
HAL Id: hal-03632887
https://enac.hal.science/hal-03632887

Submitted on 6 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new multi-commodity flow model to optimize the
robustness of the Gate Allocation Problem

Ruixin Wang, Cyril Allignol, Nicolas Barnier, Alexandre Gondran,
Jean-Baptiste Gotteland, Catherine Mancel

To cite this version:
Ruixin Wang, Cyril Allignol, Nicolas Barnier, Alexandre Gondran, Jean-Baptiste Gotteland, et al.. A
new multi-commodity flow model to optimize the robustness of the Gate Allocation Problem. Trans-
portation research. Part C, Emerging technologies, 2022, 136, pp.103491. �10.1016/j.trc.2021.103491�.
�hal-03632887�

https://enac.hal.science/hal-03632887
https://hal.archives-ouvertes.fr

A New Multi-commodity Flow Model to Optimize the
Robustness of the Gate Allocation Problem

Ruixin Wanga,b,∗, Cyril Allignolb, Nicolas Barnierb, Alexandre Gondranb, Jean-Baptiste
Gottelandb, Catherine Mancelb

aLaboratory of Complex System Safety and Intelligent Decisions, CAUC-ENAC Joint Research Center of
Applied Mathematics for Air Traffic Management, Sino-European Institute of Aviation Engineering, Civil

Aviation University of China, Tianjin, China
bENAC, Université de Toulouse, France

Abstract

The Gate Allocation Problem (GAP) is one of the numerous operational problems that
all busy airports have to handle and to optimize every day. In this article, we focus on
two important objectives for the GAP: the robustness and the taxiing times.We first
analyze a basic model which optimizes the robustness of the solution to the GAP and
propose a more realistic and compact Multi-commodity Flow Problem model (MFP)
to optimize both the robustness and the taxiing times. Based on tests with real data at
Paris-Charles-de-Gaulle airport, this new efficient MFP model outperforms the basic
one by orders of magnitude.

Keywords: Gate Allocation Problem, Robustness, Multi-commodity Flow Problem,
Integer Linear Programming

Introduction

All airports have to handle many challenges regarding traffic increase, delay reduc-
tion, traffic predictability and environmental impact. In this context, airports attempt to
improve the efficiency of their operations, among which gate allocation is one of the
most important [6]. Given a set of flights, the schedule of their gate occupancy (i.e. their
respective arrival and departure times at the gate) and a list of compatible gates, the
Gate Allocation Problem (GAP) consists in assigning a gate to each flight such that at
most one aircraft occupies a gate at any time, while optimizing various operating costs.

Classic objectives of the GAP include the optimization of passengers walking dis-
tance [20], the allocation of terminal gates over apron stands or the minimization of the
number of towing movements [16]. However, the emergence of Aircraft Collaborative

∗Principal corresponding author
Email addresses: ruixin.wang@recherche.enac.fr (Ruixin Wang), cyril.allignol@enac.fr

(Cyril Allignol), nicolas.barnier@enac.fr (Nicolas Barnier), alexandre.gondran@enac.fr
(Alexandre Gondran), alexandre.gondran@enac.fr (Jean-Baptiste Gotteland),
catherine.mancel@enac.fr (Catherine Mancel)

Preprint submitted to Elsevier Wednesday 6th April, 2022

Decision Making (A-CDM) [15] in the past decade, and more specifically of Departure
Management (DMAN) regulations, tend to increase gate occupancy, which can lead to
schedule conflicts and costly disruptions. To overcome this issue, the robustness of the
allocation with respect to schedule deviations should be optimized.

Actually, the DMAN has become an essential feature at busy international airports
to reduce their environmental impact and optimize their throughput: it computes a
pre-departure sequence that aims at holding delayed flights at the gate, engines off

and apart from the rest of the traffic, rather than burdening the taxiways. The DMAN
process has proven to be very efficient [19], once successfully calibrated to each airport.
However, deviations from the plan like late departures at the gate can lead to very
complex situations in which arrivals have to wait a long time before a suitable gate
becomes available. To alleviate this issue, we propose to design an initial gate allocation
method which optimizes the robustness w.r.t. time deviations and assess its benefits.

In order to optimize the robustness of an assignment, [4] suggests to minimize the
variance of the durations of gates idle times in order to keep a sufficient amount of
buffer between successive flights. The same author then proposes in [5] an Integer
Linear Programming (ILP) model to solve the GAP, however, the quadratic number of
constraints prevents to solve large scale instances.

In this article, we first improve the above mentioned ILP model by taking into
account the heterogeneity of the gates and discarding a number of superfluous variables.
Afterwards, we propose a much tighter and smaller model based on the Multi-commodity
Flow Problem (MFP) to optimize the robustness of the GAP. Indeed, the GAP is similar
to the Unsplittable MFP as explained in Section 4. We introduce the corresponding
graph flow model to indicate their similarity, then translate it into an ILP model which
reduces the number of constraints by one order of magnitude. Additionally, we propose
a more realistic GAP model by taking mutually exclusive gates into account and by
integrating taxiing costs in the objective function. Based on tests with real instances of
the GAP at Paris-Charles-de-Gaulle international airport, this MFP model outperforms
the model introduced in [5] by orders of magnitude.

This paper is organized as follows: Section 1 presents the literature of the GAP, then
we provide a formal description of the problem in Section 2. Section 3 discusses the
ILP optimization model for the GAP introduced in [5], then Section 4 proposes a new
improved ILP optimization model for the GAP. We analyse the performance of our new
model with realistic traffic data in Section 5 and we conclude in the last section.

1. Literature Review

The Gate Allocation Problem1 (GAP) consists in assigning arriving flights with fixed
occupancy periods to available compatible gates while maximizing both conveniences
to passengers and operational efficiency of airports [7]. [24] was one of the first to
introduce the problem in 1974, but the literature is scarce until the 2000s. However,
many variants of the GAP have been studied since, as mentioned in [10].

1This problem is sometimes called Airport Gate Allocation Problem (AGAP) or Stand Allocation Problem
(SAP) in the literature.

2

If there were no compatibility restriction between gates and aircraft, the correspond-
ing decision problem could be modeled as the coloring of an interval graph, which is
polynomial [17] for the minimization of the number of colors (i.e. gates). Airport gates
are generally not equivalent resources though, as they are dimensioned to accommodate
specific types of aircraft. Therefore, the set of compatible gates for an aircraft is usually
a strict subset of all the available gates and the decision version of the allocation problem
is rather a list-coloring problem, which is NP-Complete even for interval graphs [3].

Moreover, gates may also be endowed with other secondary features (e.g. compatible
airlines, domestic or international, terminal or apron, etc.) which should match the
characteristics of the flight and the preferences of airlines as much as possible. These
preferences can be modeled as costs associated with each possible assignment, and
standard GAP objectives often include the minimization of their sum, which is NP-
Hard [11]. From the airport operations perspective, the objective could be to maximize
the utilization of the available gates and terminal [24, 28, 21], minimize the flight
delay [29] and maximizing the preferences [13] (i.e. certain aircraft should go for
particular gates). Other classic objectives can be the passengers walking distance [9, 12,
22] (or other connection means like buses), which is similar to the Quadratic Assignment
Problem, or the number of towing movements [16].

Even if a flight occupancy is fixed, many real-life factors of uncertainty (e.g. traffic
delays, severe weather conditions, equipment failure, etc.), can lead to deviations from
the original schedule. If there is not enough buffer time between successive flight
occupancies at a given gate, a delay may propagate to other flights, then to other
gates, and hinder the operational efficiency of the whole terminal. In order to absorb
potential delays and avoid costly disruptions, our study rather focuses on optimizing the
robustness of the allocation as proposed by [4], which minimizes the variance of idle
times of gates to balance and spread them over time and resources. Despite its practical
importance, research on the robustness of solutions to the GAP is quite limited.

To solve these very diverse variants of the GAP, many classic combinatorial opti-
mization methods were experimented, depending on the linearity of the model, the size
of the instances and the requirements on the execution time of the solver. One of the
most used tools is Mixed Integer Programming or Integer Linear Programming (ILP)
solvers, like Gurobi or CPLEX, to obtain proven optimal solution like in [5, 16]. Several
studies present their ILP model as a Multi-commodity Flow Problem (MFP), like [30]
which models re-assignment while minimizing passengers cost. Another complete
combinatorial optimization technique, Constraint Programming, was also experimented
in [23, 26] to solve the GAP as a scheduling problem similar to Fixed Job Scheduling
(FJS).

As previously mentioned, all considered variants of the GAP are NP-Complete
or NP-Hard, so many publications have suggested various heuristic approaches for
solving large instances or non-linear models in reasonable time. [27] developed an
algorithm based on the Lagrangian relaxation of the GAP, with subgradient methods,
accompanied by a shortest path algorithm and a Lagrangian heuristic to solve an MFP
model. Additionally to the ILP model previously mentioned, [5] also proposed a Genetic
Algorithm, which is a population-based meta-heuristic, to provide several alternative
solutions in case of schedule deviations exceeding the robustness of the implemented
solution. [2] proposed a multi-objective heuristic approach base on Breakout Local

3

Search, with a particular focus on the perturbation strategy. [11] proposed an improved
Particle Swarm Optimization algorithm to solve a multi-objective (walking distance
of passengers, number of flights at parking apron, etc.) optimization model. [30] used
two heuristic algorithms to minimize the weighted sum of the total flight delays. More
research work can be found in a recent survey about the GAP [10].

