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Abstract: This paper presents a new air traffic complexity metric based on linear dynamical systems,
of which the goal is to quantify the intrinsic complexity of a set of aircraft trajectories. Previous works
have shown that the structure and organization of air traffic are essential factors in the perception of
the complexity of an air traffic situation. Usually they were not able to explicitly address trajectory
pattern organization. The new metric, by identifying the organization properties of trajectories in
a traffic pattern, captures some of the key factors involved in ATC complexity. The key idea of
this work is to find a linear dynamical system which fits a vector field as closely as possible to
the observations given by the aircraft positions and speeds. This approach produces an aggregate
complexity metric that enables to identify high (low) complexity regions of airspace and compare
their relative complexity. The metric is very appropriate to compare different traffic situations for any
scale (sector or country) by associatting a complexity index to each trajectory sample in the airspace.
For instance, to compute the complexity for a sector, one must just sum-up complexity for trajectory
samples intersecting such a sector. This computation can also be extended in the time dimension in
order to estimate the average complexity in a given airspace for a period of time.

Keywords: Complexity; Dynamical System; Air Traffic Disorder

1. Introduction

Regarding air traffic management research, there have been three main objectives of
interest: reduce air flight delay, solve air traffic conflicts efficiently and mitigate air space
congestion. This work proposes a method to assess the latter.

The operational capacity of a control sector is measured by the maximum number of
flights that may cross the sector in a given period. This measurement does not consider
the direction of the traffic, treating geometrically structured and disordered traffic in the
same way. Thus, in certain situations, a controller may continue to accept traffic even
if operational capacity has been reached (structured traffic situation). In other cases, a
controller may need to refuse airplanes even though the operational capacity has not
been reached (disordered traffic situation). Thus, modeling airspace congestion using the
number of airplanes per unit of time is insufficient to reflect the levels of difficulty involved
in a traffic situation.

Air traffic control organizes air flows to ensure flight safety and increase the route
network’s capacity. In 2019, before COVID, about 8500 flights were registered everyday
over France, which is a crossroad for the whole European airspace. This traffic generates a
huge amount of control workload, and the airspace is then divided into elementary sectors
which air navigation controllers manage. For several years, a constant increase in air traffic
has induced more and more congestion in the control sectors. Two strategies can then be
applied to reduce such congestion. The first one consists of adapting the demand to the
existing capacity (slot-route allocation, collaborative decision-making, etc...). The second
one adapts the capacity to the demand (modification of the air network, new design of
the sectorization, new airports, etc...). For the two preceding approaches, the capacity of a

Version April 21, 2022 submitted to Aerospace

https://www.mdpi.com/journal/aerospace

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38


https://doi.org/10.3390/aerospace1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/aerospace

Version April 21, 2022 submitted to Aerospace 20f17

sector is measured by the number of aircraft flying across the sector during a given period
of time.

This study aims to synthesize a traffic complexity indicator to quantify better the
congestion in the air sector, which will be more relevant than a simple number of aircraft
independent of the traffic configuration. More precisely, our objective is to build a metric
of the intrinsic complexity of the traffic distribution in the airspace, which relates to
controller workload. Such metrics must capture the level of disorder (or organization) of
any traffic distribution. Usually, metrics are focused on the speed vector distribution, and
the associated disorder metric captures only some features of the traffic complexity. The
real objective of our work is to build a metric that measures the disorder or organization of
trajectories in 4D space (3D for space and 1D for time).

Such complexity metrics are relevant for many applications in the air traffic man-
agement area. For instance, when a sectorization is designed[1], the sectors have to be
balanced from the congestion point of view and nowadays, only the number of aircraft is
used to reach this objective. Another example where a congestion metric is needed is the
traffic assignment[2,3] for which an optimal time of departure and a route are searched
for each aircraft in order to reduce the congestion in the airspace. Complexity metric may
also be used to design new air networks, for dynamic sectoring concepts, define future
ATM concepts (Free Flight), etc... Complexity metrics enable to qualify and quantify the
performance of the Air Traffic service providers and enable a more objective consultation
between airlines and providers.

