# Aircraft Emergency Trajectory Design

#### A. Guitart and Pr D. Delahaye

Optim and ML team - French Civil Aviation University - Toulouse France ANITI Research Chair (AI for ATM and UTM) AMLD

March, 28, 2022







- What is the objective of this work?
- Resolution Algorithm
- Results
- Conclusions and Perspectives



- What is the objective of this work?
- Resolution Algorithm
- Results
- Conclusions and Perspectives





# Auto-Pilot



#### Figure – Auto Pilot : manouvers

### FMS



Figure – FMS : navigation

# An example of critical situation : US-Airways 1549



Figure – On January 15, 2009, US Airways Flight 1549, an Airbus A320 struck a flock of birds shortly after take-off, losing all engine power.



# US-Airways 1549





# On-Board A/C Optimal Trajectory Generation

- Over 70% of fatal aviation accidents are in take-off/landing phases.
- Critical in mountainous terrain (e.g., LinZhi airport in China)
- Must take into acount weather (wind, thunderstorms)



Figure – Thunderstorms avoidance



### As Soon as Possible (ASAP)

- Most critical emergencies, the pilot has to find the fastest way to land
- Examples : cabin fire, depressurization

### At Nearest Suitable Airport (ANSA)

- Safest landing
- Example : dual engine failure



- Time is the most critical factor
  - US Airways flight 1549 : 3min
- Fuel may be a limiting factor too
- Challenges

- Real-Time requirement
- Convergence guarantees





# Principle : hierarchical approach

#### Geometric planner

- State constraints, obstacles
- Path generator





- Time parameterization
- Trajectory generator

 $\Rightarrow$  Key Idea : First find flyable **path** to avoid obstacles; then find a feasible **trajectory** to follow along this path.



# Previous Related Works







Automated trajectory generation and airport selection for an emergency landing procedure of CS23 aircraft. *DEAS Aeornautical J.* **2017**, *8*, 481–492. Computation time limitation



# Previous Related Works



Zhao, Y.Efficient and Robust Aircraft Landing Trajectory Optimization. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, Georgia 2012.

Do not take into account obstacles



- What is the objective of this work?
- Resolution Algorithm
- Results
- Conclusions and Perspectives



# Problem features

### Objectives

- Find a safe flyable trajectory
- ASAP or ANSA
- Fast computation

#### Constraints

- Current heading and landing site direction
- Terrain and weather avoidance
- Curvature (radius turn and number of turns)
- Descent profile
- Wind
- Failure feature



#### Rapidly-Exploring Random Tree

- Generation of a random point at each iteration
- Search for the path in parallel with the creation of the graph. For each new node, the father of the node is retained to determine the path.





# Single Turn Curve





## Node connection



## Node connection





## Node connection



# Algorithm

# Graph of curves





# Algorithm

# Graph of curves





# Algorithm



#### Objective function : Minimization of the curvature

- Trajectory composed of *n* curves *c*<sub>1</sub>, *c*<sub>2</sub>, ..., *c*<sub>n</sub>
- $\phi_i$  the turn angle of the curve  $c_i$

min 
$$f(c_1, c_2, ..., c_n) = \sum_{i=1}^n e^{\phi_i}$$



#### Minimization of the curvature

• Penalize trajectories with big turns





- What is the objective of this work?
- Resolution Algorithm
- Results
- Conclusions and Perspectives



### Emergency Example

• A320

- Emergency near to Grenoble in France
- ASAP
- ANSA



# Results

### Emergency Example



Figure – Emergency declared near to Grenoble at an altitude of 32000ft

# Results

# As Soon As Possible (ASAP)



### Vertical Profile (ASAP)





# At Nearest Suitable Airport (ANSA))





# Results

# Vertical Profile (ANSA)





| Computing time                                                |                    |      |      |  |
|---------------------------------------------------------------|--------------------|------|------|--|
|                                                               | Emergency type     | ASAP | ANSA |  |
|                                                               | Computing time (s) | 10   | 15   |  |
| Table – Computing time in seconds to generate 10 trajectories |                    |      |      |  |
|                                                               |                    |      |      |  |



- What is the objective of this work?
- Resolution Algorithm
- Results
- Conclusions and Perspectives



#### Conclusions

- Emergency  $\Rightarrow$  huge workload for pilots
- $\Rightarrow$  new DST
- Efficient algorithm has been proposed
- Extended with a landing sites selector (Clean Sky project : Safency)

#### Perspectives

- Real case tests
- UAV
- SID-STAR design



# **Questions**?

