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INTRODUCTION

In order to protect a Civil Aviation user from a Hazardous Misleading Information (HMI) created by a non -nominal GNSS signal distortion [START_REF]Annex 10 -Aeronautical Telecommunications[END_REF], specific monitors, called Signal Quality Monitors, are implemented in SBAS (Satellite Based Augmentation System) [START_REF] Phelts | Toward Real-Time SQM for WAAS: Improved Detection Techniques[END_REF], [START_REF] Selmi | Signal Quality Monitoring (SQM) Algorithm for Evil WaveForm (EWF) Threat Space (TS)[END_REF] and GBAS (Ground Based Augmentation System) [START_REF] Song | Signal deformation fault monitors for dual-frequency GBAS[END_REF], [START_REF] Song | Assessment of Dual-frequency Signal Quality Monitor to Support CAT II/III GBAS[END_REF] systems. These monitors are based on the combining of different correlator outputs computed by the fixed SBAS/GBAS reference station receiver in order to detect the presence of signal distortions on the correlation function. As for any detection method, the detection threshold has to take into account the random error characteristics of the observables [START_REF] Selmi | Signal Quality Monitoring (SQM) Algorithm for Evil WaveForm (EWF) Threat Space (TS)[END_REF], [START_REF] Shloss | A Simple Method of Signal Quality Monitoring for WAAS LNAV/VNAV[END_REF]. In the SQM case, the sources of the random error affecting the multiple correlator outputs are the receiver noise and the multipaths. If these error sources are not accurately characterized, the performances of SQM w ill be degraded, by having frequent false alarms (higher than the authorized false alarm probability in SBAS/GBAS) or poor detection performance (lower than the detection performance defined by the required missed detected probability in SBAS/GBAS).

ENAC has set up a software receiver connected to choke ring antenna to collect multi-correlator outputs from GPS and Galileo signals. An automated process is used to collect and post-process data of received GNSS signals in order to maximize the number of collected samples during the data collect time while taking into account the used equipment's limitation (required post processing time and available storage space). ENAC's aim is to obtain several dozens of hours (note to reviewers: the exact length will be updated in the final paper) of correlator outputs data focused on satellites received at low elevation. To evaluate SQM performance with enough conservative margin (in term of false alarm and missed detection requirements), only data received from low elevation (between 5 and 10°) satellite are collected and processed.

This paper aims at characterizing the standard deviation, cross-correlation and time correlation of the random error affecting the collected correlator outputs, with the following structure. The first section will remind the underlying detection theory principles and the most common Signal Quality Monitoring (such as SQM2b), including the combination of correlator outputs, the smoothing process and the expected performances for a given C/N0. This section will put in evidence the importance of correctly characterizing the correlator outputs distribution for low elevation satellites. The second section will describe the experimental set -up installed at ENAC site with a particular focus on the automated planification which is based on an innovative optimization process. The third section will provide the analysis of the data collect, including standard deviation of the multi -correlator outputs' error, the correlation coefficients between the different correlator outputs and their time correlation constant. The fourth section will provide some illustration of the importance of correctly taking into account the random error characteristics, by comparing SQM performanc es with correct or incorrect models of the correlator output distribution. The paper will conclude on the importance of such characterization and on the opportunities to improve SQM techniques based on real data collect.

SIGNAL QUALITY MONITORING THEORY AND APPLIED METHODS

Signal Quality Monitoring Principle

Evil Waveforms (EWF) are non-nominal distortions that can be observed on satellite signals and cause additional bias on the estimated user position. A Threat Model (TM) has been proposed by ICAO for GPS L1 C/A to describe the possible distortions that can be observed on the GPS signals [START_REF]Annex 10 -Aeronautical Telecommunications[END_REF]. A Threat Space (TS) is also proposed to define the EWF that can induce hazardous effect on SBAS user. ICAO proposed three types of failures that could be related to payload functions, to the observed EWF event of 1993, and that would result in at least one of the three problematic effects on GPS L1 C/A receivers [START_REF]Annex 10 -Aeronautical Telecommunications[END_REF]:

• Threat Model A (TM-A) consists of the normal C/A code signal except that all the positive chips have a falling edge that leads or lags relative to the correct end-time for that chip. This TM is associated with a failure in the navigation data unit, the digital partition of a GPS or GLONASS satellite. This type of failure results in the creation of a flat zone at the top of the correlation function.