The work presented in this paper is based on dynamical systems modeling of air
traffic. A dynamical system describes the evolution of a given state vector. If such a vector
is given by the position of aircraft X =[xy, Z]T, a dynamical system associates a speed
vector X = [vx, vy, V2] " to each point in the airspace. The key idea is to find a dynamical
system that models the observed aircraft trajectories. A trajectory disorder metric can be
computed based on this dynamical system modeling. The metric is targeted to measure the
intrinsic traffic complexity related to a set of 4D trajectories related to the control workload.
Such control workload encompasses other factors (airspace structure, etc...) that are not
considered in the metric computation.

In the first part, this paper will summarize the previous related works. The second
part will present a linear dynamical system modeling for which the complexity metric can
be represented into a complex coordinate system. It is very easy to identify any speed
vector organization pattern in this system. The third part illustrates the computation of
such a metric in several traffic situations.

2. Previous Related Works

The airspace complexity is related to the traffic structure and the airspace geometry.
Different efforts are underway to measure the whole complexity of the airspace.

Wyndemere Inc. [4] proposed a measure of the perceived complexity of an air traffic
situation. This measure is related to the controller’s cognitive workload with or without
knowing the aircraft’s intents. The metric is human-oriented and is then very subjective.

Laudeman et al. from NASA [5] have developed a metric called “Dynamic Density”
which is more quantitative than the previous ones and is based on the flow characteristics
of the airspace. The “Dynamic Density” is a weighted sum of the traffic density (number
of aircraft), the number of heading changes (>15 degrees), the number of speed changes
(>0.02 Mach), the number of altitude changes (>750 ft), the number of aircraft with 3D
Euclidean distance between 0 — 25 nautical miles, the number of conflicts predicted in
25 — 40 nautical miles. The parameters of the sums have been adjusted by showing different
traffic situations to several controllers. B. Sridhar from NASA[6] has developed a model
to predict the evolution of such a metric in the near future. Efforts to define “Dynamic
Density” have identified the importance of many potential complexity factors, including
structural considerations.
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Airspace complexity depends on both structural and flow characteristics of the o
airspace[6]. The structural characteristics are fixed for a sector and depend on the spatial o2
and physical attributes of the sector, such as terrain, number of airways, airway crossings, s
and navigation aids. The flow characteristics vary as a function of time and depend on the o4
number of aircraft, the mix of aircraft, weather, the separation between aircraft, etc... A s
combination of these structural and flow parameters influences the controller workload. o6

The traffic itself is not enough to describe the complexity associated with an airspace. o7
A few previous studies have attempted to include structural consideration in complexity  os
metrics but have done so only to a restricted degree. For example, the Wyndemere Corpo- e
ration proposed a metric that included a term based on the relationship between aircraft 10
headings and dominant geometric axis in a sector [4]. The importance of including struc- 10
tural consideration has been explicitly identified in recent work at Eurocontrol. In a study 102
to identify complexity factors using judgment analysis, “Airspace Design” was identified 103
as the second most crucial factor behind traffic volume[7]. The impact of the structure on os
the controller workload can be found on the paper([8,9]. Those papers show how strong the 105
traffic structure (airways, sectors, etc...) is related to the control workload through several 106
traffic factors dependent on the instantaneous distribution of traffic (clustering, number of 107
aircraft, distance between aircraft, relative speed between aircraft, etc...) 108

