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Abstract

Could continuous optimization address efficiently logical constraints?
We propose a continuous-optimization alternative to the usual discrete-
optimization (big-M and complementary) formulations of logical constraints
that leads to an effective practical method. Based on the simple idea
of guiding the search of a continuous-optimization method towards the
parts of the domain where the logical constraint is satisfied, we intro-
duce a smooth penalty-function formulation of logical constraints, and
related theoretical results. The effectiveness of this formulation of log-
ical constraints, that allows the direct use of state-of-the-art continuous
optimization solvers, is demonstrated on an aircraft conflict avoidance ap-
plication.

Keywords Logical constraints; penalty function; continuous opti-
mization; aircraft conflicts

1 Introduction

Logical constraints, such as an alternative constraint (t(x) ≤ 0 or f(x)≥ 0) and
a conditional constraint (t(x) > 0 implies f(x)≥ 0), are common in mathemat-
ical optimization models. Mathematical optimization practitioners typically
reformulate a logical constraint at the expense of the introduction of one bi-
nary auxiliary variable, to get either a big-M formulation or a complementary
formulation. The former involves constraints that are linear but that depend
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on a large-enough constant yielding potential numerical instability/inefficiency,
while a complementary formulation involves nonlinear constraints. We consider
whether continuous optimization could play a role in this context. We propose a
novel modeling approach, the continuous quadrant penalty formulation, based on
a continuous optimization penalty function to handle logical constraints without
requiring the introduction of binary variables. Our use of penalization is also
original in that it does not directly result from adding some measure of the vio-
lation of a constraint (difference between the right-hand side and the left-hand
side values) in the objective function. More precisely, the penalty function we
are introducing is not the usual monotonically non-decreasing function of the
distance between a given point and the desirable set. We shall see that this
distance is not differentiable; neither is the square of this distance. However,
our penalty function can be seen as a smooth approximation of the square of
the distance from the desirable set.

The remainder of this paper is structured as follows. Section 2 is a short
introduction to logical constraints and penalty-function approaches. Section 3
proposes a simple piecewise-linear penalty function to model logical constraints
together with some theoretical results. In order to get round the difficulties
related to addressing non-differentiabilities, Section 4 then demonstrates the
existence of, and constructs explicitly, a smooth penalty function which is piece-
wise quadratic. Section 5 reports computational tests on an aircraft conflict
avoidance application to show the effectiveness of our approach. Finally, con-
clusions are drawn in Section 6.

2 Logical constraints and penalty functions

Conditional constraints have the form

t(x) > 0 implies f(x)≥ 0, (1)

for some real-valued functions t and f of x ∈ Rn. Such logical constraints,
together with feasibility constraints, alternative constraints and compound al-
ternatives are common in operations research. They are typically modelled using
mixed-integer formulations (see for instance [3]). The conditional constraint (1)
is logically equivalent to the alternative constraint:

t(x) ≤ 0 or f(x)≥ 0 (2)

(at least one condition must be satisfied) since given two logical propositions P
and Q, one has that (P ⇒ Q) is logically equivalent to (¬P ∨Q), i.e., non P or
Q).

The usual approach to model (2) relies on the so-called big-M formulation:
(2) is modelled by alternative constraints, involving the introduction of a binary
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decision variable y, as follows:

t(x)−M1y ≤ 0,

−f(x)−M2(1− y) ≤ 0, (3)

y ∈ {0, 1},

where the big-M constants M1 and M2 are chosen large enough so that one has:

t(x) ≤ M1 and −f(x) ≤ M2 for all desirable solutions x. (4)

The decision y = 0 corresponds to imposing the constraint t(x) ≤ 0, while
y = 1 enforces the constraint f(x)≥ 0 to be satisfied. Best results in terms of
computational times and numerical stability are expected when the constants
M1 and M2 are chosen as small as possible to satisfy (4).

The other mathematical modeling trick to deal with the alternative con-
straint (2), called complementary formulation, simply yields the constraints:

t(x)(1− y) ≤ 0,

f(x)y ≥ 0, (5)

y ∈ {0, 1},

where, again, y is an extra auxiliary binary decision variable.
The authors of [1] claim that this complementary formulation can be ad-

dressed in a more efficient way than the big-M formulation for certain appli-
cations involving functions t and f that are linear, as the latter formulation
yields weak continuous relaxations while the former allows one to implement
tighter bounds to be exploited by MINLP solvers. Remark that obtaining good
continuous relaxations (studied, e.g., in [2] in the general context of disjunctive
programming) is out of the scope of the present paper, which rather introduces
a continuous-optimization formulation.