• Threat Model B (TM-B) introduces amplitude modulation and models the degradations in the analog section of the GPS or GLONASS satellite. More specifically, it consists of the output from a second order system when the nominal C/A code baseband signal is the input. TM-B assumes that the degraded satellite subsystem can be described as a linear system dominated by a pair of complex conjugate poles. These poles are located at 𝜎 ± 𝑗2𝜋𝑓 𝑑 , where 𝜎 is the damping factor in unit of MNp/s and 𝑓 𝑑 is the resonant frequency in unit of MHz. This type of failure results in the creation of false peaks and distortions • Threat Model C (TM-C) introduces both lead/lag and amplitude modulation. Specifically, it consists o f outputs from a second order system when the C/A code signal at the input suffers from lead or lag. This waveform is a combination of the two effects described above.

These 3 threat models were endorsed by ICAO for GPS L1 C/A. As it can be understood, th ey depend upon 3 parameters:

• Δ representing the lead or lag relative to the correct end-time of the chip preceding the falling transition • 𝜎 and 𝑓 𝑑 representing the second order system creating the amplitude modulation of the chip A similar model has been proposed for Galileo signals. The Galileo E1c and E5a TS has been defined in [START_REF] Mabilleau | Proposal for Galileo Evil Wave Form Threat Space[END_REF] as presented in Table 1.

The choice of the range of values of these parameters should then be performed to define a so -called Threat Space that is representative of the feared events. In this paper, we will only focus on signal distortions affecting the Galileo signals. 

Δ (µs) 𝜎 (MNp/s) 𝑓 𝑑 (MHz) TM-A Galileo E1c [-0.12 0.12] - - Galileo E5a [-0.1 0.1] - - TM-B Galileo E1c - [0.1 63] [0.1 18] Galileo E5a - [0.1 23] [0.1 8] TM-C Galileo E1c [-0.12 0.12] [0.1 63] [0.1 18] Galileo E5a [-0.1 0.1] [0.1 23] [0.1 8]
Signal Quality Monitoring (SQM) is put in place in augmentation systems such as SBAS or GBAS to monitor those distortions. As all these distortions will result in a deformation of the cross-correlation function between the received signal and a local replica of the theoretical signal from a particular satellite computed within a receive, SQM traditionally combines several correlator o utputs in order to form several metrics, such as simple ratio (SR) metrics, symmetric difference ratio (SDR) metrics or double difference ratio (DDR) metrics:

𝑀 𝑠𝑟 = 𝐼 𝑥 𝐼 0 , 𝑀 𝑠𝑑𝑟 = 𝐼 𝑥 -𝐼 -𝑥 𝐼 0 , 𝑀 𝑑𝑑𝑟 = (𝐼 𝑥 -𝐼 -𝑥 ) -(𝐼 𝑦 -𝐼 -𝑦 )
𝐼 0 where 𝐼 𝑥 is the correlator output located 𝑥 chip away from the prompt correlator, 𝐼 0 being the prompt correlator outputs.

Performance Evaluation of Signal Quality Monitors

Once a metric is computed, we can verify its compliance with regards to integrity requirements by comparing its deviation from the nominal (distortion-free) case to a compliance threshold. This test is performed for each single distortion 𝑖 of the EWF threat space.

𝑇𝑒𝑠𝑡 𝑀 𝑖 = 𝑀 𝑖 -𝑀 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑀 𝑖
A combination of metrics is able to detect a particular distortion 𝑖 with the required performances if among all the metrics, at least one has 𝑇𝑒𝑠𝑡 𝑀 ≥ 1.

Finally, a formulation of the compliance threshold is necessary to complete the compliance evaluation process. The threshold is given by the following formula:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑀 𝑖 = (𝑘 𝑚𝑑 𝑖 + 𝑘 𝑓𝑎 )𝜎 ̃𝑀
where 𝑘 𝑓𝑎 is the multiplier obtained from 𝑃 𝑓𝑎 = 𝑃 𝑓𝑎 𝑟𝑒𝑞 /𝑁 𝑀 is the required false alarm probability allocated to a single metric 𝑃 𝑓𝑎 .

𝑃 𝑓𝑎 = 𝑃 𝑓𝑎 𝑟𝑒𝑞 /𝑁 𝑀 , where 𝑁 𝑀 is the number of metric and 𝑃 𝑓𝑎 𝑟𝑒𝑞 = 1.5 × 10 -7 , as defined in [START_REF] Selmi | Signal Quality Monitoring Algorithm Applied to Galileo Signals for Large Evil Waveform Threat Space[END_REF] 𝑘 𝑚𝑑 𝑖 is the multiplier obtained from the required missed detection probability. It is defin ed for each distortion 𝑖, depending on its impact on the differential pseudorange error induced by the distortion and other integrity parameters, as proposed in [START_REF] Selmi | Signal Quality Monitoring Algorithm Applied to Galileo Signals for Large Evil Waveform Threat Space[END_REF]. In this paper, only the rising scenario is considered, which impacts the considered value of 𝑘 𝑚𝑑 𝑖 . 𝜎 ̃𝑀 is the standard deviation of the metric after different smoothing processes In this study, the overall SQM process is composed of all combinations of SR, SDR and DDR metrics formed from the correlator outputs taken at the delays provided in Table 2. In order to verify the compliance of SQM with the requirements, it is necessary to compute the standard deviation of each smoothed metric 𝜎 ̃𝑀.