The previous models do not take into account the intrinsic traffic disorder, which is 100
related to the complexity. The first efforts related to disorder can be found in[10]. This paper 110
introduces metrics based on geometrical properties that measure a traffic pattern’s disorder. 111
Those metrics can extract features on the traffic complexity such as proximity (measures 112
the level of aggregation of aircraft in the airspace), convergence (for close aircraft, this s
metric measures how strongly aircraft are closer to each other), and sensitivity (this metric 114
measures how the relative distance between aircraft is sensible to the control maneuver). G. 115
Aigoin has extended and refined the geometrical class by using a cluster-based analysis[11]. 11s
Two aircraft are said to be in the same cluster if the product of their relative speed and 117
their proximity (a function of the inverse of the relative distance) is above a threshold. s
For each cluster, a metric of relative dependence between aircraft is computed, and the 115
whole complexity of the cluster is then given by a weighted sum of the matrix norm. Those 120
norms give an aggregated measure of the level of proximity of aircraft in clusters and the 121
associated convergence. From the cluster matrix, it is also possible to compute the difficulty 122
of a cluster (it measures how hard it is to solve a cluster). Multiple clusters can exist within 123
a sector, and their interactions must also be considered. A measure of this interaction has 124
been proposed by G. Aigoin [11]. This technique allows multiple complexity metrics to be 125
developed, such as average complexity, maximum and minimum cluster complexities, and 126
complexity speeds. 127

Another approach based on fractal dimension has been proposed by S. Mondoloni and  12s
D. Liang in[12]. Fractal dimension is a metric comparing traffic configurations resulting 12e
from various operational concepts. It allows, in particular, to separate the complexity 1s0
due to sectorization from the complexity due to traffic flow features. The dimension of 13
geometrical figures is well-known: a line is of dimension 1, a rectangle of dimension 2, 1s2
etc. The application of this concept to air route analysis consists in computing the fractal = 1ss
dimension of the geometrical figure composed of existing air routes. Fractal dimension 1sa
provides information on the number of degrees of freedom used in the airspace: a higher 13
fractal dimension indicates more degrees of freedom. Therefore, the fractal dimension 136
measures the geometrical complexity of a traffic pattern. 137

Some new geometrical metrics have been developed in[13] which are able to capture 13s
the level of disorder or the level of organization for some traffic patterns. For instance, in 139
an artificial roundabout moving, the speed vectors are very different even if the global 14
moving is fully organized without any changes in the relative distance between aircraft. 1a
The covariance and the Koenig metrics have been developed to capture those features. The 1s:
first one is able to identify the disorder or organization of translation movements. The 14
second one identifies organized curl moving. 144
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In[10] another approach based on nonlinear dynamical system modeling of the air
traffic uses the topological entropy as a measure of the disorder of the traffic pattern. This
approach represents more faithfully the traffic’s structure but requires a lot of computation
for establishing the metric. First, the non-linear dynamical system is adjusted to the
observations in order to build the associated vector field. Then, Lyapunov exponents
are computed in order to characterize the overall properties of the vector field. When an
exponent has a high value, it shows a high sensitivity to initial conditions meaning the
situation is difficult to predict. In this case the traffic situation presents a high level of
disorder. Unfortunately, this metric is not able to take uncertainties into account which is
the case when one want to predict congestion in the near future.

We propose in this paper an approximation of such a metric based on the linear dynam-
ical system, which measures the local disorder of a set of trajectories in the neighborhood
of a given aircraft at a given time. This approximation is much faster to compute and can
take into account uncertainties of the future position of aircraft, which is not possible with
the nonlinear dynamical system framework described in[10].

3. Metric Description (Linear Dynamical System Modeling)

The investigated indicator will be linked to the air traffic modeling by a linear dynam-
ical system, yielding an intrinsic measure of complexity of the geometry of the traffic. This
enables to identify different structures of organization of the aircraft speed vectors such as
translation, curve organizations, divergence, convergence, or a mix of them.

3.1. Model

The key idea of this metric is to model the set of aircraft trajectories by a linear
dynamical system. A dynamical system models a vector field by a set of differential
equations which describes and controls the evolution of a given state vector and is defined
by the following equation:

— -

X=A-X+B 1)

X is the state vector of the system:

-]

In this equation, we only consider the observations’ x and y components since air
traffic controllers see two dimensions speed vectors on their screens. Moreover, the metric
will be computed for each flight level in a given airspace. Equationl associates a speed

vector X with each point in the state space X. This synthesis is a particular vector field.
The average behavior of this vector field is given by the vector B and the linear mapping

between the speed vector X and the position vector X is given by matrix A. Therefore, the
coefficients of matrix A and vector B determine the mode of evolution of the system in
relation to its dynamics.