In the following, we propose an original continuous-optimization model to
deal with the conditional constraint (1) that is based on penalization.

The original motivation of penalty functions was to replace difficult con-
strained optimization problems by a sequence of easier unconstrained optimiza-
tion problems for which we had good algorithms. There are close relations be-
tween penalty methods and numerous nonlinear optimization techniques (e.g.,
augmented Lagrangian, successive quadratic programming, interior point meth-
ods). The pioneering work of Conn in penalty methods dates back to 1971 in
his doctoral thesis [7] and the introduction of a method described in [8] to deal
with the non-differentiable penalty function:

µf(x) +
∑
i∈I

max(0, gi(x)) +
∑
i∈E

|gi(x)| (6)

(where µ ≥ 0 is a weighting penalty parameter) resulting from the method of
replacement [15] of Pietrzykowski (Conn’s PhD advisor) to address constraints
of the form:

gi(x) ≤ 0, i ∈ I; gi(x) = 0, i ∈ E. (7)
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Conn concludes his 1981 NATO-conference paper on penalty function methods
[9] by asking “whether penalty functions have any significant contributions to
make to discrete or global optimization”. In [14] Gamble, Conn and Pulleyblank
specialize a non-linear penalty function method to a combinatorial algorithm for
the minimum cost network flow problem.

The main contribution of the current paper is the proposition of a continuous-
optimization alternative to the usual discrete-optimization – big-M (3) and com-
plementary (5) – formulations of logical constraints, that relies on a penalty
function. The intuition behind the continuous quadrant penalty formulation
of the logical constraint we introduce is an attempt to guide the search of a
constrained continuous-optimization method towards the parts of the domain
where the logical constraint (1) is satisfied. Remark that in this context only
the logical constraints will be penalized, as other types of constraints (such as
those of the application we consider in Section 5) can readily be addressed by
state-of-the-art continuous optimization methods.

Let us consider, for any given decision-variable vector value x ∈ Rn, a couple,
(t(x), f(x)) ∈ R2. In the sequel, we shall drop the explicit dependency upon
x for simplicity of the presentation. Imposing the conditional constraint (1) is
therefore equivalent to requiring that the point p := (t, f) lies in the non-convex
set R2 \ S, where S is the open fourth quadrant:

S := {(t, f) : t > 0 and f < 0}, (8)

as illustrated in the grey areas in Figure 1. Thus, one can obtain a continuous
optimization formulation avoiding the introduction of the binary variable y by
replacing the conditional constraint

t > 0 implies f ≥ 0, (9)

with the constraint:
(t, f) ∈ R2 \ S. (10)

It is this constraint that we propose to model by the use of a penalty approach.
To this aim, let us design an appropriate penalty function, g : R2 → R. It is
desirable to consider candidate functions g that are continuous, possibly even
smooth, and such that a descent method minimizing g will converge towards a
point in R2 \ S.

Let us first introduce a definition and a proposition that will be useful in
the sequel.

Definition 1 (S-violation dipstick). Let ∅ ̸= S ⊊ Rn. A function g : Rn → R
is an S-violation dipstick if it satisfies:

a) g(p) = 0, if p ∈ Rn \ S

b) g(p) > 0, if p ∈ S.
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The indicator function 1S (whose value is one in S, and zero elsewhere) is
a special case of S-violation dipsticks. Other examples are each of the terms of
the classical ℓ1 penalty function:

ĝ(x) :=
∑
i∈I

max(0, gi(x)) +
∑
i∈E

|gi(x)| (11)

corresponding to the constraints (7). Indeed, given i ∈ I, the term max(0, gi(x))
is an S-violation dipstick, considering S to be here the subdomain where the
constraint gi(x) ≤ 0 is violated (and similarly for i ∈ E and the term |gi(x)|).
Proposition 1. Let S ⊂ Rn be such that Rn \ S is not convex. Then, no
S-violation dipstick function can be convex.

Proof. Let g : Rn → R be an S-violation dipstick function. Since the set Rn \S
is not convex, there exist necessarily two points x, y ∈ Rn\S, x ̸= y, and a scalar
0 < λ < 1 such that the point λx+(1−λ)y lies outside Rn \S, i.e., in S. Thus,
g(λx+(1−λ)y) > 0 by Definition 1 b). Moreover, by a), λg(x)+(1−λ)g(y) = 0,
since both x and y lie in Rn \ S. Thus, g is not a convex function.

