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Abstract: This paper presents a new air traffic complexity metric based on linear dynamical systems, 1

of which the goal is to quantify the intrinsic complexity of a set of aircraft trajectories. Previous works 2

have shown that the structure and organization of air traffic are essential factors in the perception of 3

the complexity of an air traffic situation. Usually they were not able to explicitly address trajectory 4

pattern organization. The new metric, by identifying the organization properties of trajectories in 5

a traffic pattern, captures some of the key factors involved in ATC complexity. The key idea of 6

this work is to find a linear dynamical system which fits a vector field as closely as possible to 7

the observations given by the aircraft positions and speeds. This approach produces an aggregate 8

complexity metric that enables to identify high (low) complexity regions of airspace and compare 9

their relative complexity. The metric is very appropriate to compare different traffic situations for any 10

scale (sector or country) by associatting a complexity index to each trajectory sample in the airspace. 11

For instance, to compute the complexity for a sector, one must just sum-up complexity for trajectory 12

samples intersecting such a sector. This computation can also be extended in the time dimension in 13

order to estimate the average complexity in a given airspace for a period of time. 14

Keywords: Complexity; Dynamical System; Air Traffic Disorder 15

1. Introduction 16

Regarding air traffic management research, there have been three main objectives of 17

interest: reduce air flight delay, solve air traffic conflicts efficiently and mitigate air space 18

congestion. This work proposes a method to assess the latter. 19

The operational capacity of a control sector is measured by the maximum number of 20

flights that may cross the sector in a given period. This measurement does not consider 21

the direction of the traffic, treating geometrically structured and disordered traffic in the 22

same way. Thus, in certain situations, a controller may continue to accept traffic even 23

if operational capacity has been reached (structured traffic situation). In other cases, a 24

controller may need to refuse airplanes even though the operational capacity has not 25

been reached (disordered traffic situation). Thus, modeling airspace congestion using the 26

number of airplanes per unit of time is insufficient to reflect the levels of difficulty involved 27

in a traffic situation. 28

Air traffic control organizes air flows to ensure flight safety and increase the route 29

network’s capacity. In 2019, before COVID, about 8500 flights were registered everyday 30

over France, which is a crossroad for the whole European airspace. This traffic generates a 31

huge amount of control workload, and the airspace is then divided into elementary sectors 32

which air navigation controllers manage. For several years, a constant increase in air traffic 33

has induced more and more congestion in the control sectors. Two strategies can then be 34

applied to reduce such congestion. The first one consists of adapting the demand to the 35

existing capacity (slot-route allocation, collaborative decision-making, etc...). The second 36

one adapts the capacity to the demand (modification of the air network, new design of 37

the sectorization, new airports, etc...). For the two preceding approaches, the capacity of a 38
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sector is measured by the number of aircraft flying across the sector during a given period 39

of time. 40

This study aims to synthesize a traffic complexity indicator to quantify better the 41

congestion in the air sector, which will be more relevant than a simple number of aircraft 42

independent of the traffic configuration. More precisely, our objective is to build a metric 43

of the intrinsic complexity of the traffic distribution in the airspace, which relates to 44

controller workload. Such metrics must capture the level of disorder (or organization) of 45

any traffic distribution. Usually, metrics are focused on the speed vector distribution, and 46

the associated disorder metric captures only some features of the traffic complexity. The 47

real objective of our work is to build a metric that measures the disorder or organization of 48

trajectories in 4D space (3D for space and 1D for time). 49

Such complexity metrics are relevant for many applications in the air traffic man- 50

agement area. For instance, when a sectorization is designed[1], the sectors have to be 51

balanced from the congestion point of view and nowadays, only the number of aircraft is 52

used to reach this objective. Another example where a congestion metric is needed is the 53

traffic assignment[2,3] for which an optimal time of departure and a route are searched 54

for each aircraft in order to reduce the congestion in the airspace. Complexity metric may 55

also be used to design new air networks, for dynamic sectoring concepts, define future 56