More precisely, the eigenvalues of this matrix will determine the behavior of the
system and will be used to obtain the complexity metric. The properties and relevance of
these eigenvalues will be explained in section3.3.

First, we focus on defining and modeling the linear dynamical system that will allow
us to obtain matrix A. Our problem therefore consists on determining the dynamical model
which is closest to the observations: Those observation are extracted from the radar trackers
(positions and speeds of aircraft at a given time). We then consider that for each aircraft,
we have set position X and speed measures V at some consecutive time stamps i:

=[]
Yi
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=[]
Uy;

An example of such observations is given on figure 1 for which aircraft observation
are represented by the blue arrows.

\7

\
el
[CR2

-
X

A3 >
v

Figure 1. Radar captures associated with three aircraft. In this example only one time sample is

considered.

We thus wish to find the vector field described by a linear equation (X' =A-X+B )
which is best fitted to our observations. To illustrate this aspect, we construct a grid over the
airspace (see Figure 2) on which we carry out a regression of a vector field that minimizes
the error between the model and the observations. In order to use matrix forms, we rewrite
equation 1 as V = C - X, introducing the following matrices:

X1 X2 X3 -+ Xp
X=1wy1 ¥2 Y3 - Yn 3)
1 1 1 - 1
V= |: Ux; Ux, Uxz - Uy, ] (4)
Uyp Uyy Uys -0 Uy,
ayp ap | b
C= 5
[ a1 axp | b } ©)
——
A B

where X € R¥>*" vV € R2" C € R23 A € R?*2 B € R?*! and n represents the
number of observations at a given instant (number of aircraft present in a sector at a given
instant).

187



Version April 21, 2022 submitted to Aerospace

60f17

Figure 2. Vector field produced by the linear dynamic system

3.2. Regression

The dynamical system has to be adjusted with the minimum error based on the aircraft
observations (positions and speed vectors). This fitting has been done with a Least Mean
Square minimization (LMS) method[14]. For each considered aircraft i, it is supposed that

position X; = [x;, yi]T

model:

i=0
i=n, 2
=\ L[%- ()]
i=0
In a matrix form:
E=|V-CX|
E minimization is the same as E2 minimization: E2 = ||V — C-X]|%.

The derivative of such expression with respect to C is given by:

E is minimum when: VcE = 0 = C-X-XT = V-XT then:

On the right side, we recognize the pseudo-inverse of matrix X':

In some situations, X-XT is not invertible, and the computation of the C,; is not
possible by using such equation. In this case, the classical Singular Value Decomposition

(SVD,) trick is applied:

and speed vector V; = [V, 0y T are given. We then construct an
error criterion E, between the dynamical system model and the observation, based on a
norm (Euclidean, in our case), which should be minimized in relation to matrix A and
vector E, and therefore in relation to matrix C, which represents the parameters of the

VcE? = —2.(V-C-X)XT

Copt = V- X7 (x:xT) 7!

X+ — XT' (X'XT)_l

xT.(xxH)1=LT.s71.R

(6)

208

210

211

212

213

214
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where S is a diagonal matrix containing the singular values (only the significant s
singular values are inverted in this formula in order to control the conditioning of the =16
algorithm). 217

= Copt = V-LT.S7.R

Based on C the matrix A is extracted for which an eigenvalue decomposition is
computed:
A=UDU"

The diagonal matrix D contains the eigenvalues. When such eigenvalues have positive 21
real parts, the system is in expansion mode, and when they are negative, the system isin 21

contraction mode. 220
In addition the vector B represents the global tendency of the vector field. 22
3.3. Properties of Eigenvalues 222