In particular, the above proposition says that an S-violation dipstick cannot
be a linear function when Rn \ S is not convex. One must therefore search for
a somewhat more complex penalty function.

3 A piecewise-linear penalty function

A first natural choice beyond linearity is that of a piecewise-linear function. The
next proposition states that at least three pieces are then needed for designing
such a penalty function.

Proposition 2. Let ∅ ≠ S ⊊ Rn. Unless S is a half-space, there does not exist
a continuous two-piece piecewise-linear S-violation dipstick.

Proof. Let g : Rn → R be a continuous two-piece piecewise-linear S-violation
dipstick. The function g must then be linear over S with value zero at the
frontier of S. This is not possible unless S is a half-space or g is identically
zero.

Let us come back to the case of interest for us, where n = 2 and S is the open
fourth quadrant. From the two above propositions, we know that if we want
to design a continuous S-violation dipstick penalty function that is piecewise
linear, it must have at least three pieces (since R2 \ S is not convex and, a
fortiori, not a half-space).

Proposition 3. Let S ⊆ R2 be the open fourth quadrant. There exists a contin-
uous piecewise-linear S-violation dipstick, noted gα, having exactly three pieces:

gα(t, f) =


0, if t ≤ 0 or f ≥ 0

−f

α
, if −α t ≤ f ≤ 0

t, if 0 ≤ t ≤ −f

α
,

(12)
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Figure 1: Values of the unique continuous three-piece piecewise-linear S-
violation dipstick function gα (left) and its gradients (right).

where α > 0 is any given positive (slope) parameter. Moreover, up to a multi-
plicative constant, and up to the arbitrary value of α, this function is unique.

The values of gα over its three pieces are displayed on Figure 1. Remark that
gα can also be expressed as the one-line formula: gα(t, f) = max(0,min(t,−f/α)).

Proof. Regarding the existence part, one can easily verify that gα is a continuous
three-piece piecewise-linear S-violation dipstick function.

As for the unicity of gα, first observe that S is necessarily partitioned into
two pieces, over each of which gα is linear, and the common frontier of these
two pieces must be a straight-line segment (otherwise, gα could not possibly
be linear over each of theses two pieces). Moreover, this straight-line segment
frontier must go through the origin. Indeed, if this were not the case, as in the
proof of Proposition 2, gα would be zero over one of the two S pieces which,
in turn, would yield an identically-null function gα. Without loss of generality,
let f = −αt be the equation of the corresponding straight line, where α > 0.
Further, let gα1

and gα2
be respectively the restriction of gα over each of the two

S pieces. One can show (see [11, Proposition 1]) that for gα to be continuous,
the difference of gradients,∇gα1 −∇gα2 , is necessarily a (non-zero) multiple of
(α, 1)T (the gradient of the ridge: {(t, f) : f = −αt)}). This, together with the
fact that gα1

and gα2
are linear functions satisfying gα1

(0, f) = 0 for all f < 0
and gα2

(t, 0) = 0 for all t > 0 yields the continuous piecewise linear function
whose gradients are displayed on Figure 1 (right), up to some positive constant.
The only such piecewise linear function is, up to this multiplicative constant,
the proposed function gα.

Definition 2 (function leaning outwards S). Let ∅ ̸= S ⊊ Rn. A function
g : Rn → R is said to lean outwards S if for any given point p̄ ∈ S, and for any
descent direction d̄ for g at p̄, there exists a threshold step size γ̄ > 0 such that
p̄+ γd̄ ̸∈ S, for all γ ≥ γ̄.

Let us consider again the example of the classical ℓ1 penalty function (11),
this time in the simple special case of the following 2D quadratic constraint:

c(x) := x2
1 + 4x2

2 − 1 ≤ 0,

i.e., g̃(x) = max(0, c(x)). This function g̃ does not lean outwards the subdo-
main, S = {x : c(x) > 0}, where the constraint is violated. To see this, consider
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the point p̄ = (
3

2
,

√
7

4
). The point p̄ is in S, the steepest-descent direction for g̃

at p̄ is d̄ = −(3, 2
√
7), and for whatever step size, γ > 0, chosen one can show

that p̄ + γd̄ ∈ S. An even simpler manner to see this here is to observe that
there cannot be any penalty function that can lean outwards a set S when the
complement of this set is bounded.

It seems therefore rather demanding to require a penalty function to lean
outwards the infeasible domain. However, the piecewise-linear penalty function
gα introduced in Proposition 3 does lean outwards the forbidden area S defined
by (8), as this will be demonstrated below (Proposition 4).

