GL(K𝑚) ⋉ K𝑚

has open coadjoint orbits.In other words, every affine group Aff(𝑉) carries a left invariant
symplectic structure, [19]. Indeed, it is sufficient to identify the dual vector space of the
Lie algebra 𝔞𝔣𝔣(𝑚) with itself under the transposition map. In other words, considering
𝔞𝔣𝔣(𝑚) as a subspace of 𝔤𝔩(𝑚 + 1,K), one deals with the inner product:

⟨𝐴, 𝐵⟩ = Tr(𝐴𝑡𝐵)

Let:

(𝐴, 𝑣) ∈ 𝔤𝔩(𝑚) ⋉ K

be a 𝑚-cyclic couple in the following sense: {𝑣, 𝐴𝑣, . . . , 𝐴𝑚−1𝑣} is a basis of the vector
space 𝐾𝑚. The couple (𝐴, 𝑣) being regarded as an element of 𝔤𝔩(𝑚 + 1,K), its transpose,
say (𝐴, 𝑣)𝑡 , is an element of the dual space of 𝔞𝔣𝔣(𝑚). The property to be 𝑚-cyclic implies
that the coadjoint orbit of (𝐴, 𝑣)𝑡 is an open subset of the dual vector space of 𝔞𝔣𝔣(𝑚). For
instance, take the square 𝑚 × 𝑚 matrix 𝐴 = (𝑎𝑖 𝑗) whose nonzero entries are:{

𝑎𝑖+1,𝑖 = 1
𝑎1,𝑚 = 1

Thus, 𝐴 is an 𝑚-cyclic matrix. Take the vector 𝑣 = (1, 0, .., 0) ∈ K𝑚. Then, the couple
(𝑣, 𝐴) being regarded as an element of the dual space of 𝔞𝔣𝔣(𝑚) has an open coadjoint
orbit.
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4. Weak nondegeneracy

Let Π be a smooth Poisson tensor on the smooth manifold K𝑚. Let us suppose 0 to be a
singularity of Π and let Π̂ be the Taylor expansion at 0 of Π. The linear part of Π, say Π1,
defines a Lie algebra structure in the vector space of linear functions. Let us denote this
Lie algebra structure by (K∗𝑚,Π1). Following Weinstein, a Lie algebra 𝔤 is called formally
(resp. analytically or smoothly) non degenerate if every formal (resp. analytic or smooth)
Poisson tensor Π satisfying both conditions:

Π(0) = 0

and
(K∗𝑚,Π1) = 𝔤

is formally (resp. analytically or smoothly) linearizable at 0. In other words, Π is formally
(resp. analytically or smoothly) linearizable at 0 if (near 0) there exist a system of formally
(resp. analytic or smooth) coordinate functions:

𝐹 := ( 𝑓1, . . . , 𝑗𝑚)

such that:
Π

(
𝑑𝑓𝑖 , 𝑑𝑓 𝑗

)
=

∑︁
𝑘

𝑐𝑘𝑖 𝑗 𝑓𝑘

with 𝑐𝑘
𝑖 𝑗
∈ K. Now, to every smooth Poisson tensor Π on a smooth manifold 𝑀 is assigned

the Lie algebroid structure (𝑇∗𝑀, ♮). The anchor map ♮ is the vector bundle homomor-
phism from 𝑇∗𝑀 to 𝑇𝑀 defined by:

♮(𝛼) = 𝑖(𝛼)Π.

The anchor map ♮ and the Poisson tensor Π have the same singularities. In particular
♮(0) = 0. The linear part of the Taylor expansion at 0 of ♮ defines a Lie algebra structure
in the cotangent space 𝑇∗

0𝑀 . That Lie algebra structure is the same as the one defined by
Π1. So, it is easy to see that the Taylor expansion at 0 of ♮ defines a formal deformation of
the linear Lie algebroid:

𝔤 × 𝑇0𝑀

where:
𝔤 =

(
𝑇∗

0𝑀,Π
1) .

Definition 2. A Lie algebra 𝔤 is called weakly formally (resp. weakly analytically or weakly
smoothly) non degenerate in the sense of Weinstein if the following conditions hold: let Π
be a formal (resp. analytical or smooth) Poisson structure such that:{

Π(0) = 0.
𝔤 =

(
𝑇∗

0𝑀,Π
1) .

then the corresponding formal (resp. analytic or smooth) Lie algebroid structure (𝑇∗𝑀, ♮)
is formally (resp.analytically or smoothly) linearizable at 0.

The formal (resp. analytic or smooth) linearization at 0 of Π implies the formal (resp.
analytic or smooth) linearization at 0 of its associated Lie algebroid. The converse doesn’t
hold, even formally.
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5. Main results

From now on, we shall represent an ALLA by the couple (𝔤, 𝑒). We fix once for all an
homogeneous submodule 𝑊 of the graded 𝔤-module 𝑆+ (𝔤). Then, one has the following
exact sequence of 𝔤-modules:

(4) 0 Hom (𝑊,Δ𝑒𝔤) Hom (𝑊, 𝔤) Hom (𝑊, 𝔤̃𝑒) 0

We shall denote by𝑊 𝑙 the subspace of𝑊 consisting of homogeneous elements of degree 𝑙.
Let 𝑍 (Δ𝑒𝔤) be the centralizer of Δ𝑒𝔤 in the Lie algebra 𝔤 and let 𝑅 (Δ𝑒𝔤) be the radical of
the Lie algebra Δ𝑒𝔤. Keeping these notations, the main concern of this section is to prove
the next statements:

Theorem 3. Let (𝔤, 𝑒) be a non solvable affinelike Lie algebra. Then, for every positive
integer 𝑙, the following Chevalley-Eilenberg cohomology spaces vanish:

H2
(
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

))
.

H2
(
𝔤,Hom

(
𝑊 𝑙 , 𝔤̃𝑒

))
.

Theorem 4. Let (𝔤, 𝑒) be a non solvable affinelike Lie algebra.Then, for every homogeneous
submodule 𝑉 of the graded 𝔤-module 𝑆+𝔤:

Ext2𝔤 (𝑉, 𝔤) = 0

Theorem 5. Every non solvable affinelike Lie algebra is formally (resp. analytically)
weakly non degenerate in the sense of Alan Weinstein.

Before stating the proofs of the theorems which are stated above, it is useful to fix some
notations. Let 𝔤𝑒 = 𝑅 (𝔤𝑒) + 𝑆 be a fixed Levi decompsition of 𝔤𝑒. Therefore, the vector
space 𝔤 may be decomposed as folows:

𝔤 = Δ𝑒𝔤 + 𝑅 (𝔤𝑒) + 𝑆
Each subspace𝑊 𝑙 is multi-graded as indicated below:

𝑊 𝑙 =
⊕

𝑊 𝑡 ,𝑟 ,𝑠

where 𝑡, 𝑟 and 𝑠 are non negative integers such that 𝑡 + 𝑟 + 𝑠 = 𝑙 and𝑊 𝑡 ,𝑟 ,𝑠 is a subspace of
the vector space:

𝑆𝑡 (Δ𝑒𝔤) ⊗ 𝑆𝑟 (𝑅 (𝔤𝑒)) ⊗ 𝑆𝑠 (𝑆) .
Every vector space 𝐶𝑘

(
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

) )
is a 𝔤-module under the prolongation of the

adjoint representation. Thus, for each 𝑎 ∈ 𝔤, the action of 𝑎 (resp. the inner product by 𝑎)
is denoted by 𝐿 (𝑎) (resp. 𝑖(𝑎)). The Chevalley-Eilenberg coboundary operator, namely 𝜕,
is related to 𝐿 (𝑎) by the next Cartan formula:

𝐿 (𝑎) = 𝜕𝑖(𝑎) + 𝑖(𝑎)𝜕
Let 𝜉 ∈ 𝑊 𝑙 . According to the previous notations, we shall write 𝜉 as follows:

𝜉 =
∑︁
𝑡 ,𝑟 ,𝑠

𝜉𝑡 ,𝑟 ,𝑠

It is easy to see that 𝐿 (𝑒)𝜉
𝑡 ,𝑟 ,𝑠 = 𝑡𝜉𝑡 ,𝑟 ,𝑠 . Now, let 𝜃 ∈ 𝑍2 (

𝔤,𝑊 𝑙 ⊗ Δ𝑒𝔤
)
. Following the

Cartan formula we get:
𝐿 (𝑒)𝜃 = 𝜕𝑖(𝑒)𝜃.
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Before pursuing, let
∧𝑘 𝔤 be the 𝑘-th exterior power of the vector space 𝔤. Then, we can

decompose it as follows:

(♠) :
𝑘∧
𝔤 =

⊕ 𝑚∧
Δ𝑒𝔤 ∧

𝑛∧
𝑅 (𝔤𝑒) ∧

𝑝∧
𝑆

with 𝑚 + 𝑛 + 𝑝 = 𝑘 . We are now in position to prove theorem 3.