More generally, there are already many studies on the GAP focusing on different
criteria. However, few of them except [4, 5] really consider the robustness of the
assignment, all the more while minimizing taxiing time simultaneously, which appears
to be one of the most important criteria for major international airports like Paris-CDG.
Moreover, the resolution process should be efficient enough to be computed in a few
minutes, as the GAP does not occur only once (one day before the date of the traffic), but
has also to be solved almost in real time when a severe disruption leads to a necessary
re-assignment of gates. Using the same decision variables as [5], which does not
identify the GAP as a flow problem, we introduce in this article a much more efficient
and compact MFP model to optimize its robustness. For an instance with n flights and
m gates, we reformulate the original O(mn2) “continuity” constraints that ensure the
feasibility of the assignment, by only O(mn) flow conservation constraints. This tighter
model drastically reduces resolution times and allows to optimally solve large-scale
instances. Furthermore, we also propose to take taxiing costs, a major concern of large
international airports, into account in the objective function, as well as consider subsets
of mutually exclusive gates (which occur at Paris-CDG) with additional constraints.

2. The Gate Allocation Problem

After presenting the operational context of the GAP at Paris-CDG and the impor-
tance of optimizing the robustness and taxiing times of solutions, we formalize the
combinatorial optimization problem independently from its resolution technique and
specific model, thoroughly describing its instances components (except mutually de-
pendent gates which are presented in Section 4.4), its feasibility condition and possible
objective costs. Eventually, we define a compatibility predicate to help define compact
ILP models in Sections 3 and 4.

2.1. Operational Context
The Gate Allocation Problem (GAP) is one of the numerous operational problems

that all busy airports have to handle and to optimize every day. It is usually tackled
with specific usages and preferences that are difficult to model or list rigorously – some
airlines may even manage their own stands area with their own undisclosed strategy.
This can lead to a very complex organization, in which the parking stands can have
various configurations during each period of the day. Some groups of gates can also
be dependent (cf. Section 4.4): only one aircraft can occupy one of them at a time, but
these gates cannot be considered as a single one, because they have different entry or
exit points, resulting in different taxiing times for the aircraft. Therefore, the GAP is
often specific to the considered airport and can be formulated very differently, with
various degrees of accuracy.

In the scope of this article, we consider the GAP at Paris-CDG, one of the busiest
European international airports. The terminals and their gates (including dependent

4

Figure 1: Paris-CDG 1: terminals T, U, V, W, X, Y, Z.

Figure 2: Paris-CDG 2: terminals A, B, C, D, E, F.

5

ones) are well described, and the types of aircraft that can operationally use a given gate
can be easily reconstructed from the available actual traffic records. Figures 1 and 2
are extracted from the official airport charts and show the location of the gates in the
main terminals at Paris-CDG. Figure 1 shows how some gates of different terminals can
be dependent at Paris-CDG 1, as they cannot be used at the same time: on this figure,
arrows represent the position of the aircraft at each stand and, for example, gates V08
and W02 are mutually exclusive. For this reason, instances of the GAP that involve
these terminals cannot be solved separately and have to be merged in a single, larger
one, even if the precise terminal of each flight is fixed.

Moreover, Paris-CDG has implemented the Airport Collaborative Decision Making
(A-CDM) program during the last decade [15]: this program defines which and how
accurate information (arrival and departure times, aircraft delay. . .) can be shared
between the different airport stakeholders [14], in order to help them make more
efficient decisions in real time. Not only Paris-CDG, many other European and Chinese
airports have also obtained A-CDM certification and are currently in the process of its
implementation [15, 8]. The A-CDM program also includes a major improvement in
the departures management [19]: the delay due to the runways capacities is anticipated
and aircraft are preferably delayed at gate, engines off, rather than near the runway
after start-up, burning fuel and emitting CO2. The benefits are twofold: it results in
less taxiing traffic, which decreases congestion and nuisance, and also provides a more
accurate departure schedule. However, it has a negative effect on gates occupancy,
which can significantly increase, especially during peak hours. For these reasons, the
robustness of the gate allocation towards additional gate occupancy due to departures
delay becomes more and more important for such airports: significant disruptions can
be caused in case of gate conflicts between arriving aircraft and delayed departures.

Another important criterion for the GAP is the resulting taxiing times: especially
at big airport like Paris-CDG, taxiing times minimization is one of the main objectives
for both airlines and airport managers. However, many other constraints like safety
and customs services, airlines organization, passengers information, etc. prevent to be
able to change the terminal of a flight for this purpose, as it is generally fixed a long
time before the day of traffic. Nevertheless, some big terminals offer several distant
gates at Paris-CDG, and have different ways to enter or leave, so that taxiing times can
significantly vary from a gate to another in the same terminal and must be minimized as
well, as shown in Section 4.3.

2.2. Instance Definition

An instance of the basic model of the GAP is defined by:

• F = { f1, . . . , fn}: a set of n flights (or aircraft) to arrive at the airport during the
considered planning horizon and to be assigned to gates.

• G = {g1, . . . , gm}: a set of m gates available during the considered planning
horizon.

• ∀ fi ∈ F :

6

– f s
i and f e

i : the expected arrival and departing times of flight fi to its assigned
gate, with f s

i 6 f e
i . Note that these arrival and departing times are supposed

to be known in advance and not to depend on the gate allocation decisions.
Moreover, we suppose that the flights, indexed from 1 to n (noted [1 . . n]),
are ordered by increasing arrival time:

∀ fi, f j ∈ F , i < j⇒ f s
i 6 f s

j

– Gi ⊆ G: a subset that specifies the possible gates on which flight fi can be
assigned, depending on the type of the aircraft and the characteristics of the
gates. We suppose that Gi 6= ∅, otherwise there is no solution.

• ∀gk ∈ G:

– gs
k and ge

k: the opening and closing times of gate gk. Without loss of gen-
erality, we can consider that all gates have the same availability [gs . . ge],
i.e. ∀gk ∈ G, gs

k = gs and ge
k = ge; to represent a period of unavailability of

gate gk between t1 and t2 (e.g. for maintenance or while understaffed), we
just add an extra flight fi to F with f s

i = t1, f e
i = t2 and Gi = {gk}. We also

consider that ∀ fi ∈ F , gs 6 f s
i and f e

i 6 ge, i.e. all flights are scheduled
during the period of availability of the gates [gs . . ge] (otherwise there is
trivially no possible allocation).

– Fk ⊆ F : the subset of flights which can be assigned to gate gk, redundantly
defined as Fk = { fi ∈ F | gk ∈ Gi} to simplify notations in the following
sections.

Subsets Gi (and Fk) generally have to be built from raw data that specify the type of
aircraft for each flight (among a given set of types) and the accepted types for each gate.
Other characteristics of the flights and the gates can further restrict the possible gates,
e.g. the airline, custom or services requirement. . . In Section 4.4, we refine this model
by taking into account mutually exclusive subsets of gates.

2.3. Feasibility

An instance of the GAP is feasible if and only if there exists an assignment σ
of flights to gates such that each flight is assigned a gate from its possible ones
(Equation (1)) and flights assigned to the same gate do not overlap (Equation (2)),
i.e. ∃σ : F 7→ G such that:

∀ fi ∈ F , σ(fi) ∈ Gi (1)
∀ fi, f j ∈ F s.t. i < j, σ(fi) = σ(f j)⇒ f e

i 6 f s
j (2)

2.4. Cost

As already mentioned, various kinds of cost can be associated to a feasible allocation.
The most usual one is the sum of the individual costs ca

i,k associated to each assignment
σ(fi) = gk:

7

Definition 1 (Assignment Cost). The assignment cost of a solution to an instance of
the GAP is defined by:

costa =

n∑
i=1

ca
i,k

However, we focus in this article on the robustness of the allocation w.r.t. possible
time deviations of the gate occupancies. As proposed by [5], the robustness can be
optimized by minimizing the variance of the idle times of the gates, such that they are
distributed as evenly as possible over the schedule, allowing occupancies to exceed their
expected time bounds without incurring gate conflicts. As the overall leeway and the
number of idle times are constant (as explained in Section 3), the mean of the idle times
is fixed and the minimization of their variance amounts to the minimization of the sum
of their squares.

More generally, we can model an idle time as the cost ctr
i, j of the transition between

two successive flights fi and f j assigned to the same gate, considered to be independent
of the gate. The transition cost also takes into account costs ctr

0,i of the transition between
the opening of each gate, represented by fictive flight f0, and its first flight fi, and ctr

i,n+1
between the last flight of each gate fi and its closing, represented by fictive flight fn+1:

Definition 2 (Transition Cost). The transition cost of a solution to an instance of the
GAP is defined by:

costtr =

m∑
k=1

ctr
0,fst(k) +

n∑
i=1

ctr
i,succ(i)

where fst : [1 . . m] 7→ [1 . . n + 1] is a function such that fst(k) returns the index (in
[1 . . n]) of the first flight assigned to gate gk or n + 1 if the gate is unoccupied, and
succ : [1 . . n] 7→ [1 . . n + 1] is a function such that succ(i) returns the index (in [1 . . n],
or more precisely in [i + 1 . . n] because flights are ordered by arrival time and therefore
i < succ(i)) of the flight that immediately succeeds fi on its assigned gate, or n + 1 if it
is the last flight.