ATM concepts (Free Flight), etc... Complexity metrics enable to qualify and quantify the 57

performance of the Air Traffic service providers and enable a more objective consultation 58

between airlines and providers. 59

The work presented in this paper is based on dynamical systems modeling of air 60

traffic. A dynamical system describes the evolution of a given state vector. If such a vector 61

is given by the position of aircraft ~X = [x, y, z]T , a dynamical system associates a speed 62

vector ~̇X =
[
vx, vy, vz

]T to each point in the airspace. The key idea is to find a dynamical 63

system that models the observed aircraft trajectories. A trajectory disorder metric can be 64

computed based on this dynamical system modeling. The metric is targeted to measure the 65

intrinsic traffic complexity related to a set of 4D trajectories related to the control workload. 66

Such control workload encompasses other factors (airspace structure, etc...) that are not 67

considered in the metric computation. 68

In the first part, this paper will summarize the previous related works. The second 69

part will present a linear dynamical system modeling for which the complexity metric can 70

be represented into a complex coordinate system. It is very easy to identify any speed 71

vector organization pattern in this system. The third part illustrates the computation of 72

such a metric in several traffic situations. 73

2. Previous Related Works 74

The airspace complexity is related to the traffic structure and the airspace geometry. 75

Different efforts are underway to measure the whole complexity of the airspace. 76

Wyndemere Inc. [4] proposed a measure of the perceived complexity of an air traffic 77

situation. This measure is related to the controller’s cognitive workload with or without 78

knowing the aircraft’s intents. The metric is human-oriented and is then very subjective. 79

Laudeman et al. from NASA [5] have developed a metric called “Dynamic Density” 80

which is more quantitative than the previous ones and is based on the flow characteristics 81

of the airspace. The “Dynamic Density” is a weighted sum of the traffic density (number 82

of aircraft), the number of heading changes (>15 degrees), the number of speed changes 83

(>0.02 Mach), the number of altitude changes (>750 ft), the number of aircraft with 3D 84

Euclidean distance between 0− 25 nautical miles, the number of conflicts predicted in 85

25− 40 nautical miles. The parameters of the sums have been adjusted by showing different 86

traffic situations to several controllers. B. Sridhar from NASA[6] has developed a model 87

to predict the evolution of such a metric in the near future. Efforts to define “Dynamic 88

Density” have identified the importance of many potential complexity factors, including 89

structural considerations. 90
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Airspace complexity depends on both structural and flow characteristics of the 91

airspace[6]. The structural characteristics are fixed for a sector and depend on the spatial 92

and physical attributes of the sector, such as terrain, number of airways, airway crossings, 93

and navigation aids. The flow characteristics vary as a function of time and depend on the 94

number of aircraft, the mix of aircraft, weather, the separation between aircraft, etc... A 95

combination of these structural and flow parameters influences the controller workload. 96

The traffic itself is not enough to describe the complexity associated with an airspace. 97

A few previous studies have attempted to include structural consideration in complexity 98

metrics but have done so only to a restricted degree. For example, the Wyndemere Corpo- 99

ration proposed a metric that included a term based on the relationship between aircraft 100

headings and dominant geometric axis in a sector [4]. The importance of including struc- 101

tural consideration has been explicitly identified in recent work at Eurocontrol. In a study 102

to identify complexity factors using judgment analysis, “Airspace Design” was identified 103

as the second most crucial factor behind traffic volume[7]. The impact of the structure on 104

the controller workload can be found on the paper[8,9]. Those papers show how strong the 105

traffic structure (airways, sectors, etc...) is related to the control workload through several 106

traffic factors dependent on the instantaneous distribution of traffic (clustering, number of 107

aircraft, distance between aircraft, relative speed between aircraft, etc...) 108

The previous models do not take into account the intrinsic traffic disorder, which is 109

related to the complexity. The first efforts related to disorder can be found in[10]. This paper 110

introduces metrics based on geometrical properties that measure a traffic pattern’s disorder. 111

Those metrics can extract features on the traffic complexity such as proximity (measures 112

the level of aggregation of aircraft in the airspace), convergence (for close aircraft, this 113

metric measures how strongly aircraft are closer to each other), and sensitivity (this metric 114

measures how the relative distance between aircraft is sensible to the control maneuver). G. 115

Aigoin has extended and refined the geometrical class by using a cluster-based analysis[11]. 116