Part 1
Step 1

Proof. Let 𝑢, 𝑣 ∈ Δ𝑒𝔤 and 𝜉𝑡 ,𝑟 ,𝑠 ∈ 𝑊 𝑡 ,𝑟 ,𝑠 . A direct calculation of:( (
𝐿 (𝑒)𝜃

)
(𝑢, 𝑣)

) (
𝜉𝑡 ,𝑟 ,𝑠,

)
yields the next result:( (

𝐿 (𝑒)𝜃
)
(𝑢, 𝑣)

) (
𝜉𝑡 ,𝑟 ,𝑠,

)
= (−1 + 𝑡) (𝜃 (𝑢, 𝑣))

(
𝜉𝑡 ,𝑟 ,𝑠

)
For each 𝜙 ∈ 𝑊 𝑙 ⊕ Δ𝑒𝔤, the 𝑊 𝑡 ,𝑟 ,𝑠 component of 𝜙 is denoted by 𝜙𝑡 ,𝑟 ,𝑠 . The calculations
made above show that for every 2-cocycle:

𝜃 ∈ 𝐶2
(
𝔤,𝑊 𝑙 ⊕ Δ𝑒𝔤

)
one has:

(−1 + 𝑡) 𝜃𝑡 ,𝑟 ,𝑠 (𝑢, 𝑣) = (𝜕𝑖(𝑒)𝜃) (𝑢, 𝑣).
From the identity above we deduce that if 𝑡 ≠ 1, then the map (𝑢, 𝑣) ↦→ 𝜃𝑡 ,𝑟 ,𝑠 (𝑢, 𝑣) coincides
with the boundary of a 1-cochain.
Step 2

Let 𝑥, 𝑥 ′ ∈ 𝔤. One has the following identity:( (
𝐿 (𝑒)𝜃

)
(𝑥, 𝑥 ′)

) (
𝜉𝑡 ,𝑟 ,𝑠

)
= (1 + 𝑡) (𝜃 (𝑥, 𝑥 ′))

(
𝜉𝑡 ,𝑟 ,𝑠

)
Since 𝑡 is a non negative integer, the map (𝑥, 𝑥 ′) ↦→ 𝜃 (𝑥, 𝑥 ′) coincides with the coboundary
of a 1-cochain.
Step 3

It remains to examine 𝜃 (𝑥, 𝑢) for (𝑥, 𝑢) ∈ 𝔤𝑒 ⊕ Δ𝑒𝔤. Let us fix 𝜉𝑡 ,𝑟 ,𝑠 as above. It comes:( (
𝐿 (𝑒)𝜃

)
(𝑥, 𝑢)

) (
𝜉𝑡 ,𝑟 ,𝑠

)
= 𝑡 (𝜃 (𝑥, 𝑢))

(
𝜉𝑡 ,𝑟 ,𝑠

)
Using arguments similar to those used in step 2, we deduce that if 𝑡 is a positive integer,
then there is a 1-cochain 𝜙(𝑡) ∈ 𝐶1 (

𝔤,Hom
(
𝑊 𝑙 ,Δ𝑒𝔤

) )
such that:

𝜃 (𝑥, 𝑢) = 𝜕𝜙(𝑡) (𝑥, 𝑢).

Step 4

Now, we take into account the decompsition (♠). Given a cochain 𝜃 ∈ 𝐶𝑚+𝑛+𝑝 (𝔤,𝑊 ⊗ 𝔤),
its restriction to

∧𝑚,𝑛,𝑝 𝔤 is denoted by 𝜃𝑚,𝑛,𝑝 . Therefore, every 𝑘-cochain:

𝜃𝑘 ∈ 𝐶𝑘
(
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

))
is decomposed as follows:

𝜃𝑘 =
∑︁

𝑚+𝑛+𝑝=𝑘

∑︁
𝑡+𝑟+𝑠=𝑙

𝜃𝑡 ,𝑟 ,𝑠𝑚,𝑛, 𝑝
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In particular, when 𝜙 is a 2-cocyle, step 1, step 2 and step 3 tell us that all its components
𝜃
𝑡 ,𝑟 ,𝑠
𝑚,𝑛, 𝑝 are exact, except when 𝑡 = 0 or 𝑡 = 1. So, every cohomology class

[
𝜃𝑙

]
∈

H2 (
𝔤,Hom

(
𝑊 𝑙 ,Δ𝑒𝔤

) )
may be represented by a cocycle of the form:∑︁

𝑟+𝑠=𝑙
𝜃

1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑛+𝑝=1

∑︁
𝑟+𝑠=𝑙−1

𝜃
0,𝑟 ,𝑠
1,𝑛, 𝑝

New, let’s consider the map 𝜒 : 𝑆 → Hom
(
Δ𝑒𝔤 + 𝑅 (𝔤𝑒) , 𝑆0,𝑟 ,𝑠 (𝔤) ⊗ Δ𝑒𝔤

)
that maps 𝑥

to
∑

𝑚+𝑛=1
∑

𝑟+𝑠=𝑡−1 𝑖(𝑥)𝜃0,𝑟 ,𝑠
𝑚,𝑛,1. By virtue of Cartan formula, this map is a cocycle of

𝑆. Since 𝑆 is semi-simple, there exists an element 𝜙 ∈ Hom
(
Δ𝑒𝔤 + 𝑅(𝔤𝑒), 𝑆𝑙 (𝔤) ⊗ Δ𝑒𝔤

)
whose coboundary is 𝜒. Now, we are in position to prove that the cohomology

[
𝜃𝑘

]
may

be represented by a cocycle of the form:∑︁
𝑟+𝑠=𝑙−1

𝜃
1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙

𝜃
0,𝑟 ,𝑠
1,1,0.