Definition 3 (Idle Time Duration). The idle time duration Ii, j between two successive
flights fi ∈ { f0} ∪ F and f j ∈ F ∪ { fn+1} assigned to the same gate is defined by:

∀i ∈ [0 . . n], ∀ j ∈ [i + 1 . . n + 1],

Ii, j =

f s

j − f e
i if i > 1 ∧ j 6 n (successive flights)

f s
j − gs if i = 0 ∧ j 6 n (first flight)

ge − f e
i if i > 1 ∧ j = n + 1 (last flight)

ge − gs otherwise (i = 0 ∧ j = n + 1, empty gate)

To optimize the robustness of a solution, the transition cost is defined in our model
as ctr

i, j = I2
i, j (as explained in Section 3), i.e. the square of the duration of the idle time

between two successive flights fi and f j assigned to the same gate (possibly of null
duration if succ(i) = j and f e

i = f s
j), or between the opening of a gate and its first flight,

or between the last flight of a gate and its closing, or between the opening and closing
of an unoccupied gate:

8

Note that even if this abstract model considers uniform gates, i.e. the transition cost
is independent from the gate, the ILP model described in the next section can natively
represent gate-dependent costs.

2.5. Flights and Gates Compatibility
For a given instance, not all the transition costs ctr

i, j, ∀i, j ∈ [0 . . n + 1], i < j, need to
be defined, but only for the ordered pairs of indices of compatible flights, i.e. that have at
least a possible gate in common and do not overlap. We define a compatibility predicate
to specify the corresponding compatible triplets of indices (of two possibly successive
flights and a given gate) and help the writing of our ILP models in the following sections,
which discard unnecessary decision variables:

Definition 4 (Compatibility Predicate). The compatibility predicate γ : [0 . . n] ×
[1 . . n + 1] × [1 . . m] 7→ B on two ordered flight indices i and j and a gate index k is
defined by:

∀i ∈ [0 . . n], ∀ j ∈ [i + 1 . . n + 1], ∀k ∈ [1 . . m],

γ(i, j, k) =

gk ∈ Gi ∩ G j ∧ f e

i 6 f s
j if i > 1 ∧ j 6 n (successive flights)

gk ∈ G j if i = 0 ∧ j 6 n (first flight)
gk ∈ Gi if i > 1 ∧ j = n + 1 (last flight)
true otherwise (i = 0 ∧ j = n + 1, empty gate)

fi, f j and gk are said to be compatible if γ(i, j, k) = true.

3. Basic Transition Cost ILP Model

In [5], the author proposes several mathematical models for the GAP, with different
kind of optimization criteria, in order to capture the robustness of gate assignment
solutions towards flight schedule disruptions. In particular, he proposes to minimize
the variance of the idle times of the gates to evenly distribute the global leeway over
resources and time. This criterion allows for short or long pauses that might be necessary
in some instances without hindering the optimization of the rest of the schedule

An idle time is defined as a time period, possibly of null duration, between two
successive flights assigned to the same gate and during which the gate is unoccupied.
The idle times occurring between the opening of a gate and its first assigned flight,
and between its last flight and its closing, are also taken into account as the gates are
available to absorb possible delays (or early arrivals), such that there are exactly n + m
idle times in any allocation: one after any of the n flights and one between the opening of
any of the m gates and its first flight (or its closing for unoccupied ones). The underlying
idea of this minimization criterion is that the more the flights are regularly distributed to
gates, the less the corresponding gate allocation solution should be sensitive to schedule
disruptions.

Indeed, even if the number and the sum of the idle times is considered to be constant
in [5], because the arriving and departing times of flights are fixed, their respective
durations directly depend on the gate assignment. Hence, the more the idle times are

9

balanced w.r.t. their durations, the smaller the sum of their squares (or any other convex
function). The author proposes an Integer Linear Programming (ILP) model to solve the
GAP with the sum of the squares of the idle times as the minimization criterion, with
O(mn2) binary variables xi, j,k stating that flight f j is the successor of flight fi on gate gk,
and O(mn2) constraints.

Before introducing our tighter and more compact flow model in Section 4, which
only needs O(mn) constraints, we reformulate this ILP model in the following sections,
taking into account the heterogeneity of the gates and discarding variables that can
statically be set to 0 because of an incompatibility (see Section 2.5), which was not
explicitly done in [5].

3.1. Decision Variables
A binary variable is defined to denote the successive assignment of a pair of compat-

ible flights to the same compatible gate, using compatibility predicate γ of Definition 4:

∀i ∈ [1 . . n], ∀ j ∈ [i + 1 . . n], ∀k ∈ [1 . . m], s.t. γ(i, j, k),

xi, j,k =

{
1 if flights fi and f j are successively assigned to gate gk

0 otherwise (3)

∀ j ∈ [1 . . n], ∀k ∈ [1 . . m], s.t. γ(0, j, k),

x0, j,k =

{
1 if f j is the first flight assigned to gate gk

0 otherwise (4)

∀i ∈ [1 . . n], ∀k ∈ [1 . . m], s.t. γ(i, n + 1,m),

xi,n+1,k =

{
1 if fi is the last flight assigned to gategk

0 otherwise (5)

∀k ∈ [1 . . m],

x0,n+1,k =

{
1 if there is no flight assigned to gate gk

0 otherwise (6)

If the instance is feasible, there is exactly one xi, j,k variable equal to 1 for each flight
fi, so the allocation σ can trivially be deduced from the decision variables:

∀ fi ∈ F , ∃! j ∈ [i + 1 . . n], ∃! k ∈ [1 . . m], s.t. xi, j,k = 1, σ(fi) = k

or, alternatively, with the linear expression:

σ(fi) =
∑

j∈[i+1..n]

∑
k∈[1..m]
γ(i, j,k)

kxi, j,k

Note that variables xi, j,k are similar to the ones of typical ILP models of the Multi-
commodity Flow Problem [25], where they are interpreted as the the amount of a
commodity k flowing through an arc from node i to node j in a network. Nevertheless,
as shown hereafter, the model proposed in [5] is not formulated as a flow problem
model.

10

3.2. Constraints
Covering constraints: each flight has to be assigned to exactly one compatible gate. In
order to guarantee this statement, the following constraints are introduced to ensure that
exactly one flight is assigned immediately before a given flight f j (Equation (7)), and
only one flight is assigned immediately after a given flight fi (Equation (8)):

∀ j ∈ [1 . . n],
∑

i∈[0.. j−1]

∑
k∈[1..m]
γ(i, j,k)

xi, j,k = 1 (7)

∀i ∈ [1 . . n],
∑

j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

xi, j,k = 1 (8)

Moreover, Equation (9) is added to specify that there are exactly n + m binary variables
that should be equal to 1 in a feasible solution:∑

i∈[0..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

xi, j,k = n + m (9)

Continuity constraint: the successive assignments have to be feasible. Indeed, if a pair
of flights (fi, f j) with j 6 n (i.e. fi is not the last flight on its gate) are successively
assigned to a gate gk, there must be a flight f j′ with j′ ∈ [j + 1 . . n + 1] such that the
pair of flights (f j, f j′) are also successively assigned to gk, but there cannot be any flight
f j′ such that the pair of flights (f j, f j′) are successively assigned to a gate gk′ 6= gk. This
continuity constraint is modeled with Equation (10), which states that, for any pair of
flights (fi, f j) and any gate gk, either xi, j,k = 1, and then no x j, j′,k′ with j′ > j and k′ 6= k
can be equal to 1 (

∑
k′∈[1..m]|k′ 6=k, j′∈[j+1..n+1] x j, j′,k′ = 0); either xi, j,k = 0, and then at most

one x j, j′,k′ with j′ > j and k′ 6= k equals 1 (which is always true due to Equations (7)
and (8)).

∀i ∈ [0 . . n − 1], ∀ j ∈ [i + 1 . . n], ∀k ∈ [1 . . m], γ(i, j, k),

xi, j,k +
∑

j′∈[j+1..n+1]

∑
k′∈[1..m]\{k}
γ(j, j′,k′)

x j, j′,k′ 6 1 (10)

Note that these continuity constraints are not formulated as a flow balance constraint
but as the linearization of the logical constraint:

∀i ∈ [0 . . n − 1], ∀ j ∈ [i + 1 . . n], ∀k ∈ [1 . . m], γ(i, j, k),
∀ j′ ∈ [j + 1 . . n + 1], ∀k′ ∈ [1 . . m] \ {k}, γ(j, j′, k′),

xi, j,k = 1⇒ x j, j′,k′ = 0

These O(mn2) constraints dominate the number of constraints of this model.