Two aircraft are said to be in the same cluster if the product of their relative speed and 117

their proximity (a function of the inverse of the relative distance) is above a threshold. 118

For each cluster, a metric of relative dependence between aircraft is computed, and the 119

whole complexity of the cluster is then given by a weighted sum of the matrix norm. Those 120

norms give an aggregated measure of the level of proximity of aircraft in clusters and the 121

associated convergence. From the cluster matrix, it is also possible to compute the difficulty 122

of a cluster (it measures how hard it is to solve a cluster). Multiple clusters can exist within 123

a sector, and their interactions must also be considered. A measure of this interaction has 124

been proposed by G. Aigoin [11]. This technique allows multiple complexity metrics to be 125

developed, such as average complexity, maximum and minimum cluster complexities, and 126

complexity speeds. 127

Another approach based on fractal dimension has been proposed by S. Mondoloni and 128

D. Liang in[12]. Fractal dimension is a metric comparing traffic configurations resulting 129

from various operational concepts. It allows, in particular, to separate the complexity 130

due to sectorization from the complexity due to traffic flow features. The dimension of 131

geometrical figures is well-known: a line is of dimension 1, a rectangle of dimension 2, 132

etc. The application of this concept to air route analysis consists in computing the fractal 133

dimension of the geometrical figure composed of existing air routes. Fractal dimension 134

provides information on the number of degrees of freedom used in the airspace: a higher 135

fractal dimension indicates more degrees of freedom. Therefore, the fractal dimension 136

measures the geometrical complexity of a traffic pattern. 137

Some new geometrical metrics have been developed in[13] which are able to capture 138

the level of disorder or the level of organization for some traffic patterns. For instance, in 139

an artificial roundabout moving, the speed vectors are very different even if the global 140

moving is fully organized without any changes in the relative distance between aircraft. 141

The covariance and the Koenig metrics have been developed to capture those features. The 142

first one is able to identify the disorder or organization of translation movements. The 143

second one identifies organized curl moving. 144
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In[10] another approach based on nonlinear dynamical system modeling of the air 145

traffic uses the topological entropy as a measure of the disorder of the traffic pattern. This 146

approach represents more faithfully the traffic’s structure but requires a lot of computation 147

for establishing the metric. First, the non-linear dynamical system is adjusted to the 148

observations in order to build the associated vector field. Then, Lyapunov exponents 149

are computed in order to characterize the overall properties of the vector field. When an 150

exponent has a high value, it shows a high sensitivity to initial conditions meaning the 151

situation is difficult to predict. In this case the traffic situation presents a high level of 152

disorder. Unfortunately, this metric is not able to take uncertainties into account which is 153

the case when one want to predict congestion in the near future. 154

We propose in this paper an approximation of such a metric based on the linear dynam- 155

ical system, which measures the local disorder of a set of trajectories in the neighborhood 156

of a given aircraft at a given time. This approximation is much faster to compute and can 157

take into account uncertainties of the future position of aircraft, which is not possible with 158

the nonlinear dynamical system framework described in[10]. 159

3. Metric Description (Linear Dynamical System Modeling) 160

The investigated indicator will be linked to the air traffic modeling by a linear dynam- 161

ical system, yielding an intrinsic measure of complexity of the geometry of the traffic. This 162

enables to identify different structures of organization of the aircraft speed vectors such as 163

translation, curve organizations, divergence, convergence, or a mix of them. 164

3.1. Model 165

The key idea of this metric is to model the set of aircraft trajectories by a linear 166

dynamical system. A dynamical system models a vector field by a set of differential 167

equations which describes and controls the evolution of a given state vector and is defined 168

by the following equation: 169

~̇X = A · ~X + ~B (1)

~X is the state vector of the system: 170

~X =

[
x
y

]
(2)

In this equation, we only consider the observations’ x and y components since air 171

traffic controllers see two dimensions speed vectors on their screens. Moreover, the metric 172

will be computed for each flight level in a given airspace. Equation1 associates a speed 173

vector ~̇X with each point in the state space ~X. This synthesis is a particular vector field. 174