Let us consider that we have a vector 𝑰 of all the correlator outputs mentioned in Table 2, normalized by the prompt correlator. Each SQM metric 𝑀 can be formed as a linear combination of elements of 𝑰: 𝑀 = 𝑺 𝑀 𝑇 𝑰 Consequently, the standard deviation of 𝑀before any smoothing processcan be obtained from the covariance matrix of 𝑰, noted 𝐂 𝑰 , through the following formula:

𝜎 𝑀 = √𝑺 𝑀 𝑇 𝐂 𝑰 𝑺 𝑀
In practice, the correlator outputs are processed in order to reduce the noise affecting them. A metric smoothing filter is p ut in place to reduce non-time-correlated noise (such as thermal noise), and the average from different receivers is taken to reduc e non-spacecorrelated errors (such as multipath).

The resulting standard deviation of the smoothed metric is therefore 𝜎 ̃𝑀 = 𝑘 𝑠𝑚𝑡ℎ 𝑘 𝑎𝑣𝑔 𝜎 𝑀 where 𝑘 𝑠𝑚𝑡ℎ provides the gain due to the metric smoothing filter 𝑘 𝑎𝑣𝑔 provides the gain due to the averaging operation between several receivers In previous works [START_REF] Selmi | Signal Quality Monitoring Algorithm Applied to Galileo Signals for Large Evil Waveform Threat Space[END_REF], the standard deviation of the metrics was derived from -the covariance of 𝑰 was obtained through a theoretical model of the standard deviation of the correlator outputs at 𝐶/𝑁 0 = 30 dBHz, considering a total integration time of 𝑇 𝐼 = 1 s. In particular, the off-diagonal elements of 𝐂 𝑰 are assumed to follow the ideal shape of the correlation function, and the diagonal elements are taken from a formula assuming only thermal noise [START_REF] Brocard | Measurement Quality assessment in urban environments using correlation function distortion metrics[END_REF] -assuming a 25-s running average filter -assuming a metric averaging between 4 receivers These assumptions resulted in the values collected in Table 3. 

Parameter

Value Note

𝜎 𝑰 | 𝜇 𝑥 𝜇 0 |√ 1 𝜇 𝑥 2 + 1 𝜇 0 2 -2 𝑅 𝑐 (𝑥) 𝜇 𝑥 𝜇 0
Theoretical formula comes from [START_REF] Brocard | Measurement Quality assessment in urban environments using correlation function distortion metrics[END_REF] where 𝜇 𝑥 = √2 In practice, those assumptions may be challenged at different levels:

-multipath may be present due to obstacles around the receiver's antenna. This may lead to o a modification of the diagonal elements of 𝐂 𝑰 , due to inflation of the variation compared to the case when only thermal noise is considered o a modification of the off-diagonal elements of 𝐂 𝑰 , due to the cross-correlation between the correlator outputs introduced by the multipath o a modification of the smoothing gain, due to the temporal correlation of multipath error -the tracking of low elevation satellites may result in particular behavior of the receiver -the 𝐶/𝑁 0 of the tracked satellites at low elevation may be different from the assumed 30 dBHz due to the receiver antenna, acquisition or tracking loop design.

It is quite difficult to model those different phenomena from a theoretical point of view, which led us to the requirement of having access to long data collect to be able to derive the smoothed correlator output covariance matrix from real observations. Due to the particular needs of this data collects, a software receiver has been used, in order to be able to obtain the numerous desired correlator outputs for the Galileo E1-C and E5a-Q signals.

One drawback of software receiver is the long duration for post-processing when lots of computation are desired, which prevents the software receiver from working in real-time and thus limits the availability of observations over a period. To mitigate this issue, an effort was put on the optimization of data collect planning and its automatization, in order to be able to collect as many data as possible, while taking into account the limitation due to the long post-processing step after each data collect.

