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Abstract

This paper proposes a novel framework for multipath prediction in Global Nav-
igation Satellite System (GNSS) signals. The method extends from dataset
generation to deep learning inference through Convolutional Neural Network
(CNN). The process starts at the output of the correlation stage of the GNSS
receiver. Correlations of the received signal with a local replica over a (Doppler
shift, propagation delay)-grid are mapped into grey scale 2D images. They de-
pict the received information possibly contaminated by multipath propagation.
The images feed a CNN for automatic feature construction and multipath pat-
tern detection. The issue of unavailability of a large amount of supervised data
required for CNN training has been overcome by the development of a synthetic
data generator. It implements a well-established and documented theoretical
model. A comparison of synthetic data with real samples is proposed. The
complete framework is tested for various signal characteristics and algorithm
parameters. The prediction accuracy does not fall below 93% for C/N0 ratio
as low as 36 dBHz, corresponding to poor receiving conditions. In addition,
the model turns out to be robust to the reduction of image resolution. Its per-
formance is also measured and compared with an alternative Support Vector
Machines (SVM) technique. The results show the undeniable superiority of the
proposed CNN algorithm over the SVM benchmark.

Keywords: Deep learning, GNSS, Multipath, Convolutional neural networks,
Correlation

1. Introduction

The dissemination of GNSS receivers in smartphones and cars has made it
natural to each of us to have access to our localisation at any time. However,
the quality of the position calculated by a GNSS equipment may be reduced
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when the received signal is degraded. This degradation can �nd its origin in
a defect of the signal generation system, carried by the satellite, it is the evil
waveform case. The receiving conditions can also be a source of disturbance,
this is typically the case when interferences or multipaths are in addition to the
useful signal.

More speci�cally, inside the GNSS chip, the calculation process of the Posi-
tion Time Velocity (PVT) solution relies on the accurate synchronisation of the
receiver on the signal transmitted by each satellite in view. This is achieved by
correlating the received signal with a local replica signal which parameters are
under control. The correlation is done against the three unknown parameters
of the incoming signal which are required to achieve synchronisation: the prop-
agation delay τ , the Doppler shift δf (due to the relative motion between the
satellite and the receiver) and the carrier phase θ. The aim of the receiver is
to �nd the set of estimators which maximizes the correlation, resulting in the
tightest synchronisation of the local replica signal. Any alteration to the signal
of interest will skew the estimators and biased the position delivered to the user.

A large amount of research and analysis has been conducted so far to de-
tect, classify, identify and �nally mitigate these impairments. As the GNSS
receiver has to track the direct signal by mean of a Delay-Locked Loop (DLL)
to estimate the propagation delay, multiple methods have been proposed which
use the already existing correlator outputs required by this DLL. The narrow
correlator technique (Van Dierendonck et al., 1992), the early-late-slope tech-
nique (Townsend & Fenton, 1994), the strobe correlator (Garin & Rousseau,
1997), the double-delta correlator (McGraw & Braasch, 1999) and the multipath
intensive delay lock loop (Jardak et al., 2011) are among the most representative
methods of this class. They all take advantage of the geometric shape of the
auto-correlation function of the Pseudo-Random Noise (PRN) code, as de�ned
later on in (2) and (3) and illustrated in Figure 3, to detect and mitigate the
multipath distortion. Their relative simplicity is their principal bene�t at the
expense of their e�ectiveness. On the other hand, more sophisticated techniques,
yet demanding in hardware resources, have been developed. In the statistical
approach, the Multipath Estimating Delay Lock Loop (MEDLL) is a reference
implementation of the maximum likelihood principle (Townsend et al., 1995).
It matches the correlator outputs with candidates of multipath auto-correlation
functions parameterized by magnitudes, delays, and phases. The shortest es-
timated delay is then retained as the one of the direct path. The frequency
domain has also been explored, through the Fourier transform (Zhang & Bar-
tone, 2004a) or the wavelet decomposition (Zhang & Bartone, 2004b). Indeed,
due to their speci�c spectral characteristics in comparison to the direct path,
the multipath can be identi�ed and excised. However, these methods may dam-
age the signal of interest, especially when the multipath frequencies are close to
the spectrum of the direct path.

To overcome the limitations of these classical signal processing methods,
Machine Learning (ML) techniques have also been considered. Starting from the
early 2000s, some research work has been dedicated to the use of ML techniques
to facilitate the error mitigation in GNSS signals. For instance, an hybrid neural
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network architecture based on multilayer perceptron to mitigate multipath error
for Low Earth Orbit (LEO) satellites has been proposed (Vigneau et al., 2006).
Later, with the advances of kernel methods, the authors of (Phan et al., 2013)
were able to develop a support vector regressor to mitigate multipath on ground
�xed Global Positioning System (GPS) stations and using signal geometrical
features. Other similar studies were conducted with various choices of features
construction. For example, in (Hsu, 2017) and (Suzuki & Amano, 2021), non-
line of sight (NLOS) multipath detection is carried out using features directly
extracted from the correlator output.