The average behavior of this vector field is given by the vector ~B and the linear mapping 175

between the speed vector ~̇X and the position vector ~X is given by matrix A. Therefore, the 176

coefficients of matrix A and vector ~B determine the mode of evolution of the system in 177

relation to its dynamics. 178

More precisely, the eigenvalues of this matrix will determine the behavior of the 179

system and will be used to obtain the complexity metric. The properties and relevance of 180

these eigenvalues will be explained in section3.3. 181

First, we focus on defining and modeling the linear dynamical system that will allow 182

us to obtain matrix A. Our problem therefore consists on determining the dynamical model 183

which is closest to the observations: Those observation are extracted from the radar trackers 184

(positions and speeds of aircraft at a given time). We then consider that for each aircraft, 185

we have set position ~Xi and speed measures ~Vi at some consecutive time stamps i: 186

~Xi =

[
xi
yi

]
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~Vi =

[
vxi

vyi

]
An example of such observations is given on figure 1 for which aircraft observation 187

are represented by the blue arrows.

Figure 1. Radar captures associated with three aircraft. In this example only one time sample is
considered.

188

We thus wish to find the vector field described by a linear equation
(
~̇X = A · ~X + ~B

)
189

which is best fitted to our observations. To illustrate this aspect, we construct a grid over the 190

airspace (see Figure 2) on which we carry out a regression of a vector field that minimizes 191

the error between the model and the observations. In order to use matrix forms, we rewrite 192

equation 1 as V = C · X, introducing the following matrices: 193

X =

 x1 x2 x3 · · · xn
y1 y2 y3 · · · yn
1 1 1 · · · 1

 (3)

V =

[
vx1 vx2 vx3 · · · vxn

vy1 vy2 vy3 · · · vyn

]
(4)

C =

[
a11 a12 b1

︸ ︷︷ ︸
A

a21 a22 ︸︷︷︸
~B

b2

]
(5)

194

195

where X ∈ R3×n, V ∈ R2×n, C ∈ R2×3, A ∈ R2×2,~B ∈ R2×1 and n represents the 196

number of observations at a given instant (number of aircraft present in a sector at a given 197

instant). 198
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Figure 2. Vector field produced by the linear dynamic system

3.2. Regression 199

The dynamical system has to be adjusted with the minimum error based on the aircraft 200

observations (positions and speed vectors). This fitting has been done with a Least Mean 201

Square minimization (LMS) method[14]. For each considered aircraft i, it is supposed that 202

position ~Xi = [xi, yi]
T and speed vector ~Vi =

[
vxi , vyi

]T are given. We then construct an 203

error criterion E, between the dynamical system model and the observation, based on a 204

norm (Euclidean, in our case), which should be minimized in relation to matrix A and 205

vector ~B, and therefore in relation to matrix C, which represents the parameters of the 206

model: 207

E =

√√√√i=n

∑
i=0

∥∥∥~Vi −
(

A·~Xi + ~B
)∥∥∥2

=

√√√√i=n

∑
i=0

∥∥∥~Vi −
(

C·~Xi

)∥∥∥2
(6)

In a matrix form: 208

E = ‖V− C·X‖

E minimization is the same as E2 minimization: E2 = ‖V− C·X‖2. 209

The derivative of such expression with respect to C is given by: 210

∇CE2 = −2.(V− C·X).XT

E is minimum when: ∇CE = 0⇒ C·X·XT = V·XT then: 211

Copt = V·XT ·(X·XT)−1

On the right side, we recognize the pseudo-inverse of matrix XT :

X+ = XT ·(X·XT)−1

In some situations, X ·XT is not invertible, and the computation of the Copt is not 212

possible by using such equation. In this case, the classical Singular Value Decomposition 213

(SVD) trick is applied: 214

XT ·(X·XT)−1 = LT ·S−1 ·R
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where S is a diagonal matrix containing the singular values (only the significant 215

singular values are inverted in this formula in order to control the conditioning of the 216

algorithm). 217

⇒ Copt = V·LT ·S−1 ·R

Based on C the matrix A is extracted for which an eigenvalue decomposition is
computed:

A = U·D·UT

The diagonal matrix D contains the eigenvalues. When such eigenvalues have positive 218

real parts, the system is in expansion mode, and when they are negative, the system is in 219

contraction mode. 220

In addition the vector ~B represents the global tendency of the vector field. 221