Indeed, let us consider the cochain 𝜇 ∈ 𝐶1 (
𝔤, 𝑆𝑙 (𝔤) ⊗ Δ𝑒𝔤

)
which is defined by:

𝜇(𝑥, 𝑦) = 𝜙(𝑦).
where 𝑥 ∈ 𝑆 and 𝑦 ∈ Δ𝑒𝔤 + 𝑅 (𝔤𝑒). A direct calculation shows that the component:∑︁

𝑚+𝑛=𝑙

∑︁
𝑟+𝑠=𝑙

𝜃
0,𝑟 ,𝑠
𝑚,𝑛,1

is the coboundary of 𝜇.Therefore, the cohomology class of
[
𝜃𝑙

]
may be represented by a

cocycle of the form:
(★) =

∑︁
𝑟+𝑠=𝑙−1

𝜃
1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙

𝜃
0,𝑟 ,𝑠
1,1,0

For convenience and without loss of generality, we may assume that the ground field K is
the field of complex numbers C. Fix a Cartan subalgebra 𝔥 ⊂ 𝑆.To the couple (𝔥, 𝑆) we
assign the roots system R (resp. R 𝑝′)) of the 𝑆-module Δ𝑒𝔤+𝑅 (𝔤𝑒) (resp. 𝑆𝑙𝔤⊗Δ𝑒𝔤). The
elements ofR (resp.R ′) are labelled 𝛼 𝑗 (resp. 𝛾 𝑗 ). t is to be noticed that the multigraduation
that we are using is preserved by the action of 𝔤𝑒. Thus, given a cochain 𝜃 and a root 𝛾 ∈ R ′,
the 𝛾-component of 𝜃 is denoted by 𝜃 (𝛾) ). Now, let 𝛼𝑖 , 𝛼 𝑗 ∈ R, and 𝛾 ∈ R ′. Let 𝐻 ∈ 𝔥.
Tanking into account those notations and the Cartan formula, one easily deduces from the
expression (★) the following identities;

𝛾 (𝐻) 𝜃 (𝛾)
(
𝑥𝛼𝑖
, 𝑥𝛼𝑗

)
=

(
𝛼𝑖 + 𝛼 𝑗

)
(𝐻)𝜃 (𝛾)

(
𝛼𝑖 , 𝛼 𝑗

)
.

Those identities hold if and only if 𝜃 (𝛾) = 0, ∀𝛾 ∈ R ′. That ends the proof of the vanishing
of H2 (𝔤,𝑊 ⊗ Δ𝑒𝔤).
Part 2

The concern of Part2 is to prove that ∀𝑙 > 1, the cohomology space H2 (
𝔤,𝑊 𝑙 ⊗ 𝔤̃𝑒

)
vanishes. The proof is similar to that in Part 1 and so we shall keep the same notations.
Step 1

Let 𝜃 be a 2-cocycle in 𝐶2 (
𝔤,𝑊 𝑙 ⊗ 𝔤̃𝑒

)
. Given 𝑢, 𝑣 ∈ Δ𝑒𝔤, using the Cartan formula, a

direct calculation of
( (
𝐿 (𝑒)𝜃

𝑡 ,𝑟 ,𝑠
) )
(𝑢, 𝑣) yields:

(𝑡 − 2)𝜃𝑡 ,𝑟 ,𝑠 (𝑢, 𝑣) = (𝜕𝑖(𝑒)𝜃) (𝑢, 𝑣).
Therefore, we deduce that the quantity 𝜃 (𝑢, 𝑣) coincides with the coboundary of a 1-cochain
when 𝑡 ≠ 2. So, except 𝜃2,𝑟 ,𝑠

2,0,0, all of the components 𝜃𝑡 ,𝑟 ,𝑠2,0,0 are exact.
Step 2.
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Given 𝑥, 𝑥 ′ ∈ 𝔤̃𝑒, one deduces from the identity:( (
𝐿 (𝑒)𝜃

)
(𝑥, 𝑥 ′)

)
= (𝜕𝑖(𝑒)𝜃) 𝜃 (𝑥, 𝑥 ′)

the following relation:
𝑡𝜃𝑡 ,𝑟 ,𝑠 (𝑥, 𝑥 ′) = (𝜕𝑖(𝑒)𝜃) (𝑥, 𝑥 ′).

So, if 𝑡 ≠ 0, the component 𝜃𝑡 ,𝑟 ,𝑠0,𝑛, 𝑝 coincides with the component of an exact cocycle.
Step 3

Given (𝑥, 𝑢) ∈ 𝔤̃𝑒 ⊕ Δ𝑒𝔤, we have:
(𝑡 − 1)𝜃𝑡 ,𝑟 ,𝑠 (𝑥, 𝑢) = (𝜕𝑖(𝑒)𝜃) (𝑥, 𝑢).

Thus, except 𝜃1,𝑟 ,𝑠
1,𝑛, 𝑝 all of the components 𝜃𝑡 ,𝑟 ,𝑠1,𝑛, 𝑝 coincides with the restriction of exact

cocycle. Now, we can conclude from the three steps above that every cohomology class

[𝜃] ∈ H2
(
𝔤,𝑊 𝑙 ⊗ 𝔤̃𝑒

)
may be represented by a cocycle of the following form:

𝜃 =
∑︁

𝑟+𝑠=𝑙−2

𝜃
2,𝑟 ,𝑠
2,0,0 +

∑︁
𝑛+𝑝=1

∑︁
𝑟+𝑠=𝑙−1

𝜃
1,𝑟 ,𝑠
1,𝑛, 𝑝 +

∑︁
𝑟+𝑠=𝑙

∑︁
𝑛+𝑝=2

𝜃
0,𝑟 ,𝑠
0,𝑛, 𝑝 .

Now, taking into account this reduced form of 𝜃, it is easy to verify that the following
component of 𝜃:

𝜙 =
∑︁
𝑟+𝑠=𝑙

𝜃
0,𝑟 ,𝑠
0,0,2

is a cocycle of 𝑆. Since 𝑆 is semi-simple, there exists an element 𝜒 ∈ 𝐶1 (
𝔤,𝑊 𝑙 ⊗ 𝔤̃𝑒

)
whose boundary is 𝜙. Thus, we can represent the cohomology class of 𝜃𝑙 by:

(★★) =
∑︁

𝑟+𝑠=𝑙−2

𝜃
2,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙−1

(
𝜃

1,𝑟 ,𝑠
1,1,0 + 𝜃1,𝑟 ,𝑠

1,0,1

)
+

∑︁
𝑟+𝑠=𝑙

(
𝜃

0,𝑟 ,𝑠
0,2,0 + 𝜃0,𝑟 ,𝑠

0,1,1

)
.

Now, we consider the map 𝜇 (resp. 𝜈) from 𝑆 to Hom (Δ𝑒𝔤,𝑊 ⊗ 𝔤̃𝑒) (resp. from S to
Hom (𝑅𝔤𝑒),𝑊 ⊗ 𝔤̃𝑒)) which is defined as follows:

𝜇(𝑥) =
∑︁

𝑟+𝑠=𝑙−1

𝑖(𝑥)𝜃1,𝑟 ,𝑠
1,0,1

and:
𝜈(𝑥) =

∑︁
𝑟+𝑠=𝑙

𝑖(𝑥)𝜃0,𝑟 ,𝑠
0,1,1.

Both 𝜇 and 𝜈 are cocycles of the semi-simple Lie algebra 𝑆. Thus, it exists 𝜉 ∈
Hom (Δ𝑒𝔤,𝑊 ⊗ 𝔤̃𝑒) (resp. 𝜁 ∈ Hom (𝑅(𝔤𝑒),𝑊 ⊗ 𝔤̃𝑒)) whose coboundary is 𝜇 (resp. 𝜈 ).
Now, let one regard the map 𝜂 = 𝜉 + 𝜁 as an element of 𝐶1 (𝔤,𝑊 ⊗ 𝔤𝑒) by setting:

𝜂(𝑢 + 𝑦 + 𝑥) = 𝜉 (𝑥) + 𝜁 (𝑥), ∀(𝑢, 𝑦, 𝑥) ∈ Δ𝑒𝔤 ⊕ 𝑅(𝔤𝑒) ⊕ 𝑆.
Now, the cocycle 𝜃 ′ = (★★) − 𝑑𝜂 doesn’t contain any component of type 𝜃𝑡 ,𝑟 ,𝑠0,0, 𝑝 with 𝑝 > 0.
Thus, any cohomology class in H2 (

𝔤,𝑊 𝑙 ⊗ 𝔤̃𝑒
)

may be represented by a cocycle of the
following REDUCED form:

𝜃 ′ =
∑︁

𝑟+𝑠=𝑙−1

𝜃
1,𝑟 ,𝑠
2,0,0 +

∑︁
𝑟+𝑠=𝑙

(
𝜃

0,𝑟 ,𝑠
1,1,0 + 𝜃0,𝑟 ,𝑠

0,2,0.
)

Step 4.