The recent and signi�cant advances in Arti�cial Intelligence (AI), and no-
tably in ML, have opened up new perspectives. In (Quan et al., 2018), using a
CNN, a carrier-phase multipath detection model is developed. The authors pro-
pose to extract feature map from multi-variable time series at the output of the
signal processing stage using 1-dimensional convolutional layers. Deep learning
spoo�ng attack detection in GNSS systems was addressed in the research liter-
ature (Schmidt et al., 2020) as well. Handcrafted features based on early-late
phase, delay and signal level from the correlation output of the tracking loop
were used to train a deep fully-connected neural model. A review of the recent
applications of ML in GNSS is also proposed in (Siemuri et al., 2021), focusing
on use cases relevant to the GNSS community.

The method proposed in this article aims at making use of an e�cient CNN
architecture for multipath detection. The intent is to exploit the full power of
CNN by letting the convolutional mechanism construct its own feature space
from the whole correlator information. Indeed, features are not extracted from
the signal but the signal is rather transformed into 2D images in the time-
frequency domain. No correlator output signal information is lost during the
process and the CNN is able to build its own representation of corrupted/non
corrupted correlated signals.

The search ranges for the values of the propagation delay and the Doppler
shift spans a 2D grid which forms in turn 2D-images at the output of the cor-
relation process, the correlator output in short. Regarding the phase value, the
phase estimation error is captured over [0, 2π] by mean of two orthogonal pro-
jections. These projections are carried out by the correlation with the In-phase
(I) signal replica on one side and the in-Quadrature (Q) signal on the other. A
diagram representing this process is given in Figure 1. As depicted, the correla-
tion operation is implemented through a product followed by an integrate and
dump stage and generates 2D image representations of the I and Q channels.
These images coded into 3D tensors will feed a downstream CNN, as it will be
seen below.

This study proposes a complete framework to train and assess a CNN model
on correlator output 2D-images in order to detect whether the GNSS signal is
subject to multipath or not. A graphical representation of this framework is
given in Figure 2. Our technique exploits the full power of deep learning ar-
chitectures by sampling the complete correlated signal information in the time-
frequency domain and the I and Q channels. Features are not handcrafted
but rather constructed automatically by the convolution mechanism that elab-
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Figure 1: Synoptic view of the correlation process. The received signal is correlated with two
local replica signals in quadrature whose parameters span a grid. The two correlator outputs
form then 2D-images which fed a downstream CNN. The tilde notation indicates the local
parameter by opposition to the received signal unknown parameter.

orates its own representation of the relevant feature space to detect multipath
corrupted signals.

The main contributions of this study can be listed as follows:

- Raw and complete information from the GNSS correlator outputs are syn-
thesized in 2D-images. The correlation delay and Doppler shift ranges are
selected in order to capture complete multipath information. This is a
novel approach in comparison to standard multipath mitigation techniques
that are using only one dimensional delay correlation information.

- A CNN model is used to automatically extract relevant features for multi-
path detection from the images of correlator outputs. This contributes to
the very recent and emergent use of modern ML techniques in the GNSS
signal processing �eld.

- The proposed framework covers the generation of image data, the choice
of the CNN architecture, its training as well as its validation. Experi-
ments are fully reproducible. To the best of our knowledge such complete
workbench is unique in the research community.

- The achieved average detection accuracy for realistic multipath parameters
ranges in standard receiving conditions is above 93%. This performance
has been shown to be robust to the reduction of correlator output image
resolution.

The organization of this article follows the framework depicted in Figure 2.
In Section 2, the GNSS signal model used in this work is presented, then the
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Figure 2: Proposed framework to train and assess a CNN model on correlator output 2D-
images (with references to article sections).

correlation process is introduced and a model of its output is detailed, for both
the direct path and the multipath signal. Section 3 exposes the dataset elabo-
ration using a speci�c software generator. Next, in Section 4, the CNN model
proposed in this paper to detect the multipath contamination is explained in
detail. In Section 5, the experiments conducted to assess the proposed technique
are exposed and the results discussed. Finally, Section 6 draws conclusions and
perspectives from this work.