The eigenvalues of matrix A describe and summarize the evolution of the system. 223
These eigenvalues are complex numbers. Their real parts are related to the convergence 2z
or the divergence property of the system in the direction of the eigenvector. When such 225
eigenvalues have positive real parts, the system is in expansion mode (produces divergence), =226
and when they are negative, the system is in contraction mode (produces convergence). =2z7
The absolute value of these real parts is proportional to the level of contraction or expansion  zzs
of the system: the larger those real parts are in absolute value, the faster the evolution. 220
Furthermore, the imaginary part of the eigenvalues is related to the level of rotation =zs0
tendency of the system: the tendency of the system to organize itself following a global 23
rotation movement associated with each of the eigen axes. Depending on those eigenvalues, 232
a dynamical system can evolve in contraction, expansion, rotation, or a combination of a3
those three modes. 234

We will refer to a fully organized traffic pattern when the relative distances between 235
aircraft do not change with time. For such a situation, the traffic is very predictable and 236
very comfortable to address by a controller: trajectories do not present any difficulties. 23
These patterns are translation, rotation, or both. 238

Then, the evolution properties of the system related to the position of the eigenvalues 230
can be summarized in the complex coordinate system (see Figure 3). In this coordinate 240
system, it is then possible to identify the locus of the eigenvalues of matrix A associated 2a
with organized traffic situations: the vertical strip around the imaginary axis. Therefore, za2
organized situations are located around the imaginary axis: when the relative distances a3
between aircraft change slowly with time (this means that the relative speeds between 244
aircraft are close to zero and the traffic has no interaction). 245
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Imaginary

c -t

1

rotatio!

Organized Traffic

convergence divergence

Real

- - -

rotation

Figure 3. Impact of the eigenvalues of matrix A on the dynamics of the system

As an example (see Figure 4), the eigenvalues of matrix A have been calculated for
a situation with three aircraft located on a circumference, for which only the orientation
of the speed vectors is modified in order to create four traffic situations (pure translation,
convergence, divergence, and pure rotation). As we can see in Figure 4, the pure translation
and pure rotation are the two organized traffic situations since they have eigenvalues in
the central band of the complex plane.

Translation Convergence Divergence Rotation
y ;
y v
Vs
X; /xj
v VX
X W . x
\ v; X—z
\ .\sz
X; sz X;‘

Position of the eigenvalues of matrix A in the complex plane

Imaginary Imaginary Imaginary Imaginary

Y

Real Real Real Real

Figure 4. Eigenvalues loci for 4 traffic situations

In the first case, the eigenvalues A are null because the aircraft are flying in parallel,
representing a translation: distances between aircraft remain unchanged with time. In
the second case, the eigenvalues are real negative; the system evolves in a contraction
mode, and the four aircraft are converging: the norms of the relative distances between
aircraft diminish with time. The third situation represents an expansion evolution for
which the eigenvalues are real positive, and the aircraft are diverging: the relative distances
increase with time. In the two previous situations, the distance between aircraft changes
with time, not being organized traffic patterns. The last situation is associated with full
imaginary eigenvalues for which the aircraft stay at the same distance from each other in a

246

247

248

249

250
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curl moving. The computation of matrices A, vectors B, and A is given for these previous

examples:
Translation Convergence Divergence Rotation
100 _ o | -1 0 _ o |10 _ o | 0 1
A_{00 A_d{O 1J A=y OlJ A_d{l OJ
= _|v = |0 =_ |0 =_ [0 (7)
R LT N Ut
3 0 7 -1 7 +1 3 +j
= U. = U. :y. :z
U S R TR R

Looking at Figure 4, the small squares are the initial positions of aircraft at a given
time (this represents the observation given by radar, for instance, with the associated speed
vector). As it can be seen, the aircraft are initially located on a circumference with a diameter
of 2-d. The positions of aircraft two and three are symmetric to the x-axis. All the speed
norms are the same and have been fixed at v. The vector field associated with each one of
these four situations is shown in Figure 5.

(a) Translation.

(c) Divergence.

(b) Convergence.

(d) Rotation.

Figure 5. Vector field produced for the 4 toy examples. The red arrows represent the vector filed of
the associated linear dynamical system model.