3.3. Properties of Eigenvalues 222

The eigenvalues of matrix A describe and summarize the evolution of the system. 223

These eigenvalues are complex numbers. Their real parts are related to the convergence 224

or the divergence property of the system in the direction of the eigenvector. When such 225

eigenvalues have positive real parts, the system is in expansion mode (produces divergence), 226

and when they are negative, the system is in contraction mode (produces convergence). 227

The absolute value of these real parts is proportional to the level of contraction or expansion 228

of the system: the larger those real parts are in absolute value, the faster the evolution. 229

Furthermore, the imaginary part of the eigenvalues is related to the level of rotation 230

tendency of the system: the tendency of the system to organize itself following a global 231

rotation movement associated with each of the eigen axes. Depending on those eigenvalues, 232

a dynamical system can evolve in contraction, expansion, rotation, or a combination of 233

those three modes. 234

We will refer to a fully organized traffic pattern when the relative distances between 235

aircraft do not change with time. For such a situation, the traffic is very predictable and 236

very comfortable to address by a controller: trajectories do not present any difficulties. 237

These patterns are translation, rotation, or both. 238

Then, the evolution properties of the system related to the position of the eigenvalues 239

can be summarized in the complex coordinate system (see Figure 3). In this coordinate 240

system, it is then possible to identify the locus of the eigenvalues of matrix A associated 241

with organized traffic situations: the vertical strip around the imaginary axis. Therefore, 242

organized situations are located around the imaginary axis: when the relative distances 243

between aircraft change slowly with time (this means that the relative speeds between 244

aircraft are close to zero and the traffic has no interaction). 245
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𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙
convergence

ro
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n
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n
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Organized Traffic

Figure 3. Impact of the eigenvalues of matrix A on the dynamics of the system

As an example (see Figure 4), the eigenvalues of matrix A have been calculated for 246

a situation with three aircraft located on a circumference, for which only the orientation 247

of the speed vectors is modified in order to create four traffic situations (pure translation, 248

convergence, divergence, and pure rotation). As we can see in Figure 4, the pure translation 249

and pure rotation are the two organized traffic situations since they have eigenvalues in 250

the central band of the complex plane. 251

Translation Convergence Divergence Rotation
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Position of the eigenvalues of matrix A in the complex plane
𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1,2

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1,2

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1,2

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙

𝜆1

𝜆2

Figure 4. Eigenvalues loci for 4 traffic situations

In the first case, the eigenvalues~λ are null because the aircraft are flying in parallel, 252

representing a translation: distances between aircraft remain unchanged with time. In 253

the second case, the eigenvalues are real negative; the system evolves in a contraction 254

mode, and the four aircraft are converging: the norms of the relative distances between 255

aircraft diminish with time. The third situation represents an expansion evolution for 256

which the eigenvalues are real positive, and the aircraft are diverging: the relative distances 257

increase with time. In the two previous situations, the distance between aircraft changes 258

with time, not being organized traffic patterns. The last situation is associated with full 259

imaginary eigenvalues for which the aircraft stay at the same distance from each other in a 260
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curl moving. The computation of matrices A, vectors ~B, and~λ is given for these previous 261

examples: 262

Translation Convergence Divergence Rotation

A =

[
0 0
0 0

]
A = υ

d ·
[
−1 0
0 −1

]
A = υ

d ·
[

1 0
0 1

]
A = υ

d ·
[

0 1
−1 0

]
~B =

[
υ
0

]
~B =

[
0
0

]
~B =

[
0
0

]
~B =

[
0
0

]
~λ = υ

d ·
[

0
0

]
~λ = υ

d ·
[
−1
−1

]
~λ = υ

d ·
[

+1
+1

]
~λ = υ

d ·
[

+j
−j

] (7)

Looking at Figure 4, the small squares are the initial positions of aircraft at a given 263

time (this represents the observation given by radar, for instance, with the associated speed 264

vector). As it can be seen, the aircraft are initially located on a circumference with a diameter 265

of 2·d. The positions of aircraft two and three are symmetric to the x-axis. All the speed 266

norms are the same and have been fixed at υ. The vector field associated with each one of 267

these four situations is shown in Figure 5. 268

(a) Translation. (b) Convergence.