2. Problem statement

2.1. GNSS signal model

The fundamental principle behind the calculation of the user position by
a GNSS receiver is trilateration. It implies the measurement of the geometric
distances between the antenna of the receiver and satellites of known positions.
Indeed, a distance d in particular is estimated through the propagation delay
a�ecting the signal during its propagation from the satellite to the receiver
antenna, τ = d/c with c the speed of light. This is made possible by a speci�c
signal structure, recalled in equation (1) which models the signal at the antenna
port (Won & Pany, 2017):

r(t) =
√

2CD(t− τ)c(t− τ) cos(2π(fc + δf)t+ θ) + b(t) (1)

where

• C is the power of the received signal,

• D(t) is the navigation message, binary encoded (±1),

• c(t) is the PRN code sequence, speci�c to each satellite,

• fc is the carrier frequency,

• b(t) is an Additive White Gaussian Noise (AWGN) which accounts for the
thermal noise of the receiver, referred to the antenna port.

The results presented in this paper where established using the PRN code
sequences of the GPS L1 C/A legacy signal. However, the authors are con�-
dent that they could be generalized to other navigation signals, with the same
structure, as no speci�c assumption has been made on c(t).
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In this model, the receiving condition of a signal in particular is assessed
by its C/N0 �gure, in other words the ratio of the signal power to the Power
Spectral Density (PSD) level N0 of the (white) noise b(t). Clearly, the accuracy
of the estimation of the related distance d will depend upon this C/N0 ratio.
Without any other perturbation than the noise, the quality of the �nal position
calculated by the receiver, from a set of distances d at its disposal, is then
completely determined by the corresponding set of C/N0 ratios, along with the
relative satellites-receiver geometry though.

A model of the I and Q correlator outputs (Won & Pany, 2017) is as follows:

I = AK(∆τ) cos(π∆fTi + ∆θ) sinc(π∆fTi) + nI (2)

Q = −AK(∆τ) sin(π∆fTi + ∆θ) sinc(π∆fTi) + nQ (3)

with

• Ti the integration time,

• A a coe�cient depending on C, D and Ti,

• ∆τ the propagation delay estimation error,

• ∆f the Doppler shift estimation error,

• ∆θ the phase estimation error,

• K(∆τ) the auto-correlation function of the PRN code in ∆τ ,

• nI and nQ the noise components.

It is worth noting the sinc function behavior of the correlator outputs as a
function of the Doppler shift estimation error.

Figure 3 gives a graphical representation of the noise-free I and Q correlator
outputs as functions of ∆τ and ∆f , for ∆θ = 0. The shape of the auto-
correlation function of the PRN code can be observed in the ∆f = 0 plane, for
delays in units of µs. The previously mentioned sinc function is visible in the
∆τ = 0 plane, for Doppler shifts in units of Hz.

2.2. Multipath contamination

As some perturbations can distort the desired signal, the received signal can
not always be modeled simply using equation (1). Among these perturbations,
multipath is considered to be an important source of degradation (Kaplan &
Hegarty, 2006). This is especially the case in urban environment, inducing
reduced positioning accuracy. Multipath is due to the re�ection of the direct
signal path on a surface in view of the receiver. As a consequence, a speci�c
multipath can be modeled in the same way as the direct signal in (1):

m(t) =
√

2CMPD(t− τMP)c(t− τMP) cos(2π(fc + δfMP)t+ θMP) (4)

where CMP, τMP, δfMP and θMP have the same de�nition as in Section 2.1, but
for the multipath.

6



Figure 3: An illustration of the noise-free I and Q correlator output model, ∆θ set to 0, PRN
number to 1

Due to the larger propagation distance of the multipath in particular, it is
to be noted that CMP ≤ C and τMP > τ . What is more, depending on the
time-varying relative geometry of the satellite-receiver-re�ector system, there is
no reason for δfMP being equal to δf nor θMP having the same value as θ.

In general, a receiver is impacted by multiple multipaths, especially in urban
environments where re�ectors are numerous. Sometimes, the direct path may
even be absent due to an obstruction, for example when high buildings are
surrounding the receiver (Ziedan, 2018). However, in this study the assumption
is made that the direct path is always present and a single multipath will be
considered.

3. Synthetic dataset generation

3.1. Availability of GNSS multipath data

In order to test our prediction models, an arti�cial signal generator was de-
veloped. The data are generated in the form of two matrices, one for each of the
I and Q channels, according to equations (2) and (3). The axes of these matrices
are in Doppler shift estimation error ∆f and code delay estimation error ∆τ .
The output data corresponding to this main signal can be parameterized as a
function of the coherent integration time Ti in ms and the carrier-to-noise ratio
C/N0 in dBHz.

