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CANONICAL FOLIATIONS OF STATISTICAL MANIFOLDS WITH STATISTICAL MODELS

The sheaf of solutions J ∇ of the Hessian equation on a gauge structure ( , ∇) is a key ingredient for understanding important properties from the cohomological point of view. In this work, a canonical representation of the group associated by Lie third's theorem to the Lie algebra formed by the sections of J ∇ is introduced. On the foliation it defines, a characterization of compact hyperbolic leaves is then obtained. We conclude that these leaves are equipped with a statistical model structure.

I

Hyperbolicity is quite an important notion in geometry and can be tackled using different approaches. In its original work [START_REF] Koszul | Domaines bornés homogenes et orbites de groupes de transformations affines[END_REF], Koszul introduces the development map Q to define hyperbolic manifold as those for which the image by Q of their universal coverings is an open convex domain without straight line. In [START_REF] Koszul | Déformations de connexions localement plates[END_REF], a cohomological characterization is given, stating that a necessary condition for a gauge structure ( , ∇) to be hyperbolic is the existence of a closed 1-form admitting a positive definite covariant derivative. Finally, if ( , , ∇) is a gauge structure on an Hessian manifold, then ( , ∇) is hyperbolic iff [ ] = 0 in Koszul-Vinberg cohomology [START_REF] Boyom | Foliations-webs-hessian geometry-information geometry-entropy and cohomology[END_REF].In [START_REF] Shima | The geometry of Hessian structures[END_REF], Shima observes that Fisher information of all classical used statistical models are Hessian metrics. As Amari did, he also proved that any locally flat statistical manifold is a Hessian manifold. These structures arised from works of many mathematicians (e.g. J.-L. Koszul, Y. Matsushima, A. Nijenhuis, E. B. Vinberg) in their attempt to solve the Gerstenhaber conjecture in the category of locally flat manifold.The geometry of locally flat hyperbolic manifold is also named Koszul geometry (see [START_REF] Gerstenhaber | On the deformation of rings and algebras[END_REF]),the conjecture of Gerstenhaber say that every restricted theory of deformation generates its proper theory of cohomology.This conjecture has been solved in 2006 (see [START_REF] Nguiffo Boyom | The cohomology of Koszul-Vinberg algebras[END_REF]) by Michel Boyom. In [START_REF] Boyom | Foliations-webs-hessian geometry-information geometry-entropy and cohomology[END_REF][START_REF] Nguiffo Boyom | The last formula of jean-louis koszul[END_REF] he also realize the homological version of the Hessian geometry.The aim of this paper is to study hyperbolicity of the leaves of canonical foliations in statistical manifolds using representations in the affine group of a finite dimensional vector space and equipped these leaves with statistical model.The paper is organized as follows:in section (2), we summarize the main results,section 3 is devoted to basics notions which are used,in section [START_REF] Boyom | Numerical properties of koszul connections[END_REF], is devoted to useful notions in the category of locally flat manifolds and their KV-cohomology. In section [START_REF] Boyom | Sur les structures affines homotopes à zéro des groupes de lie[END_REF] we introduce the notion of hyperbolicity in sense of Koszul, Vey.In section [START_REF] Cartan | Homological algebra[END_REF], the Hessian equation on a gauge structure is introduced along with some basic facts. In section [START_REF] Chevalley | Cohomology theory of lie groups and lie algebras[END_REF], the canonical group representation is defined, from which a vanishing condition in cohomology is given in Theorem 7.2. Finally, the case of statistical manifolds is treated in section (8) and a characterization of hyperbolic compact leaves is given.In section [START_REF] Kobayashi | Intrinsic distances associated with flat affine or projective structures[END_REF] we prove that the universal covering of these leaves are convex cones.In the last section [START_REF] Kobayashi | Projectively invariant distances for affine and projective structures[END_REF] we show that leaves are bearing a statistical model structure pertaining to the exponential family. In the final section [START_REF] Koszul | Domaines bornés homogenes et orbites de groupes de transformations affines[END_REF], a explicit construction is given and conclusion drawn. (2) The cohomology class [ ∇ ] vanishes;

(3) The affine representation

∇ → ( ∇ ( ), ∇ ( ) ∈ Aff( ∇ )
is conjugated to the linear representation

∇ → ∇ ( ) ∈ ( ∇ ).
Theorem 2.2. Let ( , , ∇, ∇ ★ ) be a compact statistical manifold. Then the foliation F ∇ (resp. F ∇ * ) is a Hessian foliation in ( , , ∇) (resp. ( , , ∇ * )).