(c) Divergence. (d) Rotation.

Figure 5. Vector field produced for the 4 toy examples. The red arrows represent the vector filed of
the associated linear dynamical system model.



Version April 21, 2022 submitted to Aerospace 10 of 17

3.4. Extension with uncertainties 269

If we want to predict complexity in a given airspace, one must be able to take into 270

account future aircraft positions uncertainties which are crossing such airspace. Those 271

uncertainties are linked to the wind and temperature encountered by the aircraft along its 272

route. So, future positions of aircraft will be represented by a segment along its trajectory 273

arc length in the future. Therefore, since we should account for these uncertainties, it has 274

been considered that at every sample time of the analysis, each aircraft that is within the 275

current modeled airspace area can be ahead or behind its actual position. Then, a time 276

shift is applied to each aircraft (i.e., the reference one and the neighbors) to account for ten 277

forward and ten backward positions. Each shift is equal to twelve seconds, so the most 278

forward and backward positions are separated two minutes with respect to the reference 279

position. 280

In order to simplify the following figures, we will consider only two shifts in each 281

direction (five positions in total per aircraft) instead of ten only for the visualization of the 282

uncertainties problem in this current section. In Figure 6, the three aircraft from Figure 1 283

are expanded with their corresponding forward and backward positions after applying a 284

time-shifting. 285

Figure 6. Uncertainties associated with three aircraft

Figure 7 shows the vector field produced by the linear dynamical system correspond- 286

ing to the above situation. 287

Figure 7. Vector field of the uncertainties extension
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Figure 8 compares the vector field of the situation with and without the uncertainties 288

extension. 289

(a) Real traffic situation (b) Extension with uncertainties

Figure 8. Traffic situation with and without uncertainties

This extension will make matrix X larger since from here on, n would be equal to 290

5 · number o f aircra f t. 291

3.5. Metric computation 292

The problem will be analyzed within a certain airspace region (e.g., France FIR), so 293

only the aircraft that are within its boundary are analyzed. By assessing this problem in 294

discrete-time along one aircraft trajectory and considering an area of influence surrounding 295

this aircraft to account for other aircraft, this metric represents the local disorder that is 296

present in the vicinity of an aircraft along its trajectory at each time. 297

Having obtained matrix A and its eigenvalues, the metric is built by summing the 298

negative real part of such eigenvalues λ hereinafter. 299

Therefore, the procedure that we apply consists of solving the LMS method while 300

following an aircraft along all the position observations of its trajectory. This aircraft will be 301

referred to as the reference aircraft. As for the aircraft that are flying in its vicinity, they will 302

be referred to as neighbor aircraft. Every aircraft within the searching area of the reference 303

aircraft at each time will be considered as a neighbor aircraft, and therefore, its observations 304

will be used in the LMS computation (at each time, the neighbor aircraft may be different). 305

This searching area is defined as a box window (24.8 x 24.8 NM) centered at each reference 306

aircraft position. This dimension is based on the longitudinal separation minima applicable 307

to en-route aircraft multiplied by a scalar factor. 308

The uncertainty extension will be applied to both reference and neighbor aircraft. So 309

matrix A is computed using the observations of the reference and neighbor aircraft and 310

their uncertainties as well, at each time. Figure 9 shows the geometry of the problem that is 311

solved for a reference aircraft at a given time. 312
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reference

neighbour

neighbour

Figure 9. Example of local trajectory interaction at a given time

3.6. Neighborhood definition 313

In order to reflect operational features, the metric has been extended to the third 314

dimension by using three-dimensional state space. From the operational point of view, 315

what is relevant for air traffic controllers is the horizontal speed of the aircraft and their 316

climbing/descending rate. So, the model has been extended in this direction by considering 317

only some aircraft in the neighborhood of a given aircraft. 318

When the reference aircraft is climbing or descending, all the other aircraft in the 319

neighborhood will be considered as neighbors. For a cruising reference aircraft, one must 320

apply filtering to account for aircraft that are flying in the same flight level; however, an 321

extension of this filter was necessary to account for the aircraft that were changing their 322

altitude and then were likely to interact with other aircraft since they would be flying at 323

the same altitude at some point of the analysis period. The criteria applied to both the 324