3.2. Noise sample production

At the correlator output the noise is not only spatially correlated inside each
I and Q image, but also cross-correlated between them. The exact derivation
of the auto-correlation and cross-correlation functions of the noise are still to
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Figure 4: Empirical auto-correlation and cross-correlation functions of the noise at the corre-
lator output for the I and Q channels, PRN number set to 10

establish. To overcome this impossibility to generate the noise contribution at
the correlator output from an analytical model, a workaround has been devel-
oped. A signal r(t) (1) made of a simple noise term b(t) is correlated according
to the process described in Figure 1, as would be a true received signal. This
correlation process is implemented in a software GNSS receiver developed by
the SIGnal processing and NAVigation (SIGNAV) research team of the ENAC
laboratory. The noise samples available at the correlator output are then col-
lected and stored in a dataset, to be added on demand as nI and nQ in equations
(2) and (3). Figure 4 gives an example of empirical auto-correlation and cross-
correlation functions of noise samples for PRN number 10.

An illustration of the noisy output of the synthetic data generator for Ti =
20 ms and C/N0 = 45 dBHz is given in Figure 5, with the corresponding �at-
tened images in Figure 6 (note the value of the navigation bit D = −1 this time,
in comparison to Figure 3 where D = +1).

3.3. Assessment of the synthetic data

In order to validate the synthetic data generator its outputs have been com-
pared to the data from an IFEN SX3 GNSS receiver. Two di�erent data collec-
tion sessions have been conducted.

1. The receiver has been fed with a signal produced by a Spirent GSS6560
generator. The scenario implemented in the generator simulates the take-
o� and initial climb of a commercial aircraft from runway 14L of the
Toulouse-Blagnac Airport. The �ight happens on Tuesday the 28th of
May 2019 from 12:55 UTC. The multipaths are disabled in this scenario.

2. A high end GNSS antenna has been connected to the receiver. The an-
tenna was set up in a clear view site to avoid multipath contamination.
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Figure 5: An illustration of the I and Q correlator outputs of the synthetic data generator,
PRN number set to 1

Figure 6: The I and Q correlator outputs of the synthetic data generator as images, PRN
number set to 1
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Figure 7: Comparison between an output of the synthetic data generator and a real sample
from a SX3 receiver, I channel, PRN number set to 1

Moreover, only signals from high elevation satellites were considered af-
terwards so that the collected samples could be considered as multipath
free. The recording was carried out on Friday the 14th of February 2000
from 08:05 UTC.

In both cases the SX3 receiver sampling frequency was set to 20 MHz. The
samples were stored for post-processing by the software GNSS receiver already
mentioned in section 3.2. The resulting reference images are available on (Blais
et al., 2021) for the two sessions.

Figures 7 and 8 provide an example of visual comparison of images. It is
worth noting that these real data were used only to validate the generator.
Indeed, for training purposes it would be unrealistic to produce a su�cient
amount of labeled physical signals.

3.4. Model for GNSS multipath data generation

The considered model integrates I and Q signals, I and Q multipath and
correlated receiver noise. If a multipath signal is received in addition to the
main signal, as the signal processing chain is linear, the correlator output can
then be considered as the sum of the correlator output of the main signal and
the one due to the multipath. In this work, a single multipath contamination is
considered. Its contribution (IMP, QMP) to the correlator output is considered
as an additional term to the main signal (I, Q), detailed in (2) and (3):

I ′ = I + IMP(αMP,∆τMP,∆fMP,∆θMP) (5)

Q′ = Q+QMP(αMP,∆τMP,∆fMP,∆θMP) (6)

where

• αMP = CMP/C < 1 is the multipath attenuation coe�cient in comparison
to the main path,
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Figure 8: Comparison between an output of the synthetic data generator and a real sample
from a SX3 receiver, Q channel, PRN number set to 1

• ∆τMP = τMP − τ > 0 is the code delay in excess to the main signal delay,

• ∆fMP = δfMP−δf is the di�erence between the Doppler shift of the main
signal and the multipath,

• ∆θMP = θMP − θ is the di�erence between the phase of the main signal
and the multipath.

3.5. The I/Q image dataset generation

The data generator has been implemented with the Python language (Blais
et al., 2021) to produce datasets of I and Q images according to the signal and
noise models detailed in Sections 3.2 and 3.4. This software is referred as the
generator in this paper. The generator is fully con�gurable with respect to the
following parameters:

• αMP, ∆τMP, ∆fMP and ∆θMP which entirely de�ne the multipath. The
de�nition intervals of these parameters are detailed in Appendix A. Their
probability distributions are clari�ed in Section 5 dedicated to the exper-
iments conducted with the help of the generator,

• C/N0 ratio which sets the strength of the direct path signal with respect
to the receiver noise,

• N the number of pixels along each of the delay and Doppler shift axes. The
de�nition domains of the delay and Doppler shift axes are set in Appendix
B. The size of the images is then N ×N pixels. It is important to mention
that 2N2 is then the number of correlators required to implement the
technique proposed in this paper. Hence, it is a direct measure of its
complexity as the correlation operation is from far the most power and
time consuming process in a GNSS receiver,
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• Ti the coherent integration time. In this study Ti = 20 ms, a value corre-
sponding to the duration of one navigation bitD as de�ned in equation (1).
It ensures the longest correlation time, so the best accuracy for τ , δf and
θ estimation, without bit transition during the correlation which would
otherwise lower the �nal result.