We assume again K = C. Therefore, we fix a Cartan subalgebra 𝔥 ⊂ 𝑆. We label 𝛼𝑖 (resp.
𝛾 𝑗 ) the corresponding roots system of the 𝑆-module Δ𝑒𝔤 + 𝑅(𝔤𝑒) ( resp.

∑
𝑟+𝑠=𝑙−1𝑊

1,𝑟 ,𝑠 ⊗
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𝔤̃𝑒+
∑

𝑟+𝑠=𝑙𝑊
0,𝑟 ,𝑠⊗𝔤̃𝑒 ). Now, let𝛼𝑖 , 𝛼𝑖′ and 𝛾 be roots. Taking into account the REDUCED

form 𝜃 ′ of 2-cocycles, we denote by 𝜃 ′(𝛾) the 𝛾-component of 𝜃 ′. Then the Cartan formula
implies the following identities:

𝛾(𝐻)𝜃 ′(𝛾)
(
𝑢𝛼𝑖

, 𝑢𝛼𝑖′
)
= (𝛼𝑖 + 𝛼𝑖′) (𝐻)𝜃 ′(𝛾)

(
𝑢𝛼𝑖

, 𝑢𝛼𝑖′
)
, ∀𝛼𝑖 , 𝛼𝑖′ , 𝛾.

Of course, those identities hold if and only if each 𝜃 ′(𝛾) vanishes identically. □

Let us now proceed to the proof of theorem 4.

Proof. The notations used will be the ones previously defined.Fix an homogeneous sub-
module𝑊 ⊆ 𝑆+𝔤 and let 𝑘 be a non negative integer. Owning to Remark 1, we have:

Ext𝑘𝔤 (𝑊, 𝐹) =
⊕
𝑙

Ext𝑘𝔤
(
𝑊 𝑙 , 𝐹

)
where 𝑙 runs over the set of positive integers and 𝐹 ∈ {Δ𝑒𝔤, 𝔤, 𝔤̃𝑒}. On one hand, (2) gives
rise the classical long cohomology exact sequence. In particular, the following sequence is
exact at the level H2 (

𝔤,Hom
(
𝑊 𝑙 , 𝔤

) )
:

H2 (𝔤,Hom (𝑊,Δ𝑒𝔤)) H2 (𝔤,Hom (𝑊, 𝔤)) H2 (𝔤,Hom (𝑊, 𝑔̃𝑒))

On the other hand, if 𝐹 is a finite dimensional 𝔤-module, then we have the following
classical linear isomorphisms:

Ext𝑘𝔤
(
𝑊 𝑙 , 𝐹

)
∼ H𝑘

(
𝔤,Hom

(
𝑊 𝑙 , 𝐹

))
Thus, owning to Theorem (3), the exact sequence above yields

Ext2𝔤 (𝑊, 𝔤)

□

Before proceeding, let us recall the meaning of Theorem (5). Let Π be a smooth Poisson
tensor defined in a 𝑚-dimensional smooth manifold 𝑀 . Theorem (5) expresses a local
property of Lie algebroids given by Poisson structures (near to their singularities). Thus,
we shall suppose that 𝑀 is an open neighborhood of the origin of K𝑚. Let us suppose thus
that Π vanishes at the origin 0 of K𝑚. Let:

Π̌ =
∑︁
𝐼

Π𝐼

be the Taylor expansion at 0 of Π, where all of the 𝐼 are multi-indices, namely 𝐼 =

(𝑖1, . . . , 𝑖𝑚). Let Π1 be the linear part of Π. Then, Π1 defines a Lie algebra structure in
the vector space of linear functions. The Taylor expansion at 0 of Π is regarded as a formal
deformation of Π1. In fact, we have three Poisson structures in a small neighborhood of
0, namely, the smooth structure Π, the formal structure Π̌ and the linear structure Π1. So
arise the questions to know whether Π (resp. Π̌ )is smoothly (resp. formally) isomorphic
to Π1.

Proposition 3. If Π is smoothly isomorphic to Π1, then Π̌ will be formally isomorphic to
Π1.
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Proof. Given a multi-index 𝐼 =
(
𝑖1, . . . , 𝑖𝑝

)
, we shall set:

𝑙 (𝐼) =
𝑝∑︁
𝑗=1

𝑖 𝑗

Let us denote by 𝔤 the Lie algebra defined by Π1. Then, each homogeneous component Π𝐼

of the Taylor expansion at 0 of Π is an element of 𝐶2 (
𝔤, 𝑆𝑙 (𝐼)𝔤

)
. Let us consider the Lie

algebroid structure:
𝐴𝜋 = (𝑇∗𝑀, ♮)

which is defined by (𝑀,Π). Let us recall the following facts. Firstly, the anchor map ♮ is
the vector bundle map defined by:

♮(𝛼) = 𝑖(𝛼)Π.
Secondly, given 2 smooth sections of 𝑇∗𝑀 , say 𝛼, 𝛽 their bracket is defined by:

[𝛼, 𝛽]♮ = 𝑖(♮𝛼)𝑑𝛽 − 𝑖(♮𝛽)𝑑𝛼 + 𝑑𝑖(♮𝛼)𝛽.
Thus, one easily sees that a Poisson tensor and the associated Lie algebroid have the
same singularities and the same linear part at their singular points. Let 𝐴̌𝜋 , be the Taylor
expansion at 0 of the anchor map ♮. It may be regarded as a formal deformation of the
linear Lie algebroid:

𝔤 =
(
𝑇∗

0𝑀,Π
1) × 𝑇0𝑀

Now, 𝑥 let be a smooth vector field defined near 0, let 𝛼̃ be a smooth section of 𝑇∗𝑀 . Let
us set:

𝛼 = 𝛼̃(0)
and:

𝑥 = 𝑥(0)
Then, the expression:

𝜌(𝛼)𝑥 = [♮(𝛼̃), 𝑥] (0)
is well defined. It is easy to verify that:

𝜌

(
[𝛼, 𝛽]♮

)
= [𝜌(𝛼), 𝜌(𝛽)] .

Therefore, the dual vector space:
𝔤∗ = 𝑇0𝑀

is a𝔤-module, but the action of𝔤 is not the coadjoint action. The (graded)𝔤-module structure
of 𝑆+𝔤 ⊗ 𝔤∗ is inherited from the tensor product ad𝔤 ⊗𝜌. Moreover, the coefficients of the
Taylor expansion at 0 of ♮may be regarded as elements of the Spencer prolongations of the
linear subalgebra 𝜌(𝔤) ⊂ 𝔤𝔩(𝑇0) ⊂ . . . , [13]. From this viewpoint, the algebroid (𝑇∗𝑀, ♮)
is formally linearizable at 0 if the first prolongation of 𝜌(𝔤) is zero. So it is the case when
𝜌(𝔤) is compact or when the fundamental form

𝐵𝜌 (𝛼, 𝛽) = Tr (𝜌(𝛼)𝜌(𝛽))
is non degenerate, [13]. What is just said above is nothing but the algebraic deformation
theoretic point of view applied to the linearization problem for the anchor map ♮ . We can
also examine the linearization of (𝑇∗𝑀, ♮) from the abstract algebra viewpoint. Indeed, let
us denote by Ω(𝑀) the vector space of smooth sections of 𝑇∗𝑀 . For every non negative
integer 1, we set:

𝜔 (𝑙) = {𝛼 ∈ Ω(𝑀) | 𝑗 𝑙0𝛼 = 0}
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Every Ω[𝑙) is an ideal of the Lie algebra structure associated to the Lie algebroid (𝑇∗𝑀, ♮).
Therefore, we get a natural filtration:

Ω(𝑀) ⊃ Ω(1) (𝑀) ⊃ Ω(2) (𝑀) ⊃ . . .