reference and neighbor aircraft to filter the possible aircraft affecting the local disorder can 325

be seen in Figure 10. 326

(a) Climbing Cruise (b) Descending Cruise (c) Cruise Climbing

(d) Cruise Descending (e) Climbing (f) Descending

Figure 10. Aircraft altitude evolution that has an interaction with a certain FL

When the neighbor aircraft altitude (after applying the searching area principle) is 327

close to the reference aircraft altitude, that neighbor aircraft is considered as an actual 328

neighbor aircraft. In RVSM (Reduced Vertical Separation Minima) airspace, en-route 329

aircraft vertical separation is 1000 f t between FL290 and FL410. The filter is set to look 330

for neighbor aircraft within a vertical separation, with respect to the reference one, equal 331

to 3000 f t. Therefore, aircraft flying within 30 flight levels above and below the reference 332

aircraft will be considered for the metric. The filter allows the following situations for both 333

the reference and neighbor aircraft: (a) aircraft is climbing to the reference aircraft altitude, 334

(b) aircraft is descending to reference aircraft altitude, (c) aircraft is about to climb from 335
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reference aircraft altitude, (d) aircraft is about to descend from reference aircraft altitude, 336

(e) aircraft is climbing and will fly from a lower to a higher altitude than reference aircraft 337

altitude, ( f ) aircraft is at reference aircraft altitude, (g) aircraft is descending and will fly 338

from a higher to a lower altitude than reference aircraft altitude. 339

When two cruising aircraft are flying at different altitudes (see the example given in 340

Figure 11), such aircraft will never be considered as neighbors because they will always 341

stay separated thanks to the vertical separation. 342

Figure 11. Lack of interdependency between two consecutive flight level trajectories

After filtering the neighboring aircraft associated with a reference aircraft (at a given 343

time t), the LMS computation is applied in order to identify the A matrix. The metric is 344

then computed based on the eigenvalues of such A matrix and assigned to the reference 345

aircraft at time t. This computation is done for each trajectory sample along the route. 346

Having this complexity metric computed along the trajectory, it is possible to establish 347

a color map that shows the aircraft involved in congested areas. 348

4. Results 349

4.1. Toy Examples 350

Different traffic samples have been created in order to compare the complexity metric 351

previously described. For the following toy examples, no uncertainties are considered 352

and every aircraft is flying at the same flight level. Six traffic situations will be classed 353

according to an increasing level of difficulty (increasing order of complexity) as a function 354

of predictability and interdependency between trajectories. The full trajectories of aircraft 355

are shown in the following figures, where a green circle symbolizes their initial positions. 356

Figure 12 shows a parallel flow of aircraft. It represents an easy situation since aircraft 357

relative distances keep the same and in this case this is no complexity (null A matrix; see 358

equation 7). 359

Figure 12. Parallel flow

Figure 13(a) shows a full symmetric convergence of eight aircraft flying at the same 360

speed. It represents an average situation with high sensitivity and conflicts with no 361

interaction between solutions. In order to build an aggregated metric along the time 362

dimension, we compute for each time sample the associated eigenvalues of the A matrix 363

for which the real parts are summed up in order to produce a scalar value (Figure 13(b)). 364

It must be noticed that the metric begins to be negative, showing the situation is globally 365
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converging. If we continue evaluating that situation along time, after the crossing of the 366

aircraft, the metric becomes positive, and the situation is globally diverging. 367

(a) Eight aircraft converging at the same
point.

(b) Evolution of the real part of A matrix eigenvalues.

Figure 13. Scalar metric function of time for eight aircraft converging at the same point. As it is
shown there is a discontinuity when aircraft cross each other but if we consider more aircraft in the
crossing, the curve will be scaled accordingly (more aircraft will induce larger negative and positive
values).

Figure 14(a) shows a fuzzy convergence of aircraft in the same area. Aircraft do not 368

necessarily have the same speed. 369

(a) Random aircraft converging in the
same area.

(b) Scalar metric for random aircraft converging in the same
area.

Figure 14. Complexity evolution with time associated to the fuzzy convergence situation.