The experiments led in this work were all done with datasets of 600 pairs of
I and Q images, equally split in 300 with multipath and 300 without. However,
the generator can provide datasets of arbitrary size and distribution on demand.

4. Convolutional neural network model

4.1. Image classi�cation using CNN

Convolutional neural networks (Goodfellow et al., 2016) are nowadays con-
sidered as among the most powerful tools to learn information from images. This
is explained by their computational e�ciency and their impressive performance
on image information processing. Their learning capability comes from their
ability to automatically construct and combine abstract features from an im-
age. The �rst layers of the network are composed of convolutional layers. Such
layers apply several �lters over the various regions of the input image and create
feature maps that are various versions of the �ltered input image. Several con-
volutional layers are usually stacked in order to progressively extract meaningful
information from the feature maps as the depth of the network is increased. The
last layers of the CNN perform the task of classi�cation usually through several
layers of neurons with dense connectivity. The weights of each convolution layer
�lters (also called kernels) and those of the dense layers are learned through su-
pervised learning based on gradient back-propagation. The underlying structure
of convolutional layers has the advantage of having sparse connectivity and high
weight sharing among neurons, which leads to much greater computational ef-
�ciency over fully connected neural networks when image sizes are large or the
image resolutions are high.

The above principles are at the heart of CNN architectures. Several addi-
tional components are usually integrated in the network. Some Pooling layers
are used in order to reduce the dimension of feature maps. A Flatten layer
is added in front of the stack of dense layers so as to transform feature map
information in vector-like input. To increase the generalization power of the
network, a dropout mechanism can also be used to arti�cially and randomly
remove a small portion of the neuron connection within the network. The num-
ber and the organization of these various components generate several possible
CNN architectures (Shin et al., 2016).

4.2. Choice of a CNN architecture

Among CNN architectures that have proven to be e�ective in practice (Voulodi-
mos et al., 2018), the VGG-like architecture has been shown to be one of the
best choice for image feature extraction (Simonyan & Zisserman, 2015). Despite
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Figure 9: The CNN architecture used in this study: the input has 2 channels corresponding to
I and Q channels, the �rst and second convolutional layers have 16 and 32 �lters respectively
with ReLu activations and the pooling layer is a 2×2 max pooling operation layer (this �gure
has been generated by the NN-SVG tool (LeNail, 2019)).

its number of parameters to be trained compared to other popular and more
complex architectures such as Inception V3 (Szegedy et al., 2016), ResNet (He
et al., 2016) and other variants, it has been widely adopted in practice by the
ML community. The architecture is composed of several blocks of convolutional
layers that are each separated by a pooling layer that decreases the feature map
dimension between blocks. As the depth increases, the dimension of layer in-
put decreases but the number of �lters increases. When data are organized on a
multi-scale basis, mixing macro and micro patterns, the number of convolutional
blocks should be chosen su�ciently large. For the GNSS multipath application,
such multi-scale representation is not expected in the signal. This is the reason
why the chosen architecture only includes one convolutional block composed of
two convolutional layers. It is therefore a very simple instance of a VGG-like
network.

VGG architectures are usually implemented for RGB images (meaning three
input channels: the 'R', 'G' and 'B' channels). For the speci�c case of I/Q
images, each input image is actually composed of two channels (I channel +
Q channel) that are sharing the GNSS correlation signal information. Input
images are therefore tensors of size N ×N and depth 2. Figure 9 provides the
precise network architecture and layer dimension used in this study.

4.3. Feature maps and heatmaps as a combined mean to visualize the feature
space

Although arti�cial neural networks are usually thought of as blackbox models
that construct complex decision surfaces that are di�cult to interpret for a
speci�c application, their CNN instances provide some ways to get knowledge
on the features that are designed during the training process. The convolutional
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Figure 10: Examples of feature maps extracted from the last convolutional layer for the
generated synthetic data using 3 × 3 �lters.

layers extract meaningful information in the image for the learning task at
hand. Therefore, visualizing the constructed �lters after each convolutional
layers gives information on the structure of the image that was extracted by the
layer, the so-called feature maps. Visualizing the stack of the various feature
maps at the output of the various layers will provide insightful knowledge for
the user, see Figure 10 for an example of such stack of �lters constructed by
the proposed CNN. The �gure shows �ltered GNSS correlation images from the
last convolutional layers. It provides understanding on the regions of the signal
image that are extracted for multipath detection. Clearly the various peaks of
the signal are considered for the detection task.