From now on, we shall keep in mind this filtered Lie algebra structure in Ω(𝑀), [15]. It is
easily seen that the quotient space Ω(𝑙)/Ω(𝑙+1) may be canonically identified with:

𝑆𝑙𝑇∗
0𝑀 ⊗ 𝑇∗

0𝑀 = Hom
(
𝑆𝑙𝑇0𝑀,𝑇

∗
0𝑀

)
.

Now, let us denote by grd Ω the graded Lie algebra whose 𝑙-th homogeneous subspace is:

grd 𝑙Ω = Ω(𝑙)/Ω(𝑙+1) .

In fact, the positive part of grd Ω, namely:

grd +Ω =
⊕
𝑙≥1

Ω[𝑙) ]/Ω(𝑙+1)

is an ideal of grd Ω. Moreover, the quotient Lie algebra:

grd Ω/grd +𝜔

is nothing but the Lie algebra: (
𝑇∗

0𝑀, [., .]♮
)
=

(
𝑇∗

0𝑀,Π
1) .

So, we have the following exact sequence of Lie algebras

(♥) : 0 → grd +Ω → grd Ω →
(
𝑇∗

0𝑀, [., .]♮
)
→ 0

The problem to know whether the sequence above (Lie) splits is the formal linearization
problem for the Poisson structure (𝑀,Π), see [21]. The study of this problem involves
the cohomology space H2 (𝔤, grd+Ω), [18, 20]. So, by the virtue of Theorem (4), the exact
sequence of Lie algebras (♥) splits. In other words, there exists a Lie algebra homomor-
phism 𝜚 from

(
𝑇∗

0𝑀, [., .]♮
)

to the formal Poisson algebra
(
𝑗∞0 (𝐶∞ (𝑀,R)) , [., .]

)
such

that 𝑑0𝜚(𝜆) = 𝜆, ∀𝜆 ∈ 𝑇∗
0𝑀 . Of course, the bracket on power series is induced by the

Poisson structure (𝑀,Π), viz: [
𝑗∞0 𝑓 , 𝑗∞0 𝑔

]
= 𝑗∞0 (Π( 𝑓 , 𝑔))

Since Π( 𝑓 , ℎ) depends only on the differential of the both 𝑓 and ℎ, we may restrict our
attention to the set𝐶∞

0 (𝑀,R) of real valued smooth or analytic functions which vanish at the
point 0 ∈ 𝑀 . The differentiation at 0 ∈ 𝑀 , say 𝑑0, induces a Lie algebra homomorphism
from 𝐶∞

0 (𝑀,R) onto
(
𝑇∗

0𝑀, [., .]♮
)
. So, the smooth or analytic linearization problem for

Π is to know whether the following exact sequence of Lie algebra splits:

0 ker(𝑑0) 𝐶∞
0 (𝑀,R)

(
𝑇∗

0𝑀, [., .]♮
)

0

On the other side, from the deformation theory viewpoint, a sufficient condition for the
formal linearization of (𝑇∗𝑀, ♮) (resp. Π) is the vanishing of the cohomology space
H2 (𝔤,Hom (𝑊, 𝔤)) (resp. H2 (𝔤,𝑊∗)) for every homogeneous submodule𝑊 of the graded
𝔤-module 𝑆+ (𝔤∗). Now, let us suppose the Lie algebra:

𝔤 =
(
𝑇∗

0𝑀,Π
1)
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to have an affinelike Lie algebra structure, namely (𝔤, 𝑒). Let us denote by 𝔤 𝑓 the formal
deformation of 𝔤 defined by the Taylor expansion at 0 of the anchor map ♮. Its bracket is in
a basis (𝑑𝑥1, . . . , 𝑑𝑥𝑚) is defined as follows:[

𝑑𝑥𝑖 , 𝑑𝑥 𝑗
]
=

∑︁
𝑘

(∑︁
𝐼

𝑐
𝐼,𝑘
𝑖 𝑗

(0)𝑥𝐼
)
𝑑𝑥𝑘

Where 𝑐𝐼,𝑘
𝑖 𝑗

(0) is regarded as an element of Hom
(
𝑆𝑙 (𝐼)𝔤∗, 𝔤

)
. Keeping the notations of the

previous sections, we deduce from Theorem (4) that

H2 (𝔤,Hom (𝑊, 𝔤)) = 0.

Thus, the formal Lie algebra structure 𝔤 𝑓 is formally isomorphic to its linear part, namely(
𝑇∗

0𝑀,Π
1) □

Remark 3. When the Lie algebra (𝑇∗𝑀, ♮) is an affinelike Lie algebra, it is more relevant to
deal with the splitting problem of (♥) rather than to deal with formal diffeomorphisms as
Conn (resp. Nguyen Tien Zung) does in the case where 𝔤 is semi-simple. Indeed, when 𝔤

is semi-simple, one has Casimir elements which permit to construct an explicit homotopy
operator. That operator yields an explicit formal diffeomorphism linearizing formally the
Poisson structure. If 𝔤 is an non solvable affinelike Lie algebra, one proceeds as it follows.
For every non negative integer 𝑘 , let 𝑆𝑘 = 𝑆∞

𝑘
(𝑀,R) be the set of formal power series

whose orders are at least equal to 𝑘 + 1. Every 𝑆𝑘 is an ideal of the Lie algebra 𝑆0 and the
quotient Lie algebra 𝔤𝑘 = 𝑆0/𝑆𝑘 may be identified with the vector space

∑
1≤ 𝑗≤𝑘 𝑆

𝑗 (𝔤). In
particular one has 𝔤0 = 𝔤. Moreover, one has the following exact sequence of Lie algebras:

0 𝑆𝑘+1 (𝔤) 𝔤𝑘 𝔤𝑘−1 0

If 𝑗 < 𝑘 , the canonical projection of 𝔤𝑘 onto 𝔤 𝑗 is denoted by 𝑝 𝑗𝑘 . It is easily seen that
𝑝𝑖 𝑗 𝑝 𝑗𝑘 = 𝑝𝑖𝑘 . Thereby, one has the projective system (𝔤𝑘 , 𝑝 𝑗𝑘). In particular the following
exact sequence of Lie algebras splits:

0 𝑆2 (𝔤) 𝔤1 𝔤 0

Thus, one constructs inductively an Lie algebra monomorphism 𝜚 𝑗 : 𝔤 → 𝔤 𝑗 such that for
𝑗 < 𝑘 , one has 𝑝 𝑗𝑘 𝜚𝑘 = 𝜚 𝑗 . Those considerations yield a Lie algebra monomorphism 𝜚

from 𝔤 to the inverse limit of (𝔤𝑘 , 𝑝 𝑗𝑘), which is 𝑗∞0
(
𝐶∞

0 (𝑀,R)
)
. That is nothing but the

formal linearization of the Poisson structure, [21].

Now, suppose the Poisson tensor Π to be analytic. Then, the corresponding Lie algebroid
is analytic as well. If 𝔤 =

(
𝑇∗

0𝑀, [., .]
)

is semi-simple or if 𝔤 = 𝔤𝑛,1, then the analytic
counterparts of Theorem 5 are nothing but Conn’s linearization theorem of analytic Poisson
structure, [7,8,23] and the recent analytic non degeneracy theorem for 𝔞𝔣𝔣(𝑛) by Jean-Paul
Dufour and Nguyen Tien Zung, [10]. If 𝔤 is an affinelike Lie algebra, we know how to
construct a Lie algebra monomorphism from 𝔤 to 𝔤. Indeed, let:

𝜎 : 𝔤 ↦→ 𝔤1

be a linear monomorphism such that 𝑝01𝜎 is the identity endomorphism of 𝔤; the bilinear
map:

𝜔(𝑎, 𝑏) = 𝜎( [𝑎, 𝑏]) − [𝜎(𝑎), 𝜎(𝑏)] , 𝑎, 𝑏 ∈ 𝔤
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is a 𝑆2 (𝔤)-valued 2-cocyle of 𝔤 whose cohomology class doesn’t depend on the choice of
𝜎. On one side, the linear map:

𝜔̄(𝑎) = (𝑎 − 𝜎(𝑝01 (𝑎))) + 𝑝01 (𝑎)
is a Lie algebra isomorphism from 𝔤1 onto the semi direct product 𝑆2 (𝔤) ⋉ 𝔤. On the other
side, there is an element 𝜃 ∈ Hom

(
𝔤, 𝑆2 (𝔤)

)
such that:

𝜔(𝑎, 𝑏) = [𝜎(𝑎), 𝜃 (𝑏)] − [𝜎(𝑏), 𝜃 (𝑎)] − 𝜃 ( [𝑎, 𝑏]) .
The map 𝜚1 assigning to every 𝑎 ∈ 𝔤 the element 𝜚1 (𝑎) = 𝜃 (𝑎) + 𝑎 is an Lie algebra
monomorphism from 𝔤 to the semi-direct product 𝑆2 (𝔤) ⋉ 𝔤. What is just done is nothing
but the first step yielding a Lie algebra monomorphism 𝜚 from 𝔤 to 𝑗∞

(
𝐶∞

0 (𝑀,R)
)
. Thus,

let 𝑥1, . . . , 𝑥𝑛 be a basis of 𝔤; let 𝑐𝑘
𝑖 𝑗

be the structure constants of 𝔤 in the basis (𝑥𝑖)𝑖=1...𝑛 ,
viz: [

𝑥𝑖 , 𝑥 𝑗
]
=

∑︁
𝑘

𝑐𝑘𝑖 𝑗𝑥𝑘

then one has also: [
𝜚(𝑥𝑖), 𝜚(𝑥 𝑗 )

]
=

∑︁
𝑘

𝑐𝑘𝑖 𝑗 𝜚(𝑥𝑘)

So, the analytic linearization problem is to prove that one can choose the basic data 𝜎
and 𝜃 to make sure that the formal series 𝜚(𝑥1), . . . , 𝜚(𝑥𝑛) are convergent. By the virtue
of Conn’s theorem (resp. Dufour-Nguen tien Zung’s Theorem) such data can be chosen
whenever 𝔤 is semi-simple (resp. 𝔤 is the affine Lie algebra 𝔞𝔣𝔣(𝑛). I conjecture that the
same conclusion holds for non solvable affinelike Lie algebras.
Proof of theorem 1

Proof. In fact, this is the Poisson counterpart of Theorem 5. Mutatis mutandis, the same
arguments used in the proofs of Theorem 5 yield:

H2 (
𝔤, 𝑆+ (𝔤)

)
= 0

for every non solvable affinelike Lie algebra (𝔤, 𝑒). Therefore, such an affinelike Lie algebra
is formally nondegenerate. □

Let us now give the proof of Theorem 2.

Proof. We have already proved the equality:
H2 (𝔤,K) = H2 (Δ𝔤𝑒,K)

We denote the radical of Δ𝑒𝔤 by 𝑅 (Δ𝔤𝑒). Lyndon-Hocschild-Serre spectral sequence
yields:

H2 (Δ𝔤𝑒,R) = H0 (
Δ𝔤𝑒,H2 (𝑅 (Δ𝔤𝑒) ,R)

)
Without loss of generality, we may suppose the ground field to be the field of complex
numbers. Let 𝑆 ⊂ Δ𝔤𝑒 a Levi sub-algebra of Δ𝔤𝑒, and let 𝔥 ⊂ 𝑆 be a Cartan sub-
algebra. Let 𝛼 be a weigh of the 𝑆-module 𝑅(Δ𝔤𝑒) and let us denote by 𝑟𝛼 ∈ 𝑅(Δ𝔤𝑒)
be a non zero element such that [𝐻, 𝑟𝛼] = 𝛼(𝐻)𝑟𝛼, ∀𝐻 ∈ 𝔥, It is a straight consequence
of (alla 3) that 𝑅(Δ𝔤𝑒) is spanned by the elements 𝑟𝛼. Thus, every cohomology class
[𝜃] ∈ H0 (

Δ𝔤𝑒,H2 (𝑅 (Δ𝔤𝑒) ,R)
)

may be represented by a cocycle 𝜃 ∈ Hom (𝑅(Δ𝔤𝑒),R)
such that ∀𝐻 ∈ 𝔥, 𝐿𝐻𝜃 is the differential of a 𝜙𝐻 ∈ Hom (𝑅(Δ𝔤𝑒),R). . So, given two
elements 𝑟𝛼, 𝑟𝛼′ as defined above, one has:

(𝛼 + 𝛼′) (𝐻)𝜃 (𝑟𝛼, 𝑟𝛼′) = 𝜙𝐻 ( [𝑟𝛼, 𝑟𝛼′]) .
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Since 𝑅(Δ𝔤𝑒) is commutative, the last identity implies the following one:

(𝛼 + 𝛼′) (𝐻)𝜃 (𝑟𝛼, 𝑟𝛼′) = 0.

Thus we see that H2 (𝑅(Δ𝔤𝑒),R) = 0. So, if𝜔 is a left invariant symplectic form on𝐺, then
𝜔 is the differential of a left invariant 1-form 𝜃 Thereby, the orbit of 𝜃 under the coadjoint
action of 𝐺 is an open set in the dual vector space 𝔤∗. If the ground field K is the field of
complex numbers, then Ad∗𝐺 (𝜃) is the complement of an algebraic variety. Indeed, given
an element 𝜂 ∈ 𝔤∗, let 𝑥𝜂 , be the element of 𝔤 defined by:

𝑖(𝑥𝜂)𝜔 = 𝜂.

Let 𝜃 ∈ 𝔤∗,let us define the linear endomorphism Φ𝜃of 𝔤∗ by setting:

Φ𝜃 (𝜂) = ad∗ (𝑥𝜂𝜃).
The orbit of 𝜃 is an open set in 𝔤∗ if and only if Φ𝜃 is injective; in this case, Ad∗𝐺 (𝜃) is an
open and dense orbit. Since we assumed the ground field to be C, it is unique. □

Theorem 2 yields the following statement.

Theorem 6. Let (𝑛, 𝑚) be a pair of positive integers. If 𝑛 > 2, then one has:

H2 (
𝔤𝑛,𝑚,R

)
= 0

In particular, (see [RAI],) those of the 𝑔𝑛,𝑚 which admit symplectic forms are Frobeniusian.

6. A-algebroids

This section will be devoted to a relevant application of Theorem 4. To begin with,
let us recall the following normal forms theorem of Jean-Paul Dufour, [9] ( see also
[1, 3–5, 16].)

Theorem 7. DUF2 Let (𝐴, 𝑎) be a Lie algebroid of rank 𝑛 over a smooth 𝑚- dimensional
manifold 𝑀 . Let 𝑟 be the rank of the anchor map 𝑎 at the point 𝑝 ∈ 𝑀 . Then, on an open
neighborhood𝑈 of 𝑝, there exist:

(1) A basis of local sections of 𝐴, say {𝜎1, . . . , 𝜎𝑟 , 𝜏1, . . . , 𝜏𝑛−𝑟 },

(2) A system of local coordinate functions on 𝑀 , say {𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑚−𝑟 }

Such that the next conditions are satisfied for any 𝑗 = 1, . . . , 𝑟 ; 𝑘, 𝑙 = 1, . . . , 𝑛 − 𝑟:

i) 𝑎(𝜎𝑗 ) = 𝜕𝑥 𝑗 and 𝑎(𝜏𝑘) (𝑝) = 0,

ii) 𝑎(𝜏𝑘) doesn’t depend on 𝑥1, . . . , 𝑥𝑟 ,

iii) [𝜎𝑗 , 𝜏𝑘] = 0,

iv) [𝜏𝑘 , 𝜏𝑙] =
∑

𝑣 𝑐
𝑣
𝑘𝑙
𝜏𝑣 , the functions 𝑐𝑣

𝑘𝑙
depending only on 𝑦1, . . . , 𝑦𝑚−𝑟 .