In this case, the metric first identifies a soft converging pattern. Then, it reaches 370

a minimum in the central area of convergence (matching the maximum convergence 371

tendency) and begins to be positive, meaning that the aircraft are diverging at that moment 372

(see Figure 14(b)) and then reaches its maximum (matching the maximum divergence 373

tendency). 374

We then consider two flow crossing situations. The first situation has a crossing angle 375

of 30 degrees (see Figure 15), and the second one has a crossing angle of 90 degrees (see 376

Figure 16). The right side of both figures represents the evolution of the complexity metric 377

with time. As expected, the metric stat is to be negative as the aircraft start first to converge 378

and become positive (divergence) after the crossing point. The shapes of the curve are the 379
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same. Only the magnitude is higher with the 90 deg situation, which is expected since the 380

relative speed between aircraft is higher in this situation. 381

Figure 15. N-S and W-E flows crossing at 30 deg. Traffic situation on the left, complexity function of
time on the right.

Figure 16. N-S and W-E flows crossing at 90 deg. Traffic situation on the left, complexity function of
time on the right.

It is worth mentioning that in these three cases. However, each aircraft possesses a 382

different speed. The eigenvalues are always real: the no-curl tendency is perceived since 383

the set of aircraft is flying only along two different trajectory directions. 384

4.2. Real Airspace 385

This complexity metric has been computed on traffic simulated with real flight plans 386

of aircraft crossing the French airspace (as a matter of fact, using real traffic data like radar 387

tracking records is meaningless because such traffic has been managed by the controller and 388

complexity has been removed). Based on such flight plans, an arithmetic simulator based 389

on the BADA database has been used in order to create 8000 four-dimensional trajectories 390

in the french airspace. The trajectory has then been sampled every 20 seconds, representing 391

two million 4D points for the whole day. The metric has been computed for each trajectory 392

and for each time step in a 4D cube (three spatial dimensions and one time dimension) and 393

projected on a two-dimensional coordinate system to have a complexity map as shown 394

in Figure 17. On this figure, the metric has been normalized between 0 (blue color) and 395

100% (maximum with red color). As expected, the highest complexity is located near the 396
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big crossings. One must remember that the map represents the accumulated complexity 397

in altitude and time. A 2D point at (x,y) on the map represents all 4D points at those 2D 398

coordinates (x,y). 399

The metric has been implemented in Java. Thanks to some algorithmic improvements, 400

the computation time needed to compute the metric for the whole day of traffic (two million 401

points) is less than ten milliseconds on a core i7 Laptop computer. 402

Figure 17. Traffic complexity of a traffic sample over French airspace. For each 4D point (x,y,z,t)
of each trajectory, the complexity metric is computed and represented with a color map on a two
dimension map (x,y).

5. Conclusion 403

This paper has introduced an efficient traffic complexity metric that can identify the 404

level of disorder of a given traffic situation. A Linear Dynamical System model is first 405

regressed based on a least mean square approach based on a set of trajectory samples. An 406

SVD trick has been used in order to avoid conditioning issues in the LMS process. Then, 407

the eigenvalues of the associated A matrix of the linear dynamical system are extracted to 408

quantify the disorder of the traffic situation (sum of the negative real parts). When such a 409

metric has to be computed for a predicted traffic situation, one must be able to take into 410

account uncertainties. This uncertainty has been taken into account by considering aircraft 411

as segments in the time dimension in order to produce a robust metric. This metric has 412

been successfully tested on several artificial traffic situations and on a full day of traffic 413

over the french airspace. Based on the high performance for computing this metric (for a 414

large number of trajectories), the next step consists of using this metric in an optimization 415

algorithm to minimize congestion in a given airspace, which is one of the objectives of the 416

START SESAR project. 417
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Abbreviations 423

The following abbreviations are used in this manuscript: 424

ATC Air Traffic Control
ATM Air Traffic Management
BADA Base of Aircraft DAta
COVID COrona VIrus Disease
FIR Flight Information Region
LMS Least Mean Square
NASA National Aeronautics and Space Administration
NM Nautical Mile
RVSM Reduced Vertical Separation Minima
SESAR Single European Sky’s ATM Research
START Stable and resilienT ATM by integrAting Robust airline operations into the neTwork
SVD Singular Value Decomposition

425
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