In addition, there is also the possibility to build a class-discriminative lo-
calization map that will highlight the regions of the input image that are most
important for the trained CNN to assign a speci�c class to the image. Several
methods have been proposed along this line (Zhou et al., 2016; Selvaraju et al.,
2019). The GradCAM method (Selvaraju et al., 2019), that will be used later
in this study, is often used for such purpose as it is applicable to most standard
CNN architectures. The main idea is to compute the gradients of the score yc
of a speci�c class c with respect to the feature maps Ak ∈ Ru×v of a convo-
lutional layer. A class importance weight αc

k is then constructed by averaging
these gradients over the height and width of the feature map as follows:

αc
k =

1

u× v
∑
i

∑
j

∂yc
∂Ak

ij

.

These weights are then used to build a weighted combination of activation maps
during a forward propagation of a speci�c input image:

F c
GradCAM = ReLU

(∑
k

αc
kA

k

)
.

Using the ReLU function will account only for positive in�uence of class
c. To visualize the corresponding in�uence in the input space, resizing will be
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necessary as the activation map F c usually does not have the same dimension
as the input. In the experiments, an example of such GradCam activation map
is provided, see Figure 12.

In Section 5.7, such heatmaps are constructed for the multipath detection
task in the I/Q images. These visualization tools provide further understand-
ing on the patterns of the correlation signals that are important for multipath
discrimination. This information may be used later to further re�ne the signal
frame that carries relevant information.

5. Experiments

5.1. Experimental setup

This section describes the experiments which were conducted to evaluate
the performance of the proposed model on the dataset described in Section 3.5.
For each test case the mean, median and standard deviation values of accuracy
and F1 score averaged over 20 runs are provided. The range and probability
distribution of the multipath parameters as de�ned in equations (5) and (6) are
set, unless otherwise speci�ed, as follows:

• αMP the multipath attenuation coe�cient is uniformly distributed in [0.1, 0.9],

• ∆τMP the additional propagation delay of the multipath is also uniformly
distributed, in [0, 3Tc/2] as explained in Appendix A,

• ∆fMP the di�erence in Doppler shift between the direct signal and the
multipath is distributed in [−125,+125] Hz according to a truncated zero-
mean normal distribution with a standard deviation set to 125/3,

• ∆θMP the di�erence between the phase of the main signal and the multi-
path is uniformly distributed in [0, 2π].

The value of the navigation bit D, as de�ned in equation (1), is chosen
randomly with equal probability between -1 and +1 for each pair of I and Q
images.

5.2. In�uence of multipath characteristics

In this section, the in�uence of the multipath characteristics on the detec-
tion performance is assessed. The experimental conditions are set in this way:
C/N0 = 47 dBHz and the image resolution is 80x80. This corresponds to good
observation conditions for the direct path, so that the CNN response can be
clearly observed. The tests were conducted on 5 equally spaced values for both
the di�erence in Doppler shift ∆fMP from 0 to 50 Hz and the additional propa-
gation delay of the multipath ∆τMP from 0 to Tc. The results are represented in
Tables 1 and 2. They show that there is no signi�cant in�uence of the Doppler
shift on the detector performance. On the other hand, when the propagation de-
lay approaches 0.2Tc (meaning that the multipath gets close to the main signal),
a slight degradation of the accuracy and F1-score by 6% can be observed.
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Table 1: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect
to Doppler shift

∆fdop (Hz) 0 10 20 30 40 50
µAcc 0.97 0.96 0.96 0.98 0.97 0.99
σAcc 0.01 0.01 0.02 0.02 0.01 0.01
µF1 0.96 0.99 0.97 0.97 0.97 0.99
σF1 0.01 0.02 0.02 0.03 0.02 0.01

Table 2: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect
to propagation delay

∆τ (Tc) 0.2 0.4 0.6 0.8 1.0
µAcc 0.94 0.94 0.98 0.96 1.0
σAcc 0.01 0.023 0.022 0.012 0.0
µF1 0.94 0.95 0.98 0.95 1.0
σF1 0.008 0.02 0.023 0.011 0.0

5.3. In�uence of the signal to noise ratio C/N0

In this section the in�uence of C/N0 ratio on the detection performance is
assessed. The experimental conditions are the following: Ti = 20 ms and the
image resolution is 80x80. The multipath parameters distributions are identical
to those de�ned in Section 5.2. The tests were conducted on equally spaced
values of C/N0 ratio from 24 to 46 dBHz. The results are presented on Table 3.
From this results the current model shows high robustness towards the noisy
incoming images for values down to 36−38 dBHz. Then, as expected, the model
performance decreases greatly with the value of the C/N0 (when I and Q images
are noisier). On Figure 11, it can be also observed that the standard deviation
of the metrics decreases when the image becomes less noisy. This means that
the detection model achieves greater robustness in performance when the noise
decreases. A value of around C/N0 = 36 dBHz seems to be also a threshold
after which the performance is much higher.