Definition 3 (S-repulsive penalty function). Let ∅ ̸= S ⊊ Rn. A function
g : Rn → R is an S-repulsive penalty function if it satisfies the following three
requirements:

i) g is an S-violation dipstick

ii) g leans outwards S

iii) g is continuous

Proposition 4. Let S ⊆ R2 be defined by (8). The piecewise-linear function
gα defined by (12) is an S-repulsive penalty function.

Proof. Parts i) and iii) were shown above. In order to show that gα leans
outwards S, let p̄ = (t̄, f̄) ∈ S, and let d̄ = (d̄1, d̄2) ∈ R2 be a descent direction
for gα at p̄.

Consider first the case where p̄ is not on the ridge where f̄ = −αt̄ (i.e., gα
is differentiable at p̄). By definition of descent direction, then d̄T∇gα(p̄) < 0:

i) If f̄ < −αt̄, then ∇gα(p̄) = (1, 0)T (Figure 1, right), and it follows:

d̄T (1, 0) < 0, or d̄1 < 0 (since t̄ > 0). Setting γ̄ =
−t̄

d̄1
, the t-component of p̄+γd̄

is t̄+ γd̄1, which is clearly non-positive for all γ ≥ γ̄. Thus, p̄+ γd̄ ̸∈ S, for all
γ ≥ γ̄.

ii) In the case where p̄ lies in the other subset of S (where f̄ > −αt̄), one
obtains similarly: ∇gα(p̄) = (0, −1

α )T , and d̄2 > 0 (since f̄ < 0), so that, setting

this time γ̄ =
f̄

d̄2
, the f -component of p̄+ γd̄ will be non-negative for all γ ≥ γ̄.

Finally, for the case where gα is not differentiable at p̄ = (t̄, f̄) (i.e., f̄ =
−αt̄), the set of all possible descent directions is:

{d ∈ R2 : dT (1, 0) < 0} ∪ {d ∈ R2 : dT (0,
−1

α
) < 0}.

Thus, one necessarily has either d̄1 < 0 or d̄2 > 0. It suffices to set γ̄ = − t̄

d̄1
in

the first case, and γ̄ = − f̄

d̄2
in the second case, to obtain: p̄ + γd̄ ̸∈ S, for all

γ ≥ γ̄.
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X

gα

√
2X−

√
2X

X2 g2α

√
2X−

√
2X 2

√
2X β−1

β+1

2
1+βX

2

X2

√
2X−

√
2X

Figure 2: gα (left) and g2α (center) for α = 1, restricted to the line (in blue on
Figure 3, left) f = t − 2X, for some X > 0. Right: g2α (black) and gβ (blue)
when β approaches 1.

Let us consider for the remaining of the paper the case where n = 2 and S
is the open fourth quadrant, relevant for addressing the logical constraint (9).

Although the piecewise-linear function gα has several desirable properties as
a candidate for a penalty function (it is S-repulsive), it is not smooth along the
three straight-line-segment frontiers: t = 0, f = 0 and f = −αt. For the sake
of simplification, let us focus on the case where α = 1.

The non-differentiabilities of gα correspond to the three points of discontinu-
ity of the restriction of gα (displayed on Figure 2, left) to the line f = t−2X (for
some given X>0): at the abscissas ±

√
2X and at 0. This non-smoothness is a

drawback when selecting a state-of-the-art optimization method for addressing
a penalty-function-based model. Special-purpose optimization methods could
be designed for such structured non-differentiable objective functions, as it is
done for instance in [10, 11], but we are here focusing on addressing logical con-
straints with standard continuous optimization approaches. Note that, contrary
to the common approach of squaring the terms of the ℓ1-penalty function (11)
in order to smooth out the non-differentiabilities, here one can easily verify that
along the half-line f = −αt with t > 0, the function g2α is not differentiable
(see Figure 2, center). A smoothing technique such as that proposed by Pinar
and Zenios [16] that replaces a max(0, f) term with a (three-piece) piecewise-
quadratic function of f is not appropriate either according to Proposition 1, as
their technique can be applied only to convex functions.