Resource constraints: each gate can be assigned to at most one flight at a time. Due to
the previous continuity constraints, it is sufficient to check that each gate should have at
most one assigned first flight. Therefore Equation (11) is defined by:

∀k ∈ [1 . . m],
∑

j∈[1..n+1]
γ(0, j,k)

x0, j,k 6 1 (11)

11

Domain constraints. The decision variables are binary as mentioned above:

∀i ∈ [0 . . n], ∀ j ∈ [i + 1 . . n + 1],∀k ∈ [1 . . m], γ(i, j, k),
xi, j,k ∈ {0, 1} (12)

3.3. Objective
As previously mentioned, the objective function proposed in [5] consists in mini-

mizing the sum of the squares of the idle times, in order to find robust solutions towards
operational arrival and departure delays. Therefore, the following minimization criterion
is proposed:

min
∑

i∈[0..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

I2
i, jxi, j,k (13)

As exactly one binary variable x0, j,k can be equal to 1, ∀k ∈ [1 . . m], i.e. the correspond-
ing flight f j is the first on gate gk, and exactly one xi, j,k can be equal to 1 ∀i ∈ [1 . . n],
because of the constraint of Equation (8) (i.e. flight fi has a unique successor f j), the cost
defined by objective of Equation (13) corresponds to the transition cost of Definition 1:

costtr =
∑

k∈[1..m]

∑
j∈[1..n+1]
γ(0, j,k)

ctr
0, jx0, j,k +

∑
i∈[1..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

ctr
i, jxi, j,k (14)

Note that with this definition, the gates are not required to be uniform w.r.t. to the
transition cost which could depend on k:

costtr =
∑

i∈[0..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

ctr
i, j,k xi, j,k

4. Multi-commodity Flow Model

As mentioned in the previous section, the GAP is similar to a Minimum-Cost
Flow Problem [25], more precisely an Unsplittable Multi-commodity Flow Problem
(UMFP) [1] with additional constraints, which translates into a tighter and smaller ILP
model. We first introduce the corresponding graph flow model and then describe its
translation to ILP as an improvement of the basic model constraints. Eventually, we
refine this new GAP flow model to take into account other operational costs and con-
straints: we propose to combine the robustness with the taxiing cost within the objective
and to prevent mutually exclusive gates to be used simultaneously (cf. Section 2.1).

4.1. Graph Model
The GAP can be seen as a kind of Unsplittable Multi-commodity Flow Problem

(UMFP) [1] with unit capacity for each arc and unit demand for each commodity. But
our problem is defined on a directed multigraph G = (V, E) with parallel arcs between
nodes vi and v j (corresponding to flights fi and f j) whenever f e

i 6 f s
j ∧

∣∣∣Gi ∩ G j

∣∣∣ > 1
that restrict the compatible commodities rather than their amount. Arcs are labeled
with the corresponding compatible gate index k (represented by a distinct color in the
example of Figure 3) s.t. γ(i, j, k) are specified by triplets of V × V × [1 . . m]. More
classically, the opening of gates are the sources of G and their closing are the sinks.

12

Definition 5 (Compatibility (Multi)Graph). The compatibility (multi)graph of a GAP
instance G = (V, E,w, d) with weight w : E 7→ R>0 and supply d : V 7→ R is defined
by:

• V = VF ∪ V s
G ∪ Ve

G:

(15a)VF = {vi, ∀i ∈ [1 . . n]}
(15b)V s

G = {vk
0, ∀k ∈ [1 . . m]}

(15c)Ve
G = {vk

n+1, ∀k ∈ [1 . . m]}

VF corresponds to regular flights, V s
G to fictive openings of the gates and Ve

G to
their endings, and |V | = 2m + n.

• E = EF ∪ E s
G ∪ Ee

G ∪ EG:

EF = {(vi, v j, k), ∀i ∈ [1 . . n − 1], ∀ j ∈ [i + 1 . . n], ∀k ∈ [1 . . m]
s.t. γ(i, j, k)} (16a)

(16b)E s
G = {(vk

0, v j, k), ∀ j ∈ [1 . . n], ∀k ∈ [1 . . m], s.t. gk ∈ G j}
(16c)Ee

G = {(vi, vk
n+1, k), ∀i ∈ [1 . . n], ∀k ∈ [1 . . m], s.t. gk ∈ Gi}

(16d)EG = {(vk
0, v

k
n+1, k), ∀k ∈ [1 . . m]}

EF corresponds to idle times between two regular successive flights, E s
G to idle

times between the opening of the gates and their first flights, Ee
G to the ones

between their last flights and the closing of the gates, and EG to empty gates. |E|
is equal to the number of compatible pairs of (real) flights plus 2

∑
k∈[1..m] |Fk |,

the arcs from the opening and closing of the gates to compatible flights, i.e. in
O(2mn + n2) in the worst case.

• Each arc has a unit capacity 1 and a weight (or cost) w defined by:

w((vi, v j, k)) = ctr
i, j = I2

i, j

(also valid for start and end vertices vk
0 and vk

n+1). Note that our model is generic
enough to take into account non uniform resources (gates) for which the cost may
depend on k as shown in Section 4.3 where taxiing times are added to the idle
times.

• Each node has a supply value d defined by:

d(v) =

1 if v ∈ V s

G (openings)
−1 if v ∈ Ve

G (closings)
0 otherwise (i.e. v ∈ VF , regular flights)

13

v1
0

v2
0

v3
0

v1

v3

v2

v4

v1
5

v2
5

v3
5

0

729

5184

8100

8100

0

1024

729

8100

1024

5184

3600225225

6084

6084

400

576

1764

1764

36

36

2916

2916

1296

Figure 3: Coloured representation of the compatibility graph of Example 1 where “commodities”, i.e. the
three gates, are represented by different colors. Fictive nodes vk

0 and vk
n+1 are associated respectively to the

opening and ending of gate k, and nodes vi, ∀i ∈ [1 . . 4], to actual flights. A coloured arc joins two nodes
if they can succeed each other on the corresponding gate, therefore multiple arcs may join the same pair of
nodes (as between nodes v1 and v2). They are labelled with their weight (i.e. the cost of the associated idle
time) indicated in hundreds of min2. The flow corresponding to the optimal solution is shown with bold arcs.

As an example, Figure 3 represents the graph model of the following GAP instance:

Example 1 (GAP Instance with 4 Flights and 3 Gates). F = { f1, f2, f3, f4},G = {g1, g2, g3}
with gs = 06:00, ge = 21:00 (in hh:mm format) and:

i f s
i f e

i Gi

1 06:00 08:00 {g1, g2}
2 10:30 12:00 {g1, g2}
3 11:20 14:00 {g2, g3}
4 18:00 20:00 {g1, g3}

Feasibility. Like a standard flow problem, an instance of the GAP is feasible iff there
exists a binary flow φ : E 7→ {0, 1} such that the imbalance between outgoing and
incoming flows at each node is equal to the supply:

∀v ∈ V,
∑
e∈E+

v

φ(e) −
∑
e∈E−v

φ(e) = d(v) (17)

14

g1

g2

g3

f1 f4

f2

f3

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Figure 4: Gantt diagram of the optimal solution to Example 1.

with E+
v = {e,∀e = (u, v, k) ∈ E} the incoming arcs of node v and E−v = {e,∀e =

(v,w, k) ∈ E} its outgoing ones. However, for the GAP, the flow must also satisfy the
following additional constraints.

Additional constraints. In general, a solution to a UMFP is not a solution to the GAP,
because all internal nodes (corresponding to real flights) must be covered by the flow
(Equation (18)) and paths must be “monochromatic” (Equation (19)):

• A solution to the GAP must cover all flights of F , therefore all nodes of VF must
have a unit inflow and outflow:

∀v ∈ VF ,
∑
e∈E+

v

φ(e) =
∑
e∈E−v

φ(e) = 1 (18)

• The same gate must be used to enter and leave a node, therefore the flow imbalance
Equation (17) must be expressed individually for each gate (or “color”):

∀vi ∈ VF ,∀gk ∈ Gk,
∑

(vi′ ,vi,k)∈E+
v

φ((vi′ , vi, k)) =
∑

(vi,vi′′ ,k)∈E−v

φ((vi, vi′′ , k)) (19)

The flow of each edge (vi, v j, k) (or (vk
0, v j, k), (vi, vk

n+1, k), (vk
0, v

k
n+1, k)) corresponds to the

binary decision variable xi, j,k (or x0, j,k, xi,n+1,k, x0,n+1,k) of the basic ILP model described
in Section 3.1, thus the assignment of flights to gate can be deduced accordingly.

Objective. The cost of a flow is defined by:∑
e∈E

w(e)φ(e) (20)

As mentioned in the previous paragraph, this cost corresponds to the one of the basic
ILP model described in Section 3.3, and is therefore also equal to the transition cost of
Definition 1. Figure 4 depicts the Gantt diagram of an optimal solution to Example 1
with cost: costtr = 10069 × 100min2.