5.4. In�uence of the I/Q image resolution

In order to evaluate the performance of the multipath detector, the proposed
algorithm was applied on images of various resolutions N ∈ {20, 40, 60, 80} with
the intent to estimate the best compromise performance vs image resolution.
The multipath parameters distributions are the same as before. The results
in Table 4 show that the model performance decreases with the image resolu-
tion. However, for resolutions above 40 pixels per axes, the model classi�cation
performance stays above 95%.

5.5. Discussion on CNN performance results

The experiments exposed in this section put in light that the performance
of the proposed method is more than adequate in the three axis of importance
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Table 3: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect
to carrier to noise ratio

C/N0 (dBHz) 24 26 28 30 32 34
µAcc 0.60 0.74 0.64 0.80 0.83 0.85
σAcc 0.08 0.05 0.03 0.02 0.04 0.03
µF1 0.59 0.63 0.74 0.81 0.84 0.84
σF1 0.08 0.08 0.04 0.02 0.03 0.02

C/N0 (dBHz) 36 38 40 42 44 46
µAcc 0.93 0.97 0.98 0.96 0.97 0.97
σAcc 0.02 0.02 0.01 0.03 0.01 0.02
µF1 0.89 0.97 0.97 0.96 0.98 0.97
σF1 0.03 0.02 0.02 0.01 0.01 0.02

Figure 11: Average validation accuracy (left) and average F1 score (right) with respect to
carrier to noise ratio C/N0 (vertical bars represent standard deviation values)

Table 4: Mean (µ) and standard deviation (σ) of prediction accuracy and F1-score with respect
to image resolution

Resolution (pixel) 20 40 60 80
µAcc 0.93 0.95 0.97 0.99
σAcc 0.02 0.01 0.01 0.01
µF1 0.92 0.95 0.98 1.0
σF1 0.02 0.01 0.01 0.0
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in our study:

• The multipath parameters have been varied over their respective realistic
range to assess the validation accuracy. It is not less than 94% in any
case,

• The C/N0 ratio, that reports the receiving condition of the GNSS signal of
interest, was changed from 46 (good) to 24 (poor) dBHz. A failover is ob-
served in the performance around 36 (fairly poor) dBHz, which establishes
a quite acceptable operational limit to our network,

• The image resolution, parametrized by N the number of points per axes,
has been gradually decreased to measure the robustness of the algorithm
to hardware limitations. Indeed, a validation accuracy of 93% is still
achieved for N = 20.

With respect to the chosen architecture, the experiments con�rm that the detec-
tion task at hand does not require large depth as not much multi-scale learning
seems to be needed. Indeed, our choice of a quite shallow architecture has
proven to be appropriate for e�cient multipath detection.

5.6. Comparison with an SVM based detection technique

In this experiment, the performance of the proposed method is compared to
the SVM multipath detection technique proposed in (Suzuki et al., 2017). The
SVM model constructs a maximum margin separating hyperplane between the
two classes of data points (multipath/no multipath). SVM are often used as an
alternative method to neural network as they are able to handle non linearly
separable data (Vapnik, 1998; Scholkopf & Smola, 2001). Since the method
proposed in (Suzuki et al., 2017; Suzuki & Amano, 2021) also collects signal
information from the output of the correlator block, from a data collection point
of view, it is similar to the technique proposed in this study. However, unlike
CNN, they require prior data feature engineering. For comparison purposes, the
feature extraction pipeline used in (Suzuki et al., 2017) was also implemented
on 13 correlator outputs and identical SVM hyperparameters were used. More
speci�cally, the features proposed in (Suzuki et al., 2017) were extracted as
follows:

• Number of local maxima of the correlation outputs per period

F2 =
Nlocal−maxima

∆t

where ∆t is the correlation interval taken equal to coherent integration
period.

• Distribution of the delay of the maximum correlation output

F3 =
1

M

M∑
i=1

(ti−max − t̄)2
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Table 5: Comparison of Mean (µ) and standard deviation (σ) of prediction accuracy and
F1-score for SVM and CNN models

Model SVM CNN
µAcc 0.73 0.98
µF1 0.74 0.95

where ti−max is the code delay of the maximum correlation output, t̄ is
the mean of the code delay, and M is the number of correlator output
samples.

However, in (Suzuki et al., 2017), the authors have also used a signal strength
versus elevation angle feature (referred as F1 in their article). This feature
was not taken into account here as no physical context was introduced in the
experiments (receiver's speed, satellite constellation) since the generated dataset
is synthetic. In the experiment, the C/N0 is taken high (47 dBHz) for both
algorithms to assess performance in favorable noise conditions.

