HAL CCSD
Canonical Foliations of Statistical Manifolds with Hyperbolic Compact Leaves
Gnandi1, Emmanuel
Boyom, Michel
Puechmorel, Stéphane
Ecole Nationale de l'Aviation Civile (ENAC)
Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
International audience
5th International Conference on Geometric Science of Information (GSI)
Paris, France
hal-03609559
https://enac.hal.science/hal-03609559
https://enac.hal.science/hal-03609559/document
https://enac.hal.science/hal-03609559/file/gsi2021%20%281%29.pdf
https://enac.hal.science/hal-03609559
5th International Conference on Geometric Science of Information (GSI), Jul 2021, Paris, France. pp.371-379, ⟨10.1007/978-3-030-80209-7_41⟩
DOI: 10.1007/978-3-030-80209-7_41
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-80209-7_41
en
Mathematic
Computer science
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
[INFO]Computer Science [cs]
info:eu-repo/semantics/conferenceObject
Conference papers
A. The sheaf of solutions (J ,∇) of the Hessian equation on a gauge structure (M, ∇) is a key ingredient for understanding important properties from the cohomological point of view. In this work, a canonical representation of the group associated by Lie third's theorem to the Lie algebra formed by the sections of (J, ∇) is introduced. On the foliation it defines, a characterization of compact hyperbolic leaves is then obtained. We conclude that these leaves are equipped with a statistical model structure.
2021-07-21
info:eu-repo/semantics/OpenAccess