OPTIMIZATION-BASED DATA COLLECT PLANNING Penalty methods overview and application to scheduling problems

A constrained optimization problem (P) can be formulated as follow:

(P): min 𝑥 𝑓(𝑥) subject to 𝑔(𝑥) ≤ 0 𝑥 ∈ ℝ
The penalty method is a popular and well-known optimization method for solving constrained problem such as (P). The aim is to transform a constrained optimization problem into a problem without constraints. It transforms (P) into another problem called (P') by adding to the objective function in (P), a term called penalty function. This term consists in the multiplication of a pe nalty parameter by a measure of violation of the constraints. It can be modelled as follow [START_REF] Freund | Penalty and barrier methods for constrained optimization[END_REF]:

(P ′ ): min 𝑥 𝑓(𝑥) + 𝑐 × 𝑝(𝑥) 𝑥 ∈ ℝ
Where 𝑐 is the penalty parameter and 𝑝(𝑥) a function that represents a measure of violation.

As explained in [START_REF] Wah | Simulated annealing with asymptotic convergence for nonlinear constrained optimization[END_REF], it is important to have suitable penalties in such a way that in the end of the algorithm, the penalty function cancels out. Then, the global minimum of the penalty function (P') will correspond to a constrained global minimum of (P).

There are different kind of penalty functions that can exist. Indeed, in (P'), the penalty function has an additive form, however, even though it is less seen in the literature, multiplicative penalty forms exist.

Furthermore, as described in [START_REF] Song | Assessment of Dual-frequency Signal Quality Monitor to Support CAT II/III GBAS[END_REF] there are several different penalty functions, such as the death penalties, the static penalties, dynamic penalties, or adaptive penalties, that can be used. The death penalties are the simplest functions possible as they reject any unfeasible solutions by penalizing them with infinity. However, as suggested in [START_REF] Schlueter | The oracle penalty method[END_REF], they are not suitable for solving any challenging problem. Then, static penalties were developed. They are more advanced as they apply constant penalties to unfeasible solutions and then enable to explore infeasible regions. However, the penalty parameters applied are constant and do not depend on the different iterations or generations like the dynamic penalties which have penalty parameters that are modified and dependent on the current generation number. Finally, the adaptive penalties are part of the dynamic method and their penalty parameters are updated fo r every generation and they dynamically adapt themselves according to the information gathered.

In [START_REF] Yeniay | Penalty function methods for constrained optimization with genetic algorithms[END_REF] and [START_REF] Schlueter | The oracle penalty method[END_REF], it is seen that stochastic metaheuristics, such as Genetic Algorithms (GA) but also Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) or Simulated Annealing (SA), are very suitable methods to be applied to solve this kind of problems and to find global optimal solutions.

Global optimization problems are very important and frequently encountered in engineering application according to [START_REF] Pereira | Comparative study of penalty simulated annealing methods for multiglobal programming[END_REF] and the constraints of these problems are often dealt with a penalty technique. Indeed, many well-known problems depend on penalty functions. In general, the penalty parameter is to be updated along the iterative process so that the solution can be found f aster. However, it is suggested in [START_REF] Pereira | Comparative study of penalty simulated annealing methods for multiglobal programming[END_REF] that the updating must not be too quick to prevent numerical instability. Even in these kind of problems, stochastic methods are appropriate alternatives to find global so lution using the penalty method. A constrained simulated annealing is developed in [START_REF] Wah | Simulated annealing with asymptotic convergence for nonlinear constrained optimization[END_REF] and applied to a dynamic penalty function while a variant of the simulated annealing algorithm, the adaptive simulated annealing, is developed in [START_REF] Pereira | Comparative study of penalty simulated annealing methods for multiglobal programming[END_REF]. Another heuristic is introduced in [START_REF] Stern | Simulated annealing with a temperature dependent penalty function[END_REF] that will use a temperature dependent penalty function in the simulated annealing cost function that is to be minimized. The aim of temperature dependent penalty function is to accelerate the simulated annealing convergence to the global optimum and to avoid premature convergence to a local optimal solution. Therefore, the penalty parameter is dependent on the temperature and is cooled with t he temperature in the minimization problem. In [START_REF] Stern | Simulated annealing with a temperature dependent penalty function[END_REF], the penalty method is applied to solve a Block Angular Form reduction problem. However, it can be used to solve many other kinds of optimization problem such as the knapsack problem.

The knapsack problem (KP) is a constrained NP-complete optimization problem. In this problem, we have a set of items, each with their own weight and value. The objective is to find the maximum sum of values that can be put in the knapsack, knowing the summation of the weights in the knapsack must not exceed the maximum weight allowed. This problem can be formulated as follow:

(KP): max 𝑥 𝑖 ∑ 𝑣 𝑖 𝑥 𝑖 𝑖∈[1,𝑛] subject to ∑ 𝑤 𝑖 𝑥 𝑖 𝑖∈[1,𝑛] ≤ 𝑊 𝑥 ∈ {0,1} ∀𝑖 ∈ [1, 𝑛]
Where n is the number of items, 𝑣 𝑖 and 𝑤 𝑖 respectively the value and the weight of the item number 𝑖 and 𝑊 is the maximum weight.