262
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3.4. Extension with uncertainties 260

If we want to predict complexity in a given airspace, one must be able to take into 270
account future aircraft positions uncertainties which are crossing such airspace. Those 2n
uncertainties are linked to the wind and temperature encountered by the aircraft along its 272
route. So, future positions of aircraft will be represented by a segment along its trajectory 27s
arc length in the future. Therefore, since we should account for these uncertainties, it has 274
been considered that at every sample time of the analysis, each aircraft that is within the 27
current modeled airspace area can be ahead or behind its actual position. Then, a time 27
shift is applied to each aircraft (i.e., the reference one and the neighbors) to account for ten 277
forward and ten backward positions. Each shift is equal to twelve seconds, so the most 275
forward and backward positions are separated two minutes with respect to the reference 27
position. 280

In order to simplify the following figures, we will consider only two shifts in each  ze:
direction (five positions in total per aircraft) instead of ten only for the visualization of the  2e2
uncertainties problem in this current section. In Figure 6, the three aircraft from Figure 1 = zs:
are expanded with their corresponding forward and backward positions after applying a  zsa
time-shifting. 205

>

-

X:E

v;

Figure 6. Uncertainties associated with three aircraft

Figure 7 shows the vector field produced by the linear dynamical system correspond-  zss
ing to the above situation. 267

Figure 7. Vector field of the uncertainties extension
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Figure 8 compares the vector field of the situation with and without the uncertainties 2es
extension. 289

(a) Real traffic situation (b) Extension with uncertainties
Figure 8. Traffic situation with and without uncertainties

This extension will make matrix X larger since from here on, n would be equal to 200
5 - number of aircraft. 201

3.5. Metric computation 202

The problem will be analyzed within a certain airspace region (e.g., France FIR), so 203
only the aircraft that are within its boundary are analyzed. By assessing this problem in 204
discrete-time along one aircraft trajectory and considering an area of influence surrounding  2es
this aircraft to account for other aircraft, this metric represents the local disorder that is 206

present in the vicinity of an aircraft along its trajectory at each time. 207
Having obtained matrix A and its eigenvalues, the metric is built by summing the  zes
negative real part of such eigenvalues A hereinafter. 200

Therefore, the procedure that we apply consists of solving the LMS method while 300
following an aircraft along all the position observations of its trajectory. This aircraft will be  so:
referred to as the reference aircraft. As for the aircraft that are flying in its vicinity, they will = so2
be referred to as neighbor aircraft. Every aircraft within the searching area of the reference  os
aircraft at each time will be considered as a neighbor aircraft, and therefore, its observations  sos
will be used in the LMS computation (at each time, the neighbor aircraft may be different). sos
This searching area is defined as a box window (24.8 x 24.8 N M) centered at each reference o6
aircraft position. This dimension is based on the longitudinal separation minima applicable 307
to en-route aircraft multiplied by a scalar factor. 308

The uncertainty extension will be applied to both reference and neighbor aircraft. So 00
matrix A is computed using the observations of the reference and neighbor aircraft and 1o
their uncertainties as well, at each time. Figure 9 shows the geometry of the problem thatis s
solved for a reference aircraft at a given time. 312
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P e e e e e == a

Figure 9. Example of local trajectory interaction at a given time

3.6. Neighborhood definition a3

In order to reflect operational features, the metric has been extended to the third s
dimension by using three-dimensional state space. From the operational point of view, s1s
what is relevant for air traffic controllers is the horizontal speed of the aircraft and their s
climbing /descending rate. So, the model has been extended in this direction by considering a7
only some aircraft in the neighborhood of a given aircraft. e

When the reference aircraft is climbing or descending, all the other aircraft in the s
neighborhood will be considered as neighbors. For a cruising reference aircraft, one must 2o
apply filtering to account for aircraft that are flying in the same flight level; however, an 22
extension of this filter was necessary to account for the aircraft that were changing their sz
altitude and then were likely to interact with other aircraft since they would be flying at = s2s
the same altitude at some point of the analysis period. The criteria applied to both the 324
reference and neighbor aircraft to filter the possible aircraft affecting the local disorder can 325
be seen in Figure 10. 326

= = -

a) Climbing Cruise b) Descending Cruise ¢) Cruise Climbin,
g g g
(d) Cruise Descendin, (e) Climbin, (f) Descendin,
g g g