In [4], R. Wolak and the author given an another proof of Theorem 7 which works for
Koszul-Vinberg algebroids as well. Both proofs in [9] and in [4] are based in differential
geometry arguments. The author intends to read the theorem of J-P Dufour from the sheaf
theoretic point of view. Really, Theorem 7 is different from the local decomposition of
Poisson manifolds, [22]. Let (𝐴, 𝑎) be a smooth or analytic algebroid over a smooth or
analytic manifold 𝑀 . Let us denote by Γ(𝐴) (resp. Γ(𝑇𝑀)) the sheaf of local smooth
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sections of 𝐴 (resp. 𝑇𝑀). Because the anchor map 𝑎 may have non constant rank, the
following exact sequence:

ker(𝑎) 𝐴 𝑇𝑀

is not a sequence a vector bundles over 𝑀 . However, the anchor map induces a sheaf
homomorphism:

Γ(𝐴) → Γ(𝑇𝑀)
which is still denoted by 𝑎. The kernel of the last sheaf homomorphism is a sub-sheaf
of Γ(𝐴), denoted Ker(𝑎). It is not locally trivial. However, Γ(𝐴) is a sheaf of Ker(𝑎)-
modules. Let 𝜏 ∈ Γ(𝐴), 𝑋 ∈ Γ(𝑇𝑀). Setting 𝜏.𝑋 = [𝑎(𝜏), 𝑋] makes Γ(𝑇𝑀) inherit
the trivial Ker(𝑎)-module structure. So, one points out the following exact sequence of
Ker(𝑎)-modules:

0 Ker(𝑎) Γ(𝐴) 𝑎 (Γ(𝐴)) 0

Now, let us point out the following observation. The algebraic counterpart of Theorem 7
is that the cohomology class in H1 (Ker(𝑎),Hom (𝑎 (Γ(𝐴)) ,Ker(𝑎))) whichis represented
by the extension above is zero. So, in some particular cases, that algebraic counterpart of
Theorem 7 can be proved directly. In the next, we intend to give such a proof for stratified
𝑎-algebroids.Let us consider the Leibniz axiom of (𝐴, 𝑎). Then, given two sections 𝑠, 𝑠′ of
𝐴 and a smooth function 𝑓 , one has:

[𝑠, 𝑓 𝑠′] = 𝑓 [𝑠, 𝑠′] + (𝑎(𝑠) 𝑓 ) 𝑠′.

It is a straight consequence of the identity above that the bracket of sections of 𝐴 induces a
Lie algebra structure on the vector space:

ker(𝑎) (𝑝) = span{𝜏1 (𝑝), . . . , 𝜏𝑛−𝑟 (𝑝)}

Definition 3. A lie albegroid (𝐴, 𝑎) over a smooth manifold 𝑀 is called 𝑎-algebroid (resp.
non solvable 𝑎-algebroid) if ∀𝑝 ∈ 𝑀, 𝑘𝑒𝑟 (𝑎) (𝑝)) is an affinelike Lie algebra (resp. non
solvable affinelike Lie algebra).

Our aim is to show how in the case of non solvable a-algebroids, one can use the vanishing
theorems of Section 5 to supply an algebraic proof of Theorem 7. Now, let (𝐴, 𝑎) be an
a-algebroid over the manifold 𝑀; Forall 𝑝 ∈ 𝑀 , the bracket of sections of 𝐴 induces an
affinelike Lie algebra structure on ker(𝑎) (𝑝). Let 𝑟 (𝑝) = rank(𝑎(𝑝)). We put:

𝑟1 (𝑎) = max
𝑝

(𝑟 (𝑝)).

The singular points of (𝐴, 𝑎) are elements of the subset Σ(𝑎) which consists of those 𝑝 ∈ 𝑀
where 𝑟 (𝑝) < 𝑟1. Of course 𝑀 − Σ(𝑎) is a open subset of 𝑀 . Let 𝑝 ∈ 𝑀 − Σ(𝑎) and let
𝑉 ⊂ 𝑀 − Σ(𝑎) be an connected open neighborhood of 𝑝. Then, over the sub-manifold 𝑉 ,
we get the following exact sequence of vector bundles:

0 ker(𝑎) 𝐴 𝑎(𝐴) 0

On one side, the sub-vector bundle 𝑎(𝐴) ⊂ 𝑇𝑉 defines a regular foliation on 𝑉 . On the
other side, 𝑘𝑒𝑟 (𝑎) is a locally trivial bundle ( over𝑉) of non solvable affinelike Lie algebras.
Indeed, we know that ∀𝑝 ∈ 𝑉 one has:

H2 (ker(𝑎) (𝑝), ker(𝑎) (𝑝)) = 0.
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So, all of the Lie algebras 𝑘𝑒𝑟 (𝑎) (𝑝) are rigid, [2, 18]. Thus, ∀𝑝, 𝑝′ ∈ 𝑉 , the Lie algebras
𝑘𝑒𝑟 (𝑎) (𝑝) and 𝑘𝑒𝑟 (𝑎) (𝑝′) are isomorphic. Over the open set 𝑉 , the action of Ker(𝑎) =
Γ(𝑘𝑒𝑟 (𝑎)) on 𝑋 (𝑉) is trivial. Re- stricting ourself to𝑉 , we regard 𝑎(𝐴) and 𝑇𝑉 as bundles
of Ker(𝑎)-modules. For our purpose, we shall need the following result.

Theorem 8. If 𝑇 is a trivial module of a non solvable affinelike Lie algebra (𝔤, 𝑒), then
Ext1

Δ𝔤
(𝑇, 𝔤) = 0.

Proof. Keeping the notations of section 2, we consider the following exact sequence of
Δ𝑔-modules:

(5) 0 Hom
(
𝑇,Δ𝔤

)
Hom (𝑇, 𝔤) Hom (𝑇, 𝔤/Δ𝔤) 0

Step 1.

Let us show that:
H1 (Δ𝔤,Hom (𝑇,Δ𝔤)) = 0.

To do that, we assume again the ground field to be the field of complex numbers. Let us fix
a Levi subalgebra 𝑆( [𝔤𝑒, 𝔤𝑒]) and a Cartan subalgebra 𝔥 ⊂ 𝑆. To (𝔥, 𝑆) we shall also assign
a fixed weights system {𝛼, 𝛽, . . . } (for the 𝑆-module Δ𝔤). Let 𝜃 ∈ Hom (Δ𝔤,Hom (𝑇,Δ𝔤))
be a cocycle of Δ𝔤. There exists an element 𝜉 ∈ Hom (𝑇,Δ𝔤) such that ∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇 , one
has:

(𝜃 (𝑠)) (𝑡) = (𝐿𝑠𝜉) (𝑡) = [𝑠, 𝜉 (𝑡)] .
Now, let (𝛼, 𝛽) be a couple of weights of the 𝑆-module Δ𝔤 and let 𝑟𝛼 be a non zero element
of Δ𝔤 whose weight is 𝛼. Pour tout 𝑡 ∈ 𝑇 et 𝐻 ∈ 𝔥, we have:

[𝐻, (𝜃 (𝑟𝛼)) (𝑡)] [𝑟𝛼, (𝜃 (𝐻)) (𝑡)] = (𝜃 ( [𝐻, 𝑟𝛼])) (𝑡).
Let us compute the 𝛽-component of the identity just set. The calculation yields the following
identity:
(𝛽 − 𝛼) 𝜃𝑏 (𝑟𝛼) = [𝑟𝛼, (𝜃 (𝐻)) (𝑡)]𝛽 =

[
𝑟𝛼,

[
𝐻, (𝜉 (𝑡))𝛽−𝛼

] ]
= (𝛽 − 𝛼) (𝐻)

[
𝑟𝛼, 𝜉𝛽−𝛼 (𝑡)

]
The last identity will hold if and only if ∀𝛼,∀𝑡 ∈ 𝑇 , one has:

𝜃 (𝑟𝛼) (𝑡) = [𝑟𝛼, 𝜉 (𝑡)] .
So we have to conclude that:

H1 (Δ𝔤,Hom (𝑇,Δ𝔤)) = 0.