Penalty functions, as explained in [START_REF] Olsen | Penalty functions and the knapsack problem[END_REF], are effective to solve this kind of problems. In the approach presented, different penalty functions are employed and tested to adjust the objective function using a genetic algorithm to solve the problem without constrains obtained by using the penalty method. Indeed, there are many variations of the knapsack problem in business and industrial application, and it would be interesting to have an effective resolution method. Task scheduling can be seen as an application of the knapsack problem. Indeed, it is possible to associate the values 𝑣 𝑖 of the knapsack problem with collection slots or machine availability times, and the maximum weight allowed 𝑊 with the schedule time where the machine can be available or not. In [START_REF] Kellerer | Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications[END_REF], fully polynomial approximation schemes are designed to solve a knapsack problem. It is demonstrated that the method can be adopted for machine scheduling problems. In the scheduling applications, the machines need to process multiple jobs which takes a certain duration knowing that there are some amounts of time when the machine is subjected to a maintenance. The article also looks at different scenarios such as the version where the sum of the weighted completion time on a single machine with a fixed machine non-availability interval is to be minimized.

Simulated Annealing algorithm overview

Simulated Annealing (SA) is a metaheuristic method for global optimization problems. It is based on the physical phenomenon of annealing of materials. In metallurgy, there are two steps for physical annealing: first, the solid is heated to a very high temperature (until it glows) and then, it is slowly cooled to room temperature.

Figure 1 -Visualization of the state of the material and how we can lower temperature to cool it [START_REF] Delahaye | Simulated annealing: From basics to applications[END_REF] It can be seen in Figure 1 that when the temperature drops too quickly, the state ends in a metastable state whereas when the temperature drops slowly, the atoms in the solid are well organized. The aim is to make the material reach a solid state where all atoms are symmetrically organized. In the algorithm, the state-space point represents the different states of the solid and the function to minimize represents the energy of the solid. Thus, in the metastable state, the objective function will not be well minimized while in the crystal state the minimum energy will be reached, and the objective function will be minimized.

SA algorithm, as it can be seen in [START_REF] Delahaye | Simulated annealing: From basics to applications[END_REF], is based on Monte Carlo algorithms and is an adaptation of the Metropolis Algorithm [START_REF] Beichl | The Metropolis Algorithm[END_REF].

The Monte Carlo algorithm is a local search algorithm used to optimize a cost function. It converges to local optima whereas the Metropolis algorithm uses a criterion in order to escape from local minima.

The principle of the SA algorithm is to try to approximate the global minimum of a given function. An initial state 𝑋 𝑖𝑛𝑖𝑡 of energy 𝐸 𝑖𝑛𝑖𝑡 is generated. This initial state is taken randomly and corresponds to an initial temperature 𝑇 = 𝑇 𝑖𝑛𝑖𝑡 that is high and arbitrarily selected. Then, another state 𝑋 𝑗 of energy 𝐸 𝑗 is generated. This other state can be accepted according to the Metropolis criterion. By looking through the probabilistic theory, the probability that the solid is in the state 𝑋 𝑖 of energy 𝐸 𝑖 at the temperature 𝑇 is given by: 𝑒𝑥𝑝(-𝐸 𝑖 𝑘 𝐵 𝑇 ⁄ ) where 𝑘 𝐵 = 1.38064852 × 10 -23 m 2 kg s -2 K -1 is the Boltzmann constant. Thus, the new state 𝑋 𝑗 is accepted if it decreases the energy of the system (𝐸 𝑗 < 𝐸 𝑗-1 ), and therefore minimizes the objective function, or it can be accepted with the probability 𝑒𝑥𝑝(-(𝐸 𝑗-1 -𝐸 𝑗 ) 𝑘 𝐵 𝑇 ⁄ ). This means that it is accepted to degrade the solution not to fall into a local maximum solution in order to find the global maximum of the function. Therefore, at every iteration, the state can be modified. Moreover, the temperature 𝑇 is continuously lowered and if this temperature reaches a threshold low enough or if the system does or change during multiple iterations, the algorithm stops.

Temperature plays a crucial role. At high temperature, the system is free to move in the state space by choosing states that do not necessarily minimize the energy and so the objective function. On the contrary, at low temperature, changes are less free to move. Therefore, the algorithm can allow state modification that increases the objective function or not to prevent the algorithm from falling into local maximum.