Table 5 reports the results on the mean, median and standard deviation
values of accuracy and F1 score1 averaged over 20 runs of both models (SVM
and CNN). The results show that the proposed CNN algorithm considerably
outperforms the SVM benchmark.

5.7. Analysis of CNN automatic feature construction: towards CNN multipath
detection interpretability

The experiments have highlighted the multipath detection power of the CNN
when compared to SVM. The automatic feature extraction that takes place in
the convolutional layers is able to catch the geometrical dependencies in the
data. To further demonstrate this property, activation maps as described in
Section 4.3 have been computed using the GradCam technique (see Figure 12).
Clearly, the activation maps show hot detection regions around both signal and
multipath peaks (red and yellow areas on the �gure) while cold regions that do
not carry detection relevant information are marked in dark blue. Distortion
around the main signal is highlighted in the activation map in various multipath
situations (near or far from main signal peak). When there is no multipath, no
distortion appears in the heatmap and a much more symmetrical pattern can
be observed. These observations in a sense validates the detection mechanism
and provides a sound and clear interpretation of the CNN decision rule.

6. Conclusions

In this study, a complete GNSS multipath detection framework based on
deep learning has been presented. The proposed method starts with the con-
struction of training image data from synthetic receiver correlation outputs. A

1The F1 score is not to be confused with the F1 feature from (Suzuki et al., 2017).
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Figure 12: Example of heatmaps (bottom) with respect to input image sample (top)

precise image generation process based on speci�c parameter de�nition inter-
vals is described. This process optimizes the relevance of built-in information
within dataset samples. A CNN architecture is then presented and tested with
the constructed dataset. For various multipath parameter choices, experiments
have demonstrated the detection performance of the proposed deep learning
model. Further investigation using heatmaps provides additional understand-
ing of the detection model decision rule and validates its relevance. The results
provided in this study are very encouraging and should motivate further re-
search combining ML techniques and GNSS signal processing modelling. More
speci�cally future research will focus on multiple multipath that characterizes
urban environment. Investigations will also be conducted with deep regression
architectures for multipath parameters estimation. The time dynamic of the
multipath should also be studied in order to improve current static learning
models.
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In this section the ranges of variation of the multipath parameters ∆τMP

and ∆fMP are addressed.
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Figure A.14: Limit case of the di�erence in Doppler shift between the direct path and the
multipath

Figure A.13 represents the correlation between the local signal and the sum
of the direct path and the multipath signals as a function of the delay o�set
between the local and received signals. The triangle pattern corresponds to
K(∆τ) (2,3), the speci�c auto-correlation function of the PRN code, with Tc the
bit period of the code. This corresponds to the limit case when the multipath
signal arrives with the same Doppler shift and with the same amplitude and
phase as the direct path signal. The two circles at −Tc/2 and +Tc/2 represent
the two extreme correlation points used in a classical GNSS receiver to track the
signal of interest. The case without disturbance of these measurement points is
realized when ∆τMP > Tc + Tc/2, so ∆τMP is taken in [0, 3Tc/2].

Figure A.14 represents the correlation between the local signal and the sum
of the direct path and the multipath signals as a function of the frequency o�set
between the local and received signals. This corresponds to the hypothetical
limit case when the multipath signal arrives with the same code delay and
with the same amplitude and phase as the direct path signal. The disturbance
induced in the correlation function of the direct path by the multipath sinc
function is considered to be negligible for |∆fMP| > 2.5/Ti as it peaks under 10%
of the value at ∆f = 0. However, depending on the value of Ti, |∆fMP| is further
bounded by the physical value of 800 Hz. This is the maximum Doppler shift
which could be encountered for example by a commercial aircraft in the approach
or landing phase at a speed of 140 knots. Finally, |∆fMP| < min(800, 2.5/Ti)

Appendix B. De�nition domains of the delay and Doppler shift axes

In this part the observation intervals of the propagation delay τ̃ and Doppler
shift δf̃ are de�ned

As it can be seen in Figure A.13, the propagation delay is included into
the interval [−Tc, 5Tc/2] because outside of it the correlation does not contain
information neither about direct path nor multipath signals. However, it has
been observed in real receivers that a strong multipath could move forward the
value of τ̃ as far as ±Tc/2 in comparison to the real value of τ . So a safety
margin has been included in the range of τ̃ which �nally spans [−3Tc/2, 3Tc].

For the Doppler shift observation interval, Figure A.14 shows that the upper
bound can be taken |δf̃ | < 5.5/Ti because for higher frequencies the value of
the multipath sinc function becomes negligible in comparison to its maximum.
Nevertheless, as in the previous section, depending on the value of Ti, |δf̃ | is
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further bounded by the physical value of 800 Hz: |δf̃ | < min(5.5/Ti, 800 +
2.5/Ti).
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