Theorem 2.3. In a statistical manifold ( , , ∇, ∇ ★ ) the following assertions are equivalent:

(1)

[ ∇ ] = 0 ∈ 2 (F ∇ ) (2) [ ∇ ★ ] = 0 ∈ 1 ( ∇ ★ , ∇ ★ ) (3) ( ∇ ★ , ∇ ★ ) has a fixed point. ( 4 
) ( ∇ ★ , ∇ ★ ) is affinely conjugated to its linear component ∇ ★ .
Theorem 2.4. Let ( , , ∇) being a compact Hessian manifold. If the characteristic obstruction satisfies:

{[ ∇ ] ∪ [ ∇ ★ ]} = {0} ∪ {0} . Then ( , ∇) is an hyperbolic manifold. Theorem 2.5. Let ( , ∇) be a closed hyperbolic manifold.Then [ ∇ ★ ] = 0 ∈ 1 ( ∇ ★ , ∇ ★ ) and [ ∇ ] = 0 ∈ 1 ( ∇ , ∇ )
Theorem 2.6. Let ( , ∇) be a closed hyperbolic manifold.Then ( , ∇ ★ ) is also hyperbolic manifold.

Theorem 2.7. Let ( , , ∇) be a statistical manifold and let F ∇ be its canonical Hessian foliation.

If the characteristic obstruction vanishes:

{[ ∇ ] ∪ [ ∇ ★ ]} = {0} ∪ {0} .
Then up to a affine diffeomorphism every compact leaf of F ∇ is the quotient of a sharp open convex cone by a discrete group of (R ) Theorem 2.8. Let ( , , ∇) be a statistical manifold and let F ∇ be its canonical Hessian foliation. If the characteristic obstruction vanishes:

{[ ∇ ] ∪ [ ∇ ★ ]} = {0} ∪ {0} .
Then up to affine diffeomorphism, every compact leaf of F ∇ is a parametric space of statistical models for a measurable set (Ω ★ , B (Ω ★ ))

< ∇ , > ,where is defined by

(Θ, ) = ∫ ( ∇) -< Θ, > ∫ Ω ★ -< Θ, > ( ∇) with (∇) ⊂ (R )

B

Most of the material presented here can be found in greater detail in [START_REF] Boyom | Foliations-webs-hessian geometry-information geometry-entropy and cohomology[END_REF]. Only the required notions will be introduce in this section. In the sequel, ( ) stands for the real Lie algebra of smooth vector fields on . The convention of summation on repeated indices will be used thorough the document.

Definition 3.1. A Koszul connection is a first order differential operator ∇ of ★⊗2 to . It is usually denoted by ( , ) → ∇ and has the following properties:

(1) ∇ = ∇ (2) ∇ = ( ) + ∇ ∈ ∞ ( ), ∀ , ∈ X( )
The torsion tensor ∇ and the curvature tensor ∇ are defined by:

(1)

∇ ( , ) = ∇ -∇ -[ , ] (2) 
∇ ( , ) = ∇ ∇ -∇ ∇ -∇ [ , ]
Definition 3.2. A gauge structure is a pair ( , ∇) where ∇ is a Koszul connection in M. 

Definition 4.2.

A locally flat manifold is a pair ( , ∇) where ∇ is a linear Koszul connection whose curvature ∇ and torsion ∇ both vanish identically:

(1) ∇ -∇ -[ , ] = 0 (2) ∇ ∇ -∇ ∇ -∇ [ , ] = 0 4.1.
KV-cohomology of locally flat manifolds. Let ( , ∇) be a locally flat manifold.Let A = (X( ), ∇) be the Koszul-Vinberg algebra associated to ( , ∇).For a locally flat manifold the Koszul-Vinberg complex is defined as follows:

Definition 4.3. Let (∇), ≥ 0 be the vector spaces:

0 (∇) = { ∈ ∞ ( ), ∇ 2 = 0} (∇) = Hom R (⊗