Application of the Simulated Annealing algorithm to data collect planning

The algorithm takes as an input the predicted number 1-Hz observation of low-elevation satellites (below 10°) for each 5-min slots in a given day. The GNSS satellite elevation is based on the computation of the satellite position from the broadcast navigation message [START_REF]European GNSS (Galileo) Open Service Signal-In-Space Interface Control Document[END_REF] from the previous day, accessed through recorded RINEX navigation files. In the following, we will refer to the number of low-elevation satellites in 5-min slot as the number of samples. The aim of this part is to optimize collection times in order to max imize the number of samples (or satellites seen at low elevation) while taking into account the processing time of the different collections. Indeed, the software receiver chosen for the data collect cannot, at the same time, collect data and process them to generate the multi-correlator outputs due to the high number of correlator outputs. In the end, the optimization algorithm will return a binary vector where the value 1 in the vector means that the receiver has to collect data for five minutes and the value 0, that it must not collect. During this time, when the element in the vector is equals to 0, the receiver can process data or stay idle.

Therefore, the aim is to maximize the number of samples by ensuring that the number of times when the software receiver collects and processes data at the same time is equals to 0. Moreover, all this process should be finished within the total data collect duration, set to one day, which means that data cannot be processed after the start of the following day. Then, this problem can be seen as a knapsack problem where the maximum weight allowed would be assimilated to the maximum number of 5-min slots that exist in 1 days, and the values to number of samples for each slots. To satisfy every condition of the problem, an algorithm using the penalty method is used, turning the constrained optimization problem into an unconstrained one.

The parameters of the problem are:

• 𝑁 = 288 the number of 5-min slots in a single day

• 𝑥 𝑖 = { 1 if the receiver collects data during the slot number 𝑖 0 otherwise • 𝑣 𝑖 is the value associated to 𝑥 𝑖 . It is actually the number of samples in the slot number 𝑖

• 𝑦 𝑖 = {
1 if the receiver processes data during the slot number 𝑖 0 otherwise We assume that the post-processing duration is equal to the data collection duration, and that the post -processing of a data collect has to be performed just after the data collect.

We assume that the data is processed just after the data is collected. It is assumed that it takes the same amount of time for the receiver to collect data or to post-process it. Therefore, the vector 𝑦 𝑖 is defined from 𝑥 𝑖 .

The problem can be formulated as follow:

max ∑ 𝑣 𝑖 𝑥 𝑖 𝑖∈[1,𝑁] subject to (1) ∑ 𝑥 𝑖 𝑦 𝑖 𝑖∈[1,𝑁] = 0 (2) 𝑦 𝑖 = 0 ∀𝑖 > 𝑁
The first constraint ensures that the collection and the processing are not done at the same time. The second one ensures that the receiver is not collecting or processing data after the end of the data collect.

Let us call 𝑠 1 the objective function that we want to maximize:

𝑠 1 = ∑ 𝑣 𝑖 𝑥 𝑖 𝑖∈[1,𝑁]
, and 𝑠 2 the measure of the violation of the constraints (1) and (2):

𝑠 2 = ∑ 𝑥 𝑖 𝑦 𝑖 𝑖∈[1,𝑁] + ∑ 𝑦 𝑖 𝑖>𝑁
To solve the problem, a model based on the penalty method is used. The penalty function is then the multiplication of a penalty parameter, that is called 𝛽, by 𝑠 2 , the measure of the violation of the constraints. The penalty function is then:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = -𝛽 × 𝑠 2
This penalty function is equal to 0 when the constraints are not violated, and is non-zero where the constraints are violated. Then the objective 𝑠 1 needs to be maximized while the 𝑠 2 needs to be minimized and equal to zero in the end of the algorithm. The objective function to maximize, which corresponds to the energy 𝐸 𝑛 associated to a state in the SA algorithm description, is: 𝑧 = 𝑠 1 -𝛽(𝑛) × 𝑠 2 where 𝛽(𝑛) is a penalty parameter and will be updated at every iteration 𝑛 of our algorithm. Indeed, a dynamic penalty method is used to find a better solution faster.

The problem presented in this paper is solved using a Simulated Annealing algorithm applied to the resolution of problems based on the penalty methods. In this optimization problem, the first thing is to make sure that 𝑠 1 is well maximized before ensuring that the constraints are not violated. Therefore, in the maximization problem, the penalty parameter 𝛽(𝑛) evolves as the opposite of the temperature 𝑇, the crucial parameter used in the Simulated Annealing algorithm that was previously described. It helps accelerating the simulate d annealing convergence to the global optimum and also prevents numerical instability as the update does not change too quickl y since the temperature in the simulated annealing decreases slowly. A scale factor is also added to consider the potential scale difference between 𝑠 1 and 𝑠 2 . In our problem, it is equal to:

𝛽(𝑛) = (1 - 𝑇(𝑛) 𝑇 𝑖𝑛𝑖𝑡 ) × 1000 𝑇(𝑛) = 𝑇 𝑖𝑛𝑖𝑡 × 0.999 𝑛
The initial temperature is chosen sufficiently high in order to establish the annealing process. Initially, 𝑠 2 is not consequent compared to the 𝑠 1 (the parameter 𝛽(𝑛) is equals to 0) and while maximizing the objective function, the value of 𝑠 1 is maximized with higher priority than the minimization of 𝑠 2 and thus, the number of samples is maximized. Then, as the temperature lowers continuously, the importance of 𝑠 2 in the objective function grows (as 𝛽(𝑛) grows) and the value 𝑠 2 is minimized with higher priority than the maximization of 𝑠 1 . The value of 𝑠 2 is supposed to reach 0 so that the result will be without the violation of constraints.

Illustration of the optimized data collect planning process on a simple example

The proposed algorithm is illustrated on a simple case. The input sample vector is given in Figure 2, where only 15 observation slots are considered. The initial data collect vector (left on Figure 3) exhibits two constraint violations: (i) both data collect and data processing are running in slot 12, and (ii) the processing finishes 2 slots after the end of the data collects. When running the simulated annealing algorithm, we obtain the final data collect vector (right on Figure 3), which has optimized the number of collected samples, while setting the constraint violation to zero. Optimized data collect planning is one important part of the data collect automation, that permits to collect and process a large number of observations in a resource-constrained environment. This algorithm has been put in place in the data collect that has been running over several weeks, which is presented in the next section.

EXPERIMENTAL DATA COLLECT DESCRIPTION AND ANALYSIS

Data collect description

The data collect was set-up using a choke ring antenna located on the roof of an ENAC building, which should provide low multipath environment. a. update the covariance matrix computation using an iterative formula [START_REF] Schlueter | The oracle penalty method[END_REF] In step 3.a., it is possible to choose the number and location of correlators to be obtained, thanks to the flexibility of the software receiver. For this particular collect, the correlator outputs shown in were computed. Note that the number of correlators is much higher than what is used in actual SQM algorithm (see Table 2), which will be interesting for further research investigation. Correlator output delays (chips) Galileo E1-C ± [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.30 0.40 0.50] Galileo E5a-Q ± [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1] 

Data Collect Analysis

The analysis of the collected data will only be performed for the Galileo E1 -C signal.

Figure 6 show the standard deviation of the smoothed correlator outputs (normalized by the prompt correlator), as well as their correlation matrix obtained from the collected and post-processed data for Galileo E1-C for a single receiver (no averaging between several receiver). As a comparison, the same parameters obtained from the simulated data with parameters provided in Table 3 are also shown.

On Figure 6, the presence of multipath inflates the standard deviation for the correlator outputs associated to positive delays. Also, the level of the standard deviation is generally higher for most of the observed correlator outputs. On Figure 7, the obtained covariance matrix of the correlator outputs is less smoothed with the observed data (left) than for the simulated data (right). 

SQM PERFORMANCE PREDICTION USING REAL DATA COLLECT

The SQM compliance performance is predicted thanks to a type of graph shown in Figure 8. Each circle of the graph corresponds to one distortion of the EWF Threat Space. The x-axis corresponds to the compliance test value. When it is above 1, it means that the distortion can be detected in compliance with the integrity requirements. The y -axis corresponds to the worst differential tracking error generated by the distortion among all possible airborne receiver configurations (pre -correlation filter type and bandwidth, and Early-Late correlator spacing). The red dotted line corresponds to the maximum tolerated error (aka MERR). All distortions leading to a differential tracking error larger than the MERR is required to be detected by SQM. Table 5 shows the predicted performances of the SQM algorithm for the various investigated cases. The simulated data show that the considered SQM algorithm, using a combination of single ratio, symmetric difference ratio and double difference ratio metrics using the correlator outputs of Table 2, exhibits a compliance of 100%. While considering the real data, this value drops to 99.84%. This performance degradation is due either to the higher correlator standard deviation or to the higher covariance factor between them. The performance degradation is also visible just looking at the number of undetected distortions. 4), it has been possible to design a new SQM algorithm by choosing combinations of correlator outputs that are more sensitive to EWF distortions, while considering their particular distribution properties (standard deviation and covariance factor). Figure 9 shows the results obtained with the combinations of the correlators at the following location: ± [0.06 0.1 0.16 0.18 0.28 0.32 0.44 0.48]. This particular combination of correlators is just given as an example and shall not be considered as a definite result. Indeed, the choice of the correlator location highly depends on the receiving conditions of the signal (multipath presence, receiver tracking loop design). 