4 A smooth piecewise-quadratic penalty func-
tion

Let us construct a smooth penalty function, so that efficient state-of-the-art
methods can be applied to the resulting optimization problem. We choose here
to build a piecewise-quadratic approximation (that we shall name gβ) of g

2
α (our

non-convex piecewise-linear penalty function, gα, squared).
One can easily infer that a smooth S-violation dipstick penalty function that

is piecewise quadratic will have at least four pieces. Indeed, simply consider the
restriction of such a function, say g, to the line f = t − 2X, for some positive
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Figure 3: Graphs of gβ restricted to two lines (left): f = t − 2X (center) and
f = −t (right), when β = 3

constant X, as displayed on Figure 3 (center): it is easy to show that there is
no way to join smoothly any two quadratic polynomials p1 and p3 whose value
and derivative are zero at the intersections of the line and the axes; a third
quadratic polynomial, p2, is needed. Three pieces are therefore required over
the fourth quadrant, plus one piece where g is identically zero in the remaining
quadrants.

Proposition 5 (Existence). Let S ⊆ R2 be the open fourth quadrant. There
exists a smooth S-repulsive penalty function, gβ : R2 → R, that is piecewise
quadratic with exactly four pieces. A family of such functions is, for β ∈ R,
β > 1:

gβ(t, f) =



0 if t ≤ 0 or f ≥ 0

t2 if 0 < t ≤ −f

β
1

1− β2
(t2 + 2β t f + f2) if −f

β
< t < −βf

f2 if − t

β
≤ f < 0.

(13)

Before proving this result, let us visualize this 2D function, gβ , for a partic-
ular value of the parameter: β = 3. It takes the value zero outside the fourth
quadrant, and is composed of three quadratic pieces in the fourth quadrant.
Figure 4 displays the values gβ takes over its four subdomains (left), and the 3D
graph of gβ (right). Figure 3 displays the restriction of gβ to a transverse line
f = t − 2X, for some given value of X > 0 (center), and the restriction of gβ
along its axis of symmetry: the line f = −t (right). Observe that along any ray
into S, the restriction of gβ is a convex parabola whose minimum corresponds
to (0, 0), as shown on Figure 3 (right).

Proof. Let β > 1. We shall first show that gβ is an S-violation dipstick, then
that gβ is a smooth function, and finally that gβ leans outwards S.

In order to show that gβ is an S-violation dipstick, consider a point p =
(t, f) ∈ R2. If p ̸∈ S, then by definition of gβ , gβ(p) = 0. If p pertains to either
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0

0

f2

− 1
8 (t

2 + 6 t f + f2)

t2

Figure 4: The four quadratic pieces of gβ (left), and its 3D graph (right), when
β = 3.

subdomain where gβ(t, f) = t2 or f2, then one clearly has gβ(p) > 0. In order
to prove that gβ is positive on the remaining subdomain, where

−f

β
< t < −βf, (14)

consider the univariate function h defined as the restriction of gβ to the line,
illustrated on Figure 3 (right): f = t − 2X, for some given value X > 0 (any

given point (t̄, f̄) pertains to such a line: simply take X = t̄−f̄
2 ). One has:

h(t) =
1

1− β2

(
t2 + 2βt(t− 2X) + (t− 2X)2

)
.

Observe that on that line, (14) reads − t−2X
β < t < −β(t− 2X), or 2X

β+1 < t <
2Xβ
β+1 . On the closed interval 2X

β+1 ≤ t ≤ 2Xβ
β+1 , the univariate concave quadratic

function h is minimized either at t = 2X
(β+1) or at t = 2Xβ

(β+1) . Evaluating h at

these points, one obtains: h( 2X
β+1 ) =

1
1−β2

(
( 2X
β+1 )

2+2β 2X
β+1 (

2X
β+1 −2X)+ ( 2X

β+1 −
2X)2

)
= 4X2

(β+1)2 > 0 and similarly, one finds h( 2Xβ
β+1 ) =

4X2

(β+1)2 > 0. Therefore,

gβ is also positive on the domain where (14) is satisfied, and gβ is therefore an
S-violation dipstick.

To show that gβ is a smooth function, remark first that gβ is continuous
along the four lines: t = 0, f = 0, f = −βt, and f = −t/β that delimit the four
subdomains where gβ is a quadratic function. Moreover, one clearly has:

∇gβ(t, f) =



(0, 0)T if t < 0 or f > 0

(2t, 0)T if 0 < t < −f

β
2

1− β2
(t+ βf, f + βt)T if −f

β
< t < −βf

(0, 2f)T if − t

β
< f < 0.