4.2. ILP Model
The previously described GAP model as a UMFP with additional constraints can be

translated in an ILP model equivalent to the basic model of Section 3, based on the same

15

xi, j,k binary decision variables and cost expression but with tighter and fewer constraints.
The UFMP flow imbalance constraints of Equation (17) ensures that all sources (or gate
openings) have a unit outflow as their supply value is 1:

∀k ∈ [1 . . m],
∑

j∈[1..n+1]
γ(0, j,k)

x0, j,k = 1 (21)

and that all sinks (gate closings) have a unit inflow (supply value of -1):

∀k ∈ [1 . . m],
∑

i∈[0..n]
γ(i,n+1,k)

xi,n+1,k = 1 (22)

which amounts to O(m) constraints.
The covering constraints of Equation (18) for nodes of VF (i.e. regular flights) lead

to Equation (8) of the basic model, i.e. all internal nodes have a unit outflow:

∀i ∈ [1 . . n],
∑

j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

xi, j,k = 1

which amounts to O(n) constraints.
More specifically, the constraints of Equation (19) ensuring that the path of a

commodity is monochromatic, can be directly translated to the flow balance constraint:

∀i ∈ [1 . . n], ∀k ∈ [1 . . m],
∑

i′∈[0..i−1]
γ(i′,i,k)

xi′,i,k =
∑

i′′∈[i+1..n+1]
γ(i,i′′,k)

xi,i′′,k (23)

which amounts to O(mn) constraints.
Other constraints of the basic model that ensure that nodes of VF have a unit inflow

(cf. Equation (7)), the continuity of path (cf. Equation (10)) or the number of variables
equal to 1 (cf. Equation (9)) would be redundant in our flow model and are therefore
omitted. Overall, this model has only O(nm) constraints in the worst case instead of
O(mn2) for the basic one.

4.3. Cost with Combined Taxiing

Even if the robustness of the schedule is our main operational concern in this study,
the fuel consumption during taxiing has become of paramount importance in the last
decade. Generally, the taxiing time cost of a flight does not only depend on the assigned
gate, but also on the flight itself. As mentioned in Section 5.1, big international airport
(like Paris-CDG) usually offer several runways for departure and arrival, thus the taxiing
times of two flights assigned on the same gate could differ from each other, as their
distance to a given gate is different if they do not use the same runway.

To attempt to minimize the fuel consumption induced by the amount of taxiing
times, we introduce a new parameter ti,k that represents the taxiing time cost of aircraft
fi if assigned to gate gk. Note that in the results presented in Section 5.5, ti,k is a taxiing
time that only depends on the runway used by fi and the gate, but it could also depend

16

on the type of aircraft to represent fuel consumption or CO2 emission. If flight fi is
assigned to gk, there is exactly one xi, j,k variable equal to 1, ∀ j ∈ [i + 1 . . n + 1], and all
other xi, j,k′ with k′ 6= k are equal to 0, so the taxiing cost ct

i of fi can be expressed as:

∀i ∈ [1 . . n], ct
i =

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

ti,k xi, j,k (24)

and the global taxiing cost for all flights as:

costt =
∑

i∈[1..n]

ct
i =

∑
i∈[1..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

ti,k xi, j,k (25)

which can be integrated into the transition (or robustness) cost summation as is apparent
from Equation (14). Obviously, no taxiing cost corresponds to the openings of the m
gates taken into account in the first term of the sum of Equation (14), but we can obtain
a uniform expression similar to Equation (13) by setting t0,k = 0, ∀k ∈ [1 . . m]:

costt =
∑

i∈[0..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

ti,k xi, j,k (26)

To combine both costs in the objective, we choose a linear scalarization with a single
weight parameter α ∈ [0, 1], and normalize them because the range of robustness (min2

of gates idle times) is a priori much larger than the one of taxiing times (expressed in
min in our study, but which can be chosen as any convenient operational cost, e.g. fuel
consumption). To normalize the costs, we first compute their respective lower and upper
bounds as follows.

Idle Time Upper Bound. The GAP can be relaxed as a Bin Packing (BP) problem where
gates serve as bins of capacity ge − gs and flights fi as items of volume f e

i − f s
i . The

classical items configuration (stacked and divided as needed to completely fill the first
bins) that corresponds to the BP lower bound on the number of bins, can be used to
compute a simple upper bound for the sum of any idle time convex cost, in particular
their square:

ubtr = m′δ(g)2 + (δ(g) − r)2 (27)

where function δ : F ∪ G 7→ R>0 returns the duration of its parameter, i.e. ge − gs for
any gate and f e

i − f s
i for flight fi, and is extended to take a set parameter and returns the

sum of the duration of its elements, e.g. δ(F) =
∑

fi∈F δ(fi), and m′ = m−
⌈
δ(G)−δ(F)

δ(g)

⌉
the

number of empty gates and r = (δ(G) − δ(F)) mod δ(g) the time taken by the flights
scheduled on the last non-empty gate.

Idle Time Lower Bound. Still relaxing the GAP as a kind of BP problem, the lower
bound for the overall sum of the squares of idle times is reached when all idle times
have the same size and are evenly distributed along a continuous virtual gate made of all
the gates stacked one after another. As mentioned in Section 3, there are exactly n + m

17

idle time periods (possibly of null duration), therefore we can compute the following
global lower bound on the idle time cost:

lbtr = (n + m)
⌊
δ(G) − δ(F)

n + m

⌋2

(28)

Taxiing Time Bounds. As mentioned in Section 5.1, each departure and arrival at Paris-
CDG airport is usually assigned to a fixed terminal and a fixed runway. Hence, the
taxiing time bounds for a flight fi are the minimal and maximal times taken between any
of its compatible gates Gi and both its fixed arrival and departure runways. Therefore its
upper bound can be obtained as:

ubtaxi =
∑

i∈[1..n]

max
gk∈Gi

(tt(ari, gk) + tt(gk, dri)) (29)

where ari and dri are the arrival and departure runways of flight fi, and tt is a function
that returns the taxiing time between the location of its two parameters. The lower
bound lbtaxi is trivially computed by substituting the min function to the max one
in Equation (29).

The combined cost that takes into account both robustness and taxiing time, costα,
can then be defined with the normalized terms (e.g. c

ub−lb for cost c and its bounds) or
equivalently (i.e. with the same optimal solution) by:

∀α ∈ [0, 1], costα =
∑

i∈[0..n]

∑
j∈[i+1..n+1]

∑
k∈[1..m]
γ(i, j,k)

(
αρtrti,k + (1 − α)ρtaxiI2

i, j

)
xi, j,k (30)

with ρtr = ubtr − lbtr and ρtaxi = ubtaxi − lbtaxi the respective ranges of both costs. The
coefficient of the linear scalarization α can then be adjusted to influence the respective
importance of the two criteria. Note that this new definition of the objective does not
change the rest of our model.

4.4. Mutually Exclusive Gates

Depending on the layout of the terminals, some subsets of the gates cannot simulta-
neously be assigned to more than one flight, as they would otherwise block each other.
Therefore, a set H of r subsets of G representing groups of mutually exclusive gates
is additionally specified in the data: H = {H1, . . . ,Hr}, with Hh ⊆ G, ∀h ∈ [1 . . r].
We could consider such a subset as a single gate, but gates are not equivalent w.r.t. the
taxiing time and their contribution to the cost must be individually accounted for.

To add this constraint in our flow model, we define O(mn) auxiliary variables yi,k

that represent the allocation of flight fi to gate gk ∈ Gi:

∀i ∈ [1 . . n], ∀gk ∈ Gi, yi,k =
∑

j∈[i+1..n+1]
γ(i, j,k)

xi, j,k (31)

18

Then for each mutually exclusive gates subset Hh, we constrain that all overlapping
flights pairs cannot be assigned to two of its gates simultaneously:

∀h ∈ [1 . . r], ∀gk, gl ∈ Hh, k < l,

∀ fi ∈ Fk, ∀ f j ∈ Fl, [f s
i , f e

i [∩ [f s
j , f e

j [6= ∅,
yi,k + y j,l 6 1 (32)

Groups of mutually exclusive gatesHh usually comprise only a small number of gates
(w.r.t. m), therefore the worst-case O(n2 ∑

h∈[1..r] |Hh|2) additional constraints does not
burden much the model.

5. Results

The models described in the previous sections have been implemented and run
over real traffic data at Paris-CDG. All experiments were carried out on a standard
workstation consisting of a 2.0 GHz Intel® Xeon® 32-core processor with 48 GB of
memory running Debian GNU/Linux 9.6. We used the Gurobi Commercial Optimizer
8.1 [18] for the Integer Linear Programming models. Computation times to solve a
1-day instance using flow models for densest terminals are less than 100 s, and about
1 s is needed to optimally solve most other instances. A detailed report is provided
in Section 5.3.

In this section, we first describe how we have extracted the traffic demand and
the available gates from actual traffic records at Paris-CDG airport in Section 5.1 to
generate a set of Gate Allocation Problem instances. Then, in Section 5.3 we compare
the computation times of the different methods used to solve these instances. The
implementation of DMAN can be very sensitive to the robustness of the allocation,
as the slightest delay in a fragile allocation might quickly propagate and disrupt the
departure sequence. Moreover, whereas ATC is concerned mainly with the feasibility
of the assignment, our approach also focuses on minimizing the taxiing cost, which is
directly related to fuel consumption, while preserving enough robustness in the schedule.
Hence, Sections 5.4 and 5.5 discuss the benefits of a robust gate allocation in terms of
idle time distribution and taxiing time differences between initial and robust traffic.