CONCLUSION

Signal Quality Monitoring is a process put in place in augmentation systems such as SBAS or GBAS to monitor potential signal distortions with high integrity that may be created by a satellite failure. It generally consists in the combination of sever al correlator outputs in so-called metrics, such as the single ratio metrics, the symmetric ratio metric or the double different metrics. To validate the compliance of a particular combination of metrics, it is necessary to validate the detection performance of an SQM process against every possible distortions of a Threat Space, in presence of typical errors affecting the metrics.

Usually, theoretical models are used in order to simulate the error affecting the correlator outputs and the metrics. However , those models cannot fully capture the diversity of the errors, such as the temporal correlation of multipath, or its effects on close correlator outputs. It is therefore of high interest to use real data collect in order to derive the models of the correlator ou tput models, to validate the compliance of an SQM in operational conditions.

ENAC has put in place an automated data collect in order to observe the distribution of correlator output errors over a long period. Due to the large variation of the number of low-elevation satellites in a day, this scheduling task requires a specific process to collect as many observations as possible from low-elevation satellites in a limited period of time. An optimization algorithm, adapted from the simulated annealing process, allows to find an optimal scheduling, taking into account the constraint of the long post-processing task of the collected digitized samples by a software receiver.

By accumulating a large set of correlator outputs from low-elevation satellites, an accurate distribution of the covariance matrix of the correlator outputs is obtained, capturing all the effects occurring in the real world and in a real receiver. Applying th is distribution in the SQM compliance test show a degradation of the SQM performance, with potential integrity failures. However, this information can also be used in order to design an optimized set of SQM metrics, which minimizes the probability of integrity failures in presence of real errors on the correlator outputs. Now that it is fully automized, the data collect will run for several months, which will provide previous information about on new GNSS signals that will be useful either to validate the performance of existing SQM processes, or to design new SQM metrics t ailored to the real observed errors at a given site.

Figure 2 -

 2 Figure 2 -Sample vector, corresponding to the number of 1-Hz observations from low-elevation satellites

Figure 3 -

 3 Figure 3 -Data collect instants (upper figures) and associated post-processing instants (lower figures). Red bars correspond to violated constraints. The final vector (right) corresponds to the optimized planning, which maximizes the number of collected samples while setting the constraint violation to 0.

Figure 4 -

 4 Figure 4 -Photos of the choke-ring antenna on the roof of an ENAC building The automation of the data collect is described in Figure 5. It can be summarized as follow: 1. Automated data collection planning: a. retrieval of the ephemeris data from a RINEX FTP server b. elevation prediction c. optimized planning using the simulated annealing algorithm 2. Automated data collect (for each data collect) a. Create a configuration file b. Launch the recording of IQ samples 3. Automatic data post-processing a. Compute the correlator outputs from the IQ sample file b. filter the correlator outputs by elevation, to keep only low elevation satellites c. smooth the correlator outputs with a 25-s running average filter 4. Covariance matrix analysisa. update the covariance matrix computation using an iterative formula[START_REF] Schlueter | The oracle penalty method[END_REF] 

Figure 5 -

 5 Figure 5 -Automated data collection and processing After 30 days, we were able to collect 67,830 correlator outputs (at 1 Hz) for Galileo E1-C and E5a-Q signals received from lowelevation satellites. (Note to the reviewers, the length of the data collect will change for the final submission, with the most recent data collect)
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 67 Figure 6standard deviation of the collected and simulated E1-C signals
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 8 Figure 8 -SQM compliance prediction on simulated data (left) and experimental data (right)

Figure 9 -

 9 Figure 9 -SQM compliance prediction using experimental data and an optimized SQM algorithm

Table 1 -

 1 Galileo EWF Threat Space[START_REF] Mabilleau | Proposal for Galileo Evil Wave Form Threat Space[END_REF] 

Table 2 -

 2 correlator output delays used in the considered SQM process

		Correlator output delays (chips)
	Galileo E1-C	± [0.02 0.03 0.04 0.06 0.08 0.1]
	Galileo E5a-Q	± [0.2 0.4 0.6 0.8 1]

Table 3 -

 3 Models for simulated correlator output

Table 4 -

 4 correlator output location computed from the real data

Table 5 -

 5 Predicted SQM performances using simulated data, experimental data and optimized SQM

%age of undetected distortions %age of undetected distortions leading to a diff error > MERR

  

	Simulated model	9.62 %	0.00 %
	Experimental data	13.11 %	0.14 %
	Experimental data & optimized SQM	9.01 %	0.00 %
	By exploiting the additional correlator outputs computed from the data collect (see Table	
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