(15)
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It is then straightforward to verify that: (0, 0)T = (2t, 0)T along the line t = 0,
(0, 0)T = (0, 2f)T along f = 0, (2t, 0)T = 2

1−β2 (t+ βf, f + βt)T along f = −βt,

and that 2
1−β2 (t + βf, f + βt)T = (0, 2f)T along f = −t/β. Therefore, gβ is

smooth.
Finally, in order to show that gβ leans outwards S, let p̄ = (t̄, f̄) ∈ S, and

let d̄ = (d̄1, d̄2) ∈ R2 be a descent direction for gβ at p̄. By definition of descent
direction, then d̄T∇gβ(p̄) < 0. According to the location of p̄, we have three
cases to consider. If 0 < t̄ ≤ −f̄/β, then ∇gβ(p̄) = (2t̄, 0)T , which implies
2t̄d̄1 < 0, or d̄1 < 0. The conclusion follows exactly as in part i) of the proof
of Proposition 4. The case where − t̄

β < f̄ < 0 is analogous. For the last case,

where − f̄
β < t̄ < −βf̄ , one obtains:

d̄T∇gβ(p̄) =
2

1− β2
(t̄+ βf̄ , f̄ + βt̄)T d̄ < 0.

Since 2
1−β2 < 0, t̄ + βf̄ < 0 and f̄ + βt̄ > 0, one cannot have both d̄1 ≥ 0 and

d̄2 ≤ 0. Therefore, either d̄1 < 0 or d̄2 > 0, and it suffices to set γ̄ = − t̄
d̄1

in

the first case, and γ̄ = − f̄
d̄2

in the second case, to obtain: p̄ + γd̄ ̸∈ S, for all
γ ≥ γ̄.

Remarks:

1. The piecewise quadratic function, gβ , is not unique. It is defined up
to a multiplicative constant, and changing the units of t and f (scaling)
amounts to changing the slope of its axis of symmetry (here set to f = −t).

2. As for classical penalty functions, gα (in the case where α = 1) is a
monotonically non-decreasing function of the (ℓ2) distance between a given
point and the desirable set, in our case the non-convex set R2 \ S. Let
us denote this distance by dR2\S . In contrast, it is easy to show that the
penalty function gβ (with β > 1) is not a monotonically non-decreasing
function of dR2\S . This is illustrated on Figure 5 where, for a small-
enough positive step size γ > 0: gβ(x̄) < gβ(x̄ + γd) while dR2\S(x̄) >
dR2\S(x̄+ γd).

3. When α = 1 and β takes a value near 1, the angle of the sector − f
β <

t < −βf (over which gβ takes the values of the concave quadratic func-
tion 1

1−β2 (t
2 + 2β t f + f2) – see Figure 4, left) becomes small, and gβ

approaches the three-piece piecewise quadratic function g2α (obtained by
squaring the piecewise linear function gα). The function gβ can therefore
be seen as a smooth approximation of g2α (for the symmetric case where
α = 1). In fact, both functions coincide, except on the central sector, as
illustrated on Figure 2 that plots the restrictions of g2α (for α = 1, center)
and of gβ (right) along the transversal line f = t−2X (X > 0) for a value
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Figure 5: Level curves of the functions gα and dR2\S (which are identical, in
black), and those of gβ (blue) in the case where α = 1 and β = 3.

of β near 1.

4. In order to guide a user to choose a particular value of β, let us consider
again the restriction, hX , of gβ to the line f = t − 2X, for some given
X > 0. This univariate piecewise-defined function hX is composed of
five pieces: one straight-line (identically zero), three univariate quadratic
polynomials pX1 , pX2 , pX3 , and again one straight-line (identically zero).
The case where each of the four breakpoints (discontinuities in the second
derivative of hX) together with the point corresponding to the axis of
symmetry of hX are equally spread over the domain where hX is positive,
corresponds to the special case where β = 3, and is illustrated on Figure 3.

5 Computational assessment

This section aims at demonstrating the usefulness of the quadrant penalty for-
mulation of logical constraints for real-world optimization problems. We address
in particular the aircraft conflict avoidance problem, which involves several logi-
cal constraints, as many as there are possible pairs of aircraft at stake. The aim
is to keep aircraft pairwise separated by a given separation distance, d, (other-
wise, there is a conflict). The inherent combinatorics in such conflict avoidance
problems leads naturally to conditional constraints: if two vehicles are converg-
ing spatially, then their smallest inter-distance must be bounded below at all
time. The usual big-M or complementary formulation approaches to address
these logical constraints require introducing as many binary variables as there
are pairs of aircraft. We show that our quadrant penalty formulation of logical
constraints allows continuous optimization to make a significant contribution
to solving such problems that are typically addressed by combinatorial opti-
mization approaches (see [4] and references therein). To that aim, we consider
here more specifically the continuous optimization formulation of this problem,
presented in [5].