Figure 10. Aircraft altitude evolution that has an interaction with a certain FL

When the neighbor aircraft altitude (after applying the searching area principle) is = s2r
close to the reference aircraft altitude, that neighbor aircraft is considered as an actual sz
neighbor aircraft. In RVSM (Reduced Vertical Separation Minima) airspace, en-route sz
aircraft vertical separation is 1000 ft between FL290 and FL410. The filter is set to look 330
for neighbor aircraft within a vertical separation, with respect to the reference one, equal = 3:
to 3000 ft. Therefore, aircraft flying within 30 flight levels above and below the reference ss:
aircraft will be considered for the metric. The filter allows the following situations for both 333
the reference and neighbor aircraft: (a) aircraft is climbing to the reference aircraft altitude, ssa
(b) aircraft is descending to reference aircraft altitude, (c) aircraft is about to climb from 335
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reference aircraft altitude, (d) aircraft is about to descend from reference aircraft altitude,
(e) aircraft is climbing and will fly from a lower to a higher altitude than reference aircraft
altitude, (f) aircraft is at reference aircraft altitude, (g) aircraft is descending and will fly
from a higher to a lower altitude than reference aircraft altitude.

When two cruising aircraft are flying at different altitudes (see the example given in
Figure 11), such aircraft will never be considered as neighbors because they will always
stay separated thanks to the vertical separation.

N—

7/
—

Figure 11. Lack of interdependency between two consecutive flight level trajectories

After filtering the neighboring aircraft associated with a reference aircraft (at a given
time t), the LMS computation is applied in order to identify the A matrix. The metric is
then computed based on the eigenvalues of such A matrix and assigned to the reference
aircraft at time t. This computation is done for each trajectory sample along the route.

Having this complexity metric computed along the trajectory, it is possible to establish
a color map that shows the aircraft involved in congested areas.

4. Results
4.1. Toy Examples

Different traffic samples have been created in order to compare the complexity metric
previously described. For the following toy examples, no uncertainties are considered
and every aircraft is flying at the same flight level. Six traffic situations will be classed
according to an increasing level of difficulty (increasing order of complexity) as a function
of predictability and interdependency between trajectories. The full trajectories of aircraft

are shown in the following figures, where a green circle symbolizes their initial positions.

Figure 12 shows a parallel flow of aircraft. It represents an easy situation since aircraft
relative distances keep the same and in this case this is no complexity (null A matrix; see
equation 7).

Figure 12. Parallel flow

Figure 13(a) shows a full symmetric convergence of eight aircraft flying at the same
speed. It represents an average situation with high sensitivity and conflicts with no
interaction between solutions. In order to build an aggregated metric along the time
dimension, we compute for each time sample the associated eigenvalues of the A matrix

for which the real parts are summed up in order to produce a scalar value (Figure 13(b)).

It must be noticed that the metric begins to be negative, showing the situation is globally
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converging. If we continue evaluating that situation along time, after the crossing of the
aircraft, the metric becomes positive, and the situation is globally diverging.
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(a) Eight aircraft converging at the same (b) Evolution of the real part of A matrix eigenvalues.

point.

Figure 13. Scalar metric function of time for eight aircraft converging at the same point. As it is
shown there is a discontinuity when aircraft cross each other but if we consider more aircraft in the
crossing, the curve will be scaled accordingly (more aircraft will induce larger negative and positive
values).

Figure 14(a) shows a fuzzy convergence of aircraft in the same area. Aircraft do not
necessarily have the same speed.
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(a) Random aircraft converging in the (b) Scalar metric for random aircraft converging in the same
same area. area.

Figure 14. Complexity evolution with time associated to the fuzzy convergence situation.

In this case, the metric first identifies a soft converging pattern. Then, it reaches
a minimum in the central area of convergence (matching the maximum convergence
tendency) and begins to be positive, meaning that the aircraft are diverging at that moment
(see Figure 14(b)) and then reaches its maximum (matching the maximum divergence
tendency).