The results presented in this section refer to the actual allocation implemented by
ATC on the day of traffic as “Initial”, to the models presented in Section 3 as “JORS”,
and to the models presented in Section 4 as “Flow”. Each model has two variants: R
when only robustness is being maximized, and R+T when robustness is being maximized
and taxiing time is being minimized.

5.1. Data
The data sample used for this study is available at:

http://recherche.enac.fr/~wangrx/gap

It consists in:

• actual traffic demands during a whole heavy month (July, 2017) at Paris-CDG
airport;

19

http://recherche.enac.fr/~wangrx/gap

Table 1: Number of flights and gates by terminal (per day in average). The density is the ratio of the average
number of flights by the number of gates.

Terminal Flights Gates Density

A 47 17 2.8
B 15 10 1.5
C 14 21 0.7
D 84 18 4.6
E 111 23 4.8
F 185 27 6.8
I 46 51 0.9
J 72 20 3.6
K 53 19 2.8
L 18 7 2.6
M 13 10 1.3
Q 50 17 3.0
R 12 12 1.0
TVWXYZ 96 43 2.2

Total 816 295 2.8

• a set of allowed aircraft types for each gate;

• an estimation of the average taxiing times needed between each runway and each
gate (from each runway to each gate for arrivals and from each gate to each
runway for departures).

The traffic demand is extracted from the data sample which provides for each flight:
the arrival time at the gate, the departure time from the gate, the aircraft type, the runway
and the gate used. The corresponding allocation serves as a reference solution named
“Initial” in the following sections. Table 1 gives the number of flights (in average per
day) and the number of gates by terminal in this data sample.

In some cases (probably due to some gate-to-gate movements that were not recorded),
one of the two times was missing. The data were completed as follows: when the arrival
(resp. departure) time is missing, the flight is considered at the gate from (resp. until)
the beginning (resp. end) of the day if there is no other flight occupying the same gate
before (resp. after) it; otherwise, the flight is considered at the gate 30 min before (resp.
after) its departure (resp. arrival) time, which did not cause any gate conflict in our data
set.

The sets of allowed aircraft types at each gate is also deduced from the actual traffic
sample: we consider that the only aircraft types allowed at a given gate are the ones that
actually used this gate during the month.

The estimation of taxiing times between gates and runways are computed using
the standard routing rules described in the operations manual of the airport, after
considering the average taxiing speed on each taxiway portion, as measured on actual
radar records.

20

5.2. Bi-objective Parameterization

For the R+T strategies, we have tested different values for α ranging from 0 to 1,
in objective function Equation (30), with 0 corresponding to optimizing taxiing time
only and 1 to optimizing robustness only. Figure 5 shows how each individual cost is
impacted by the value of the α parameter, for the 7th July 2017 instance (other instances
exhibit a very similar pattern).

In Figure 5a, the value of both robustness cost and total taxiing time is plotted with
respect to α. We notice that robustness cost is rapidly increasing for values of α below
0.5. On the other hand, with α over 0.9 (or even 0.8 for many instances), there is not
much gain in the taxiing time. Thus, to achieve an interesting compromise between
those two criteria, we recommend values of α in the interval [0.5, 0.8]. In the following
sections, results are presented for α = 0.7.

Figure 5b provides a Pareto visualization of the same data. In an operational context,
this parameter could be adjusted by airport managers to meet their own performance
objectives.

5.3. Computation Times and Quality of the Solutions

We report in this section the performances of the various models with the criteria
described in Sections 3 and 4 to solve the instances at Paris-CDG airport described in
Section 5.1. We first show that an optimal solution to small instances of the problem
(i.e. at the least busy terminals) can be easily reached by all models. We then discuss the
weaknesses of JORS-R and JORS-R+T models on larger instances compared to their
Flow-R and Flow-R+T counterparts.

Figure 6 displays the time to optimally solve a 1-day instance (averaged over the
entire month of July, 2017) for each terminal and each implemented model. The four
models are distinguished by their color in the figure. For the sake of readability, the
figure has been separated in two parts, with Figure 6a focusing on small instances (with a
density lower than 3 flights per gate) and Figure 6b showing results for larger instances.

For small instances (i.e. terminals A, B, C, I, L, M, R, and TVWXYZ2), Figure 6a
shows that all models can obtain an optimal solution, and the optimality is always proved
in very limited time (less than 1 s with Flow-R and Flow-R+T models). Flow models
systematically outperform their JORS counterparts in terms of computation times,
sometimes by two orders of magnitude (e.g. on terminals A and I). Interestingly, taking
taxiing-time into account with the Flow-R+T model does not add to the computation
time compared to the robustness-only Flow-R model.

Large instances (i.e. terminal D, E, F, J, K and Q) are significantly more challenging,
as shown in Figure 6b. Considering only robustness as an optimization criterion, both
Flow-R and JORS-R models still find solutions, again with an advantage of one order
of magnitude in favor of the Flow-R model. For the largest and densest terminal F, the
Flow-R model reaches optimality in less than 1 min, where JORS-R needs more than
20 min to obtain the same result.

2Terminals T, V, W, X, Y, and Z must be solved simultaneously as there are mutually exclusive gates
belonging to different terminals in this set. Dependent gates information is accessible at http://recherche.
enac.fr/~wangrx/gap.

21

http://recherche.enac.fr/~wangrx/gap
http://recherche.enac.fr/~wangrx/gap

0.0 0.2 0.4 0.6 0.8 1.0
α

3.5

4.0

4.5

5.0

5.5

6.0

6.5

R
ob

us
tn

es
s

co
st

(m
in

2)

×106

54.6

54.8

55.0

55.2

55.4

55.6

55.8

To
ta

lt
ax

it
im

e
(h

)

(a) Influence of α on individual objectives.

54.6 54.8 55.0 55.2 55.4 55.6 55.8
Total taxi time (h)

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

R
ob

us
tn

es
s

co
st

(m
in

2)

0.0

0.1

0.2

0.3
0.4

0.5

0.6
0.70.8 0.9 1.0

(b) Visualization of the Pareto front. The value of α is indicated next to each dot.

Figure 5: Influence of α on bi-objective optimization (7th July, 2017 at Paris-CDG airport).

22

A B C I L M R TVWXYZ
Terminal

10−2

10−1

100

101

Ti
m

e
(s

ec
on

ds
)

Flow-R
JORS-R
Flow-R+T
JORS-R+T

(a) Easy instances.

D E F J K Q
Terminal

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

Flow-R
JORS-R
Flow-R+T

(b) Hard instances.

Figure 6: Comparison of computation times to find an optimal solution with JORS and Flow model.

23

Table 2: Average gap between the cost of optimal solution and the best solution found with JORS-R+T model
within a 5 min time limit.

Terminal K Q J D E F

Best solution +1.08 % +1.11 % +4.07 % +3.11 % +4.63 % –

Table 3: Average idle time between two consecutive aircraft at the same gate.

Allocation Initial Flow-R Flow-R+T

Average idle time 120 min 157 min 157 min

Additionally taking taxiing time into account with the Flow-R+T model does not
incur additional costs compared to Flow-R: even the largest instances are optimally
solved in less than 1 min. The JORS-R+T model, however, could not optimally solve
any single instance within a reasonable time (the computations were stopped after
3 h). Even for the medium-sized terminal K, only 25 % of instances could be optimally
solved. For instances at the largest and busiest terminal F, finding a first solution with
JORS-R+T model took at least 30 min. If we impose a 5 min time limit for computation,
all instances are optimally solved with the Flow-R+T model. As explained before, the
JORS-R+T model could not reach (and even less prove) optimality; however, in many
instances, it could still find good solutions within the time limit. Table 2 shows the
discrepancy to the optimal cost by terminal for the JORS-R+T model, obtained after
5 min of computation. There is no figure for Terminal F as no solution could be found
within the time limit. For other terminals, the solutions found are close to optimal, with
approximately 1 % to 5 % additional cost.

As the Flow-R and Flow-R+T models are strictly and significantly faster than
JORS-R and JORS-R+T respectively, the following sections only present results for
the first two, as well as comparisons with the initial gate allocation extracted from the
data (see Section 5.1). Also, these computation times are suitable for an allocation
process performed the day before operations, or even on the day of operations if some
event breaks the solution and a new allocation needs to be devised. In such a case, an
additional criterion could be introduced that would help find a new solution as close as
possible to the previous one, so that the gate allocation would remain mostly unchanged.
This is, however, not covered in the current study.

5.4. Robustness of the Gate Allocation

To assess the robustness of a gate allocation, we measure the idle times occurring in
the corresponding schedule, as too small idle times are likely to cause issues on the day
of operations. Table 3 shows the average idle time: the average for the Initial allocation
is 2 h, when the average for both Flow-R and Flow-R+T allocations are 2 h 40 min.