In the variant of the aircraft conflict avoidance problem that is the closest to
air transportation operational constraints, both the speed and the heading angle
of each aircraft can be changed to separate the trajectories (see e.g., [12]). Let
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A = {1, 2, . . . , n} be an index set corresponding to aircraft flying at a same given
altitude, on straight-line segment trajectories. The following input data are
given for each aircraft i ∈ A at a certain time of interest t = 0: initial position,
(x0

i , y
0
i ) ∈ R2; initial speed, vi; and initial heading angle, ϕi. The aim is to

decide speed and heading-angle variations for each aircraft i, simultaneously, to
guarantee that aircraft remain pairwise separated. In other words, considering
a particular pair of aircraft i, j ∈ A (i < j), the following separation constraint
must be satisfied:

||xij(t)|| ≥ d for all t ≥ 0, (16)

where the vector xij(t) = xi(t) − xj(t) ∈ R2 gives the position of aircraft i
relative to that of aircraft j, and where || · || stands for the usual, Euclidean
norm. This constraint not only induces in general a non-convex feasible set, but
it must moreover hold at all time t ≥ 0.

Following [6], one can reformulate this semi-infinite constraint (defined over
a continuous time interval) by first re-writing it as the univariate quadratic
constraint:

fij(t) = ∥vij∥2t2 + 2x0
ij · vijt+ ∥x0

ij∥2 − d2 ≥ 0 for all t ≥ 0, (17)

where vij is the velocity vector of aircraft i relative to that of aircraft j, and x0
ij

is the vector of their relative initial positions. Second, supposing that aircraft
are separated at t = 0 (otherwise the problem can straightforwardly be detected
as an infeasible problem), one can suppose the non-trivial case where vij ̸= 0.
Third, one remarks that (17) is satisfied if and only if it is satisfied at the
unique time t = tmij that minimizes the (strictly convex) function fij . This
time t of maximal proximity between aircraft i and j is easily computed as

tmij =
−x0

ij · vij

∥vij∥2
. Finally, replacing t = tmij in the separation constraint (17)

yields the logical constraint equivalent to (16):

tmij > 0 implies fm
ij ≥ 0, (18)

where fm
ij = ∥vij∥2(∥x0

ij∥2 − d2)− (x0
ij · vij)

2.
The aircraft conflict avoidance problem boils down to a feasibility problem

that aims at deciding speed variation, qi, and heading angle variation, θi maneu-
vers for each aircraft i ∈ A so that the separation constraints are satisfied. More
precisely, once these decisions are made, the new speed of aircraft i is qivi, and
its new heading angle is ϕi + θi, where vi is the aircraft original speed, and ϕi

is its original angle. Following [5], for the angle decision, we rather consider the
heading-angle maneuver variables, ωi, πi, that are related to both the original
angle decision variable, θi, and to the speed decision variable, qi, as follows:

ωi := cos(ϕi + θi)qivi (19)

πi := sin(ϕi + θi)qivi. (20)
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The constraints to be satisfied are:

tmij > 0 implies fm
ij ≥ 0 i, j ∈ A : i < j (21)

fm
ij ∥vij∥2 = ∥vij∥2(∥x0

ij∥2 − d2)− (x0
ij · vij)

2 i, j ∈ A : i < j (22)

tmij∥vij∥2 = −x0
ij · vij i, j ∈ A : i < j (23)

vij =

(
ωi − ωj

πi − πj

)
i, j ∈ A : i < j (24)

ω2
i + π2

i = (qivi)
2 i ∈ A (25)

qi ≤ qi ≤ qi i ∈ A (26)

ωi ≤ ωi ≤ ωi i ∈ A (27)

πi ≤ πi ≤ πi i ∈ A, (28)

where vij , tmij , and fm
ij are auxiliary decision variables that can be straight-

forwardly computed explicitly in terms of the decision variables: qi, ωi, πi and
qj , ωj , πj and of the input data, and where qi, qi, ωi, ωi, πi, πi are given lower
and upper bounds on the main decision variables.

Modeling the logical constraints (21) through the continuous quadrant penalty
function, gβ , introduced in Proposition 5, yields an optimization problem whose
objective function, to be minimized, reads:∑

i,j∈A:i<j

gβ(t
m
ij , f

m
ij ) (29)

subject to constraints (22)–(28). This allows the direct use of state-of-the-art
continuous optimization solvers.

Remark that the objective function of this optimization problem is not a
convex function (by Proposition 1), and the feasible domain (22)–(28) is not
a convex set, which can be seen simply by considering constraints (25). A
mathematical optimization method for continuous optimization may thereby
converge to a local minimum that does not satisfy the original (penalized) logical
constraints (non-zero optimal value), yielding a so-called local infeasibility.