Step 2.

It is convenient now to observe that the structure of Δ𝔤-module of Hom (𝑇, 𝔤,Δ𝔤) is
trivial. Thus, we can identify H1 (Δ𝔤,Hom (𝑇, 𝔤/Δ𝔤)) with

(
H1 (Δ𝔤,K)

)dim𝑇 .Since the
Lie algebra Δ𝔤 is perfect, H1 (Δ𝔤,K) = 0. Taking into account both Step 1 and Step2
above, we deduce from the exact cohomology sequence given by the exact sequence 5 that
H1 (Δ𝔤,Hom (𝑇, 𝔤)) = 0. □

An algebraic proof of theorem 7

Proof. Let us keep the notations already used above. Let us fix a connected open set
𝑉 ⊂ 𝑀 − Σ(𝑎). From the sheaf theoretic point of view, one is interested in the following
sheaf cohomology:

H1 (ΔKer(𝑎), Γ (Hom (𝑎(𝐴),Ker(𝑎)))) .
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By taking into account Theorem 8, one sees that:
H1 (ΔKer(𝑎), Γ (Hom (𝑎(𝐴),Ker(𝑎)))) = 0.

In other words, one has:
Ext1

ΔKer(𝑎) ((𝑎 (Γ(𝐴)) ,Ker(𝑎))) = 0.

Thereby, the following exact sequence of ΔΓ(𝑘𝑒𝑟 (𝑎))- modules splits:

0 Ker(𝑎) Γ(𝐴) 𝑎 (Γ(𝐴)) 0

The last assertion means that every point 𝑝 ∈ 𝑉 has an open neighborhood𝑈 on which the
following claims hold:

(a) It exists a partial basis of local sections of 𝐴, say (𝜎𝑖)𝑖=1...𝑟 , such that:
∀𝑝 ∈ 𝑈, rank{𝑎(𝜎1) (𝑝), . . . , 𝑎(𝜎𝑟 ) (𝑝)} = 𝑟;

(a) It exists a basis of local sections of ΔKer(𝑎), say (𝜏𝑗 ) 𝑗=1...𝑛−𝑟−1 satisfying:[
𝜎𝑖 , 𝜏𝑗

]
= 0.

To yield the normal forms theorem of [9], let us assume the domain 𝑈 of
(
𝜎𝑖 , 𝜏𝑗

)
to be

also a domain of local coordinate functions of 𝑉 , say (𝑥𝑖 , 𝑦𝑙)𝑖=1...𝑟 ,𝑙=1· · ·−𝑟 such that the
connected components of the leaves of 𝑎(𝐴) which are included in 𝑈 are defined by the
following systems:

𝑦𝑙 = cte, 𝑙 = 1 . . . 𝑚 − 𝑟
Thereby, one can choose the local basis (𝜎𝑖) such that:

𝑎(𝜎𝑖) = 𝜕𝑥𝑖 , 𝑖 = 1 . . . 𝑟 .

The last conditions imply that:
[𝜎𝑖 , 𝜎𝑖′ = 0] .

Therefore, the property []𝜎𝑖 , 𝜏𝑙] = 0 implies that:

[𝜏𝑙 , 𝜏𝑙′] =
∑︁
𝑙′′
𝑐𝑙

′′

𝑙𝑙′ (𝑦1, . . . , 𝑦𝑚−𝑟 )𝜏𝑙′′ .

To end the ”algebraic” proof of Theorem 7, let us remind that all of the fibers of
(ker(𝑎)) (𝑝), 𝑝 ∈ 𝑉 , are isomorphic to a fixed non solvable affinelike Lie algebra (𝔤, 𝑒).
So, Ker(𝑎) may be regarded as a (𝔤, 𝑒)-Current algebra over𝑉 , [12]. Now, to end the proof,
let us assume that𝑈 is also a domain of trivialization of (𝐴, 𝑎) as well. So, as vector bundle
over𝑈, ker(𝑎) isomorphic to𝑈𝑥(𝔤, 𝑒). Let 𝜏0 be the section of 𝐴 defined by:

𝜏0 (𝑝) = (𝑝, 𝑒),∀𝑝 ∈ 𝑈.
Now, to every couple (𝑢, 𝑠) ∈ Δ𝑒𝔤 × 𝑆, we assign the couple (𝑣, 𝜏) of sections of 𝐴 which
is defined by:

𝜈(𝑝) = (𝑝, 𝑢)
𝜏(𝑝)) (𝑝, 𝑠)

Actually, one easily sees that for 𝑖 = 1 . . . 𝑟, [𝜏0, 𝜎𝑖] ∈ Γ (ker(𝑎)). On one hand, the
identity:

[𝜏, [𝜏0, 𝜎𝑖]] = 0
shows that [𝜏0, 𝛼𝑖] ∈ ΔKer(𝑎). On the other hand, the identity:

[𝜏, [𝜏0, 𝜎𝑖]] = 0
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shows that ∀𝑝 ∈ 𝑉 , [𝜏0, 𝜎𝑖] (𝑝) ∈ H0 (𝑆,Δ𝔤). Since (𝔤, 𝑒) is non solvable, one has to
conclude that:

[𝜏0, 𝜎𝑖] = 0.
Thus, the system:

{𝜏𝑙 , 𝜎𝑖}𝑙=0...𝑛−𝑟 ,𝑖=1...𝑟

is a basis of local sections of 𝐴 satisfying the properties required in Theorem 7.To get the
general case, let us assume that the 𝑎-algebroid (𝐴, 𝑎) is stratified in following sense. The
manifold M admits a filtration:

𝑀 = Σ0 ⊃ Σ1 ⊃ · · · ⊃ Σ𝑖 ⊃ . . .

with the next property. Let (𝐴𝑖 , 𝑎𝑖; ) be the pull back of (𝐴, 𝑎) by the inclusion map of Σ𝑖

in 𝑀 . Then:

(Str 1) Σ𝑖=1 consists of singular points of (𝐴𝑖 , 𝑎𝑖).

(Str 2) The family Σ𝑖 − Σ𝑖+1 is locally finite.

Claim (Str 1) implies that 𝑎𝑖 (𝐴𝑖) defines a regular foliation on Σ𝑖 − Σ𝑖+1. Our algebraic
proof of Theorem 7 works for the restriction Σ𝑖 −Σ𝑖+1 of (𝐴𝑖 , 𝑎𝑖). Actually all of the Σ𝑖 are
closed sub-manifolds of 𝑀 . Let 𝑑𝑖 be the dimension of 𝜎𝑖 . Every point of 𝑀 has an open
neighborood 𝑈 which is the domaine of local coordinate functions of 𝑀 , say (𝑥1, . . . , 𝑥𝑚)
such that the connected components of𝑈 ∩ Σ𝑖 are defined by the system

𝑥𝑑𝑖+1 = cte, . . . , 𝑥𝑚 = cte.

The last assertion yields Theorem 7 for stratified 𝑎-algebroid. □

Let us make the following observations. Firstly, a Lie algebroid (𝐴, 𝑎) over the manifold
𝑀 is called 𝑠 — algebroid if ∀𝑝 ∈ 𝑀, ker(𝑎) (𝑝) is a semi-simple Lie algebra. Now, we
observe that all of the cohomology arguments which are used in the alge- braic proof of
Theorem 7 work for 𝑠-algebroids. Secondly, R. Wolak and the author have proved the
analogue to Theorem 7 for Koszul-Vinberg algebroids, [4]. Our analytic proof of normal
forms theorem for Koszul-Vinberg algebroids might have its algebraic counterpart in KV-
cohomolgy [2, 3, 17].
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