We then consider two flow crossing situations. The first situation has a crossing angle
of 30 degrees (see Figure 15), and the second one has a crossing angle of 90 degrees (see
Figure 16). The right side of both figures represents the evolution of the complexity metric
with time. As expected, the metric stat is to be negative as the aircraft start first to converge
and become positive (divergence) after the crossing point. The shapes of the curve are the
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same. Only the magnitude is higher with the 90 deg situation, which is expected since the = seo
relative speed between aircraft is higher in this situation. 381

o

"5 4 3 =2 -1 0o 1 2 3

Figure 15. N-S and W-E flows crossing at 30 deg. Traffic situation on the left, complexity function of
time on the right.
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Figure 16. N-S and W-E flows crossing at 90 deg. Traffic situation on the left, complexity function of
time on the right.

It is worth mentioning that in these three cases. However, each aircraft possesses a  ss2
different speed. The eigenvalues are always real: the no-curl tendency is perceived since  ses
the set of aircraft is flying only along two different trajectory directions. 384

4.2. Real Airspace 385

@
-3

This complexity metric has been computed on traffic simulated with real flight plans
of aircraft crossing the French airspace (as a matter of fact, using real traffic data like radar ser
tracking records is meaningless because such traffic has been managed by the controller and  sss
complexity has been removed). Based on such flight plans, an arithmetic simulator based e
on the BADA database has been used in order to create 8000 four-dimensional trajectories e
in the french airspace. The trajectory has then been sampled every 20 seconds, representing = se:
two million 4D points for the whole day. The metric has been computed for each trajectory e
and for each time step in a 4D cube (three spatial dimensions and one time dimension) and  ses
projected on a two-dimensional coordinate system to have a complexity map as shown  ses
in Figure 17. On this figure, the metric has been normalized between 0 (blue color) and  ses
100% (maximum with red color). As expected, the highest complexity is located near the 106
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big crossings. One must remember that the map represents the accumulated complexity
in altitude and time. A 2D point at (x,y) on the map represents all 4D points at those 2D
coordinates (x,y).

The metric has been implemented in Java. Thanks to some algorithmic improvements,
the computation time needed to compute the metric for the whole day of traffic (two million
points) is less than ten milliseconds on a core i7 Laptop computer.

100%
90%

50°N
80%
170%
160%

45°N 130%

Latitude

140%

30%

20%

40°N
10%

5°W 0° 5°E 10°E
Longitude

0%

Figure 17. Traffic complexity of a traffic sample over French airspace. For each 4D point (x,y,z,t)
of each trajectory, the complexity metric is computed and represented with a color map on a two
dimension map (X,y).

5. Conclusion

This paper has introduced an efficient traffic complexity metric that can identify the
level of disorder of a given traffic situation. A Linear Dynamical System model is first
regressed based on a least mean square approach based on a set of trajectory samples. An
SVD trick has been used in order to avoid conditioning issues in the LMS process. Then,
the eigenvalues of the associated A matrix of the linear dynamical system are extracted to
quantify the disorder of the traffic situation (sum of the negative real parts). When such a
metric has to be computed for a predicted traffic situation, one must be able to take into
account uncertainties. This uncertainty has been taken into account by considering aircraft
as segments in the time dimension in order to produce a robust metric. This metric has
been successfully tested on several artificial traffic situations and on a full day of traffic
over the french airspace. Based on the high performance for computing this metric (for a
large number of trajectories), the next step consists of using this metric in an optimization
algorithm to minimize congestion in a given airspace, which is one of the objectives of the
START SESAR project.
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Abbreviations

The following abbreviations are used in this manuscript:
ATC Air Traffic Control

ATM Air Traffic Management

BADA  Base of Aircraft DAta

COVID COrona VIrus Disease

FIR Flight Information Region

LMS Least Mean Square

NASA  National Aeronautics and Space Administration
NM Nautical Mile

RVSM  Reduced Vertical Separation Minima

SESAR  Single European Sky’s ATM Research

START  Stable and resilienT ATM by integrAting Robust airline operations into the neTwork
SVD Singular Value Decomposition
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