We present numerical results obtained considering benchmark instances known
as Random Circle Problems (RCP) and available from [12]. These instances are
generated by positioning aircraft uniformly on the circumference of a circle,
which represents the observed airspace portion and whose radius is 200 nautical
miles (NM), and assigning to each aircraft a randomly-generated initial speed
(in the range 486–594 NM/h) and a heading (deviated with respect to the head-
ing towards the center by an angle in the range [−π/6, π/6]) to fly towards the
opposite side of the circle. This results is realistic instances. We consider three
different values for the number, n, of aircraft, namely n = 10, 20 and 30, and for
each of these values we perform tests on 10, 10 and 15 instances, respectively.

The separation distance, d, that has to be ensured between each pair of air-
craft, is set to the standard value 5 NM. The values of the bounds on the vari-
ables in equations (26)-(28) are motivated by operational constraints. Specifi-
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CPU time (seconds)

n mean st.dev. min max

10 0.23 0.28 0.00 0.94

20 1.05 0.99 0.19 3.09

30 3.68 4.79 0.90 20.06

Table 1: Mean value, standard deviation, minimum and maximum values of the
total CPU times (in seconds), for the instances involving n aircraft

cally, we consider the so-called subliminal speed control that limits speed devia-
tions between−6% and +3% of the original speeds, and heading angle deviations
between −π/6 and +π/6.

We set the quadrant-penalty parameter to β = 3 (corresponding to equally-
spreaded breakpoints for hX , as mentioned above and illustrated on Figure 3.)
To handle the issue of potential local infeasibilities mentioned above, we imple-
ment a simple multistart heuristic, from different (randomly-generated) starting
guesses.

The optimization model is implemented in AMPL [13] and the instances are
solved using the IPOPT solver for nonlinear optimization problems [17], version
3.12, with the feasibility tolerance set to 10−5. A 2.66 GHz Intel Xeon (octo core)
processor with 32 GB of RAM under Linux is used to perform our numerical
tests.

Conducting computational tests on the 35 instances yields the following
observations.

First, a solution satisfying the separation constraints (zero-value penalty
function) is always obtained. At most 2 runs of the multistart heuristic are
needed, and this happens only for 2 instances out of the 35 instances studied
(one with n = 20 and one with n = 30). All the computed solutions are globally
optimal with respect to the penalty objective function (29), as its lower bound
zero is attained.

Second, the CPU times (reported in Table 1) reveal that we benefit from the
efficiency of continuous optimization methods to compute solutions satisfying
the difficult separation constraints, this computation being generally demanding
for large-scale instances when such logical constraints are addressed by combi-
natorial optimization approaches.

Computing times do not exceed 3.09 seconds for instances involving n =
20 aircraft sharing the same airspace, and this number of aircraft is already
larger than what is commonly observed in practice when air traffic controllers
deconflict cruise flights. Even for the larger instances involving n = 30 aircraft
(requiring 3.68 seconds, on average), our tests tend to show that the proposed
approach can be useful in the real-world application context considered. The
maximum computing time (20.06 seconds) results from the sum of the CPU
times of two runs required by the multistart heuristic. The 14 remaining in-
stances involving n = 30 aircraft do not require multistart, and solutions are
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Figure 6: CPU times (seconds) for the instances involving n = 10, 20, 30 aircraft

computed in less than 6 seconds. The distribution of the values of the CPU
times for all the considered instances with n = 10, 20 and 30 is displayed in
Figure 6.

6 Conclusion

Logical constraints are ubiquitous in practical optimization. This paper pro-
poses a continuous-optimization alternative to the two classical, big-M and
complementary, mixed-integer formulations of logical constraints: the contin-
uous quadrant penalty formulation. We emphasize some theoretical properties
of the 2D smooth non-convex piecewise-quadratic penalty function upon which
is based the new approach. We demonstrate the usefulness of our approach
on a real-world application, the aircraft conflict avoidance problem, which is
commonly addressed by combinatorial optimization, requiring as many extra
binary variables as there are possible pairs of vehicles with the classical ways of
reformulating logical separation constraints.

This work is in the spirit of the questioning of Conn as to whether penalty
functions can have a significant impact in discrete or global optimization. Fu-
ture work will address other problems involving logical constraints that would
incur too numerous extra binary variables. Addressing optimization problems
will involve managing a weighting penalty parameter to take into account the
original problem’s objective.
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