More interestingly, Figure 7 shows the distribution of idle times for the entire airport.
Those distributions are plotted for the Initial allocation (in blue) and for both Flow-R (in
orange) and Flow-R+T (in green) models. As we can see, the Initial allocation leads to
a high number of short idle times: more than 1000 idle times between 0 and 10 min and

24

0 50 100 150 200 250 300 350 400
Idle time (minutes)

0

200

400

600

800

1000

1200

1400
N

um
be

ro
fo

cc
ur

re
nc

es
Initial
Flow-R
Flow-R+T

Figure 7: Distribution of idle times for all terminals over all tested instances.

Table 4: Average idle time between two consecutive aircraft at the same gate for terminal F only.

Allocation Initial Flow-R Flow-R+T

Average idle time 65 min 73 min 72 min

more than 1300 idle times between 10 and 20 min. The Flow-R allocation drastically
reduces the number of idle times of less than an hour, thus increasing the robustness of
the allocation as expected. With this model, only 150 idle times are less than 10 min.
With the Flow-R+T model, the solutions are still significantly more robust than the
Initial allocation, with again a high reduction of short idle times. Overall, such idle
times can absorb a large part of the uncertainty that can be observed on flight arrival
and departure times, with no re-allocation needed in most cases.

The presence of long idle times in all distributions (more than 2 h) comes from the
fact that all terminals are aggregated in this figure, even the smallest ones with a very
low density.

Table 4 and Figure 8 present similar results, focusing on terminal F only. Even for
this particularly busy terminal, both Flow-R and Flow-R+T models manage to provide
a solution that significantly reduces occurrences of smaller idle times. Also, there are
very few idle times of more than 2 h, as the density (flights-to-doors ratio) is very high
at this terminal.

5.5. Impact on Taxiing Time

Another main objective of the GAP is the minimization of taxiing times. As
mentioned in Section 2, Paris-CDG large terminals offer several gates with various ways

25

0 50 100 150 200 250 300 350 400
Idle time (minutes)

0

100

200

300

400

500

600

700

800
N

um
be

ro
fo

cc
ur

re
nc

es
Initial
Flow-R
Flow-R+T

Figure 8: Distribution of idle times at terminal F over all tested instances.

to enter or leave the terminal, so that taxiing times can be very different from one gate
to another in the same terminal.

Table 5 gives the total amount of saved taxiing time during the month of July 2017,
comparing the Initial (actual) gate allocation with the two gate allocation strategies
(Flow-R and Flow-R+T). With the Flow-R strategy, the total taxiing time is almost
unchanged, which shows that the gain in robustness commented in Section 5.4 does
not affect taxiing times. With the Flow-R+T strategy, a slight reduction by 2.67 % of
the taxiing time is observed, which represents 180.97 h of saved taxiing time during the
month, i.e. 6 h per day in average. As discussed in Section 5.4, this gain in taxiing time
does not significantly penalize the robustness of the gate allocation.

Results are also detailed by terminal to point out the ones with the greatest reduction
in taxiing time. Terminal R appears to be the most influenced one with a decrease
of 14.54 % in taxiing time, but this result is not significant as the number of flights
in this terminal is very low. More important terminals, from A to F, reach a decrease
between 0.63 % to 4.08 %, which represents 77 h of saved taxiing time during July 2017,
contributing to 42 % of the total saved taxiing time.

5.6. Merging Terminals

As described in Section 5.3, Flow-R and Flow-R+T models can solve instances of all
the terminals in less than 50 s. In this part, we test the performances of our best models
on bigger instances by merging the terminals at Paris-CDG 1 and 2 (see Figure 2), where
passengers can walk from one terminal to another. These instances also provide an
estimation of the gain that can be expected in terms of robustness and taxiing time, were
the terminal of each flight not fixed — which would be outside of the scope of current

26

Table 5: Taxiing time comparison between Initial, Flow-R and Flow-R+T. The total gain in taxiing time is for
the entire month of July, 2017.

Terminal Flights Taxiing time (and difference w.r.t. Initial)
Initial Flow-R Flow-R+T

A 2,372 8 min 35 s 8 min 34 s (−0.19 %) 8 min 14 s (−4.08 %)
B 723 10 min 39 s 10 min 39 s (0.00 %) 10 min 35 s (−0.63 %)
C 1,176 8 min 10 s 8 min 11 s (+0.20 %) 8 min 01 s (−1.84 %)
D 4,344 10 min 59 s 10 min 58 s (−0.15 %) 10 min 46 s (−1.97 %)
E 5,657 8 min 33 s 8 min 33 s (0.00 %) 8 min 22 s (−2.14 %)
F 9,530 10 min 36 s 10 min 35 s (−0.15 %) 10 min 27 s (−1.42 %)
G 136 8 min 37 s 8 min 39 s (+0.39 %) 8 min 28 s (−1.74 %)
H 343 11 min 15 s 11 min 09 s (−0.89 %) 10 min 58 s (−2.52 %)
I 1,284 13 min 01 s 12 min 57 s (−0.51 %) 12 min 32 s (−3.71 %)
J 3,968 9 min 49 s 9 min 44 s (−0.85 %) 9 min 29 s (−3.40 %)
K 2,541 9 min 45 s 9 min 52 s (+1.20 %) 8 min 58 s (−8.03 %)
L 860 9 min 40 s 9 min 42 s (+0.34 %) 9 min 26 s (−2.41 %)
M 533 10 min 44 s 10 min 39 s (−0.78 %) 10 min 32 s (−1.86 %)
N 93 12 min 02 s 11 min 59 s (−0.42 %) 11 min 56 s (−0.83 %)
P 303 11 min 26 s 11 min 17 s (−1.31 %) 10 min 51 s (−5.10 %)
Q 2,653 9 min 39 s 9 min 32 s (−1.21 %) 9 min 22 s (−2.94 %)
R 399 7 min 27 s 7 min 26 s (−0.22 %) 6 min 22 s (−14.54 %)
S 130 8 min 27 s 8 min 25 s (−0.39 %) 8 min 03 s (−4.73 %)
T 712 7 min 43 s 7 min 48 s (+1.08 %) 7 min 41 s (−0.43 %)
V 678 8 min 22 s 8 min 12 s (−1.99 %) 8 min 05 s (−3.39 %)
W 1,505 6 min 32 s 6 min 39 s (+1.79 %) 6 min 30 s (−0.51 %)
X 1,363 6 min 42 s 7 min 11 s (+7.21 %) 6 min 40 s (−0.50 %)
Y 548 7 min 59 s 7 min 54 s (−1.04 %) 7 min 52 s (−1.46 %)
Z 431 7 min 17 s 7 min 12 s (−1.14 %) 7 min 08 s (−2.06 %)

All 42,282 9 min 37 s 9 min 36 s (−0.02 %) 9 min 21 s (−2.67 %)
Total −0.33 h −180.97 h

27

operational constraints at Paris-CDG airport. Three different sets of merged terminals
were considered:

• TVWXYZ at Paris-CDG 1;

• ABCD or ABCDEF at Paris-CDG 2.

Table 6: Computation time for merged terminals instances with the Flow model.

Terminals Flights Gates Time R Time R+T

ABCD 167 59 22.7 s 6.8 s
ABCDEF 461 109 409.6 s 2631.9 s
TVWXYZ 95 42 2.6 s 2.94 s

Table 6 gives the mean computation time needed to find and prove an optimal
solution with models Flow-R and Flow-R+T. The resolution time ranges from a few
seconds to 45 min, which remains reasonable for a gate allocation process that is usually
performed the day before operations. If the allocation process had to be run again to
accommodate delays on the day of operations, the instances would be much smaller
(by not considering the entire day of traffic), so that computing times would probably
be small enough. The most time-consuming instance comes from the merging of all
Paris-CDG 2 terminals (i.e. A to F).

0 50 100 150 200 250 300 350 400
Idle time (minutes)

0

200

400

600

800

1000

1200

1400

N
um

be
ro

fo
cc

ur
re

nc
es

Initial
Flow-R fusion
Flow-R+T fusion

Figure 9: Distribution of idle times for all terminals with ABCDEF and TVWXYZ combinations.

Figure 9 shows the distribution of idle times resulting from the merging of terminals
TVWXYZ at Paris-CDG 1 and ABCDEF at Paris-CDG 2. Compared to the distributions

28

Table 7: Taxiing time comparison between the different gate allocation strategies.

Terminal Flights Taxiing time (and difference w.r.t. Initial)
Initial Robust Robust + Taxiing

ABCD 8,615 9 min 54 s 9 min 50 s (−0.67 %) 8 min 36 s (−13.13 %)
ABCDEF 23,802 9 min 52 s 9 min 55 s (+0.68 %) 8 min 24 s (−14.86 %)
TVWXYZ 5,237 7 min 12 s 7 min 20 s (+0.18 %) 7 min 04 s (−1.85 %)
others 13,243 10 min 06 s 10 min 03 s (−0.49 %) 9 min 40 s (−4.3 %)

All 42,282 9 min 37 s 9 min 39 s (+0.37 %) 8 min 38 s (−10.1 %)
Total +0.33 h −684.04 h

obtained in Section 5.4 (see Figure 7), we can observe a new significant improvement in
the robustness of the gate allocation with the two tested criteria, as the number of short
idle times (i.e. less than one hour) is further decreased.

Table 7 gives the variation of the average taxiing time for the three sets of merged
terminals. We can notice the significant taxiing time reduction that can be expected
using the Robust+Taxiing criterion at Paris-CDG 2: 13.13 % by merging terminals A,
B, C and D, and 14.86 % by adding terminals E and F. Globally, with merged terminals,
the R+T criterion applied on the whole airport allows to save 684 h of taxiing time
during the month of July 2017, which corresponds to almost 23 h per day. These results
demonstrate how beneficial the relaxing of the terminal allocation of some flights could
be at Paris-CDG airport, in terms of gate allocation robustness and saved taxiing time.

Conclusion

In this study, we present and test a new efficient multi-commodity flow model for
the gate allocation problem at big airports. To the best of our knowledge, this is the
first multi-commodity flow model that can handle complex constraints like mutually
exclusive gates, while optimizing both the robustness and the taxiing times, which are
obviously two main criteria for large airports. The efficiency of the model is tested on
actual instances, extracted from traffic records at Paris-CDG airport, during one of its
heaviest month (July, 2017). All the instances was successfully solved with the ILP
solver.

We compare two versions of the min-cost flow model (Flow-R and Flow-R+T) to
the two corresponding versions of a more classical model (JORS-R and JORS-R+T).
Instances of small density are optimally solved in less than one minute by all of the
four models. For larger instances, we defined a 300 s limit for the time computation, in
order to make the approach compatible with a real-time context (e.g. gate re-allocation
in case of operational disruption). With this limit, the Flow-R and Flow-R+T models
still provide optimal solutions for all the terminals in less than 100 s, while JORS-R
and JORS-R+T models not always reach optimality, and sometimes do not even find a
solution.

Results show the overall improvement in robustness and taxiing time after gate
allocation: the idle times distributions are better balanced, with a significant reduction

29

of the number of small idle times, and the taxiing times are reduced by a total of 180 h
during the whole month, which represents 2.67 % of the total taxiing time.

Flow-R and Flow-R+T models can also be applied on larger instances after merging
all the terminals of Paris-CDG 2 (i.e. A, B, C, D, E, F) and of Paris-CDG 1 (i.e. T, V, W,
X, Y, Z). The results show that the robustness of the gate allocation is still improved
while the taxiing time is decreased by 684 h (i.e. 10.1 % of the total taxiing time),
moreover our min-cost flow model still finds an optimal solution in a reasonable time
for these larger instances.

In further works, we project to test the gate allocation into some more realistic
simulations of the airport traffic, considering the conflicts that can appear between
aircraft entering or exiting the gates areas. This will provide a more accurate estimation
of the gain that can be expected in terms of gates conflicts and taxiing times diminution
with our gate allocation model.

Funding

This article is supported by the funds of basic scientific research in central universi-
ties, Civil Aviation University of China. [No. 3122021084].

References

[1] Alvelos, F. and Valério de Carvalho, J. M. [2003], Comparing branch-and-price
algorithms for the unsplittable multicommodity flow problem, in ‘International
Network Optimization Conference (INOC’2003)’, Évry/Paris, pp. 7–12.

[2] Benlic, U., Burke, E. K. and Woodward, J. R. [2017], ‘Breakout local search for
the multi-objective gate allocation problem’, Computers & Operations Research
78, 80–93.

[3] Biró, M., Hujter, M. and Tuza, Z. [1992], ‘Precoloring extension. I. Interval
graphs’, Discrete Mathematics 100(1), 267 – 279.

[4] Bolat, A. [2000], ‘Procedures for providing robust gate assignments for arriving
aircrafts’, European Journal of Operational Research 120(1), 63–80.

[5] Bolat, A. [2001], ‘Models and a genetic algorithm for static aircraft-gate assign-
ment problem’, Journal of the Operational Research Society 52(10), 1107–1120.

[6] Bouras, A., A. Ghaleb, M., S. Suryahatmaja, U. and M. Salem, A. [2014], ‘The
airport gate assignment problem: A survey’, The Scientific World Journal .

[7] Bouras, A., Ghaleb, M. A., Suryahatmaja, U. S. and Salem, A. M. [2014], ‘The
airport gate assignment problem: a survey’, The scientific world journal 2014.

[8] China ACDM [2018], ‘China airport ACDM implementation route’.
URL: www. chinaacdm. com/ home/ page/ acdm_ in_ china

[9] Daş, G. S. [2017], ‘New multi objective models for the gate assignment problem’,
Computers & Industrial Engineering 109, 347–356.

30

www.chinaacdm.com/home/page/acdm_in_china

[10] Daş, G. S., Gzara, F. and Stützle, T. [2020], ‘A review on airport gate assignment
problems: Single versus multi objective approaches’, Omega 92, 102146.

[11] Deng, W., Zhao, H., Yang, X., Xiong, J., Sun, M. and Li, B. [2017], ‘Study on an
improved adaptive PSO algorithm for solving multi-objective gate assignment’,
Applied Soft Computing 59, 288–302.

[12] Dijk, B., Santos, B. and Pita, J. [2019], ‘The recoverable robust stand allocation
problem: a GRU airport case study’, OR Spectrum 41, 615–639.

[13] Dorndorf, U., Drexl, A., Nikulin, Y. and Pesch, E. [2007], ‘Flight gate scheduling:
State-of-the-art and recent developments’, Omega 35(3), 326–334.

[14] EUROCONTROL [2015], A Guide to the Network Manager Operations Centre.
URL: www. skybrary. aero/ bookshelf/ books/ 3525. pdf

[15] EUROCONTROL [2017], Airport CDM Implementation Manual, EUROCON-
TROL Airport CDM Team.

[16] Guépet, J., Acuna-Agost, R., Briant, O. and Gayon, J. [2015], ‘Exact and heuristic
approaches to the airport stand allocation problem’, European Journal of Opera-
tional Research 246(2), 597 – 608.

[17] Gupta, U. I., Lee, D. T. and Leung, J. Y. [1982], ‘Efficient algorithms for interval
graphs and circular-arc graphs’, Networks 12(4), 459–467.

[18] Gurobi Optimization, L. [2018], ‘Gurobi optimizer reference manual’.

[19] Huet, D. and Pickup, S. [2017], Local and network impact assessment of air-
port collaborative decision making (a-cdm), in ‘12th USA/Europe Air Traffic
Management Research and Developpment Seminar’.

[20] Kim, S. H. [2013], Airport Control Through Intelligent Gate Assignment, PhD
thesis, Georgia Institute of Technology.

[21] Li, W. and Xu, X. [2012], Optimized assignment of airport gate configuration
based on immune genetic algorithm, in ‘Measuring Technology and Mechatronics
Automation in Electrical Engineering’, Springer, pp. 347–355.

[22] Mokhtarimousavi, S., Talebi, D. and Asgari, H. [2018], ‘A non-dominated sorting
genetic algorithm approach for optimization of multi-objective airport gate assign-
ment problem’, Transportation Research Record: Journal of the Transportation
Research Board 2672(23), 59–70.

[23] Simonis, H. [2007], ‘Models for global constraint applications’, Constraints
12(1), 63–92.

[24] Steuart, G. N. [1974], ‘Gate position requirements at metropolitan airports’, Trans-
portation Science 8(2), 169–189.

31

www.skybrary.aero/bookshelf/books/3525.pdf

[25] Wang, I.-L. [2018], ‘Multicommodity network flows: A survey, part I: Applications
and formulations’, International Journal of Operations Research 15, 145–153.

[26] Wang, R. and Barnier, N. [2018], Propagation of idle times costs for fixed job
scheduling, in ‘2018 IEEE 30th International Conference on Tools with Artificial
Intelligence (ICTAI)’, pp. 718–725.

[27] Yan, S. and Chang, C.-M. [1998], ‘A network model for gate assignment’, Journal
of Advanced Transportation 32(2), 176–189.

[28] Yan, S. and Huo, C.-M. [2001], ‘Optimization of multiple objective gate assign-
ments’, Transportation Research Part A: Policy and Practice 35(5), 413–432.

[29] Yan, S. and Tang, C.-H. [2007], ‘A heuristic approach for airport gate assign-
ments for stochastic flight delays’, European Journal of Operational Research
180(2), 547–567.

[30] Zhang, D. and Klabjan, D. [2017], ‘Optimization for gate re-assignment’, Trans-
portation Research Part B: Methodological 95, 260–284.

32

	Literature Review
	The Gate Allocation Problem
	Operational Context
	Instance Definition
	Feasibility
	Cost
	Flights and Gates Compatibility

	Basic Transition Cost ILP Model
	Decision Variables
	Constraints
	Objective

	Multi-commodity Flow Model
	Graph Model
	ILP Model
	Cost with Combined Taxiing
	Mutually Exclusive Gates

	Results
	Data
	Bi-objective Parameterization
	Computation Times and Quality of the Solutions
	Robustness of the Gate Allocation
	Impact on Taxiing Time
	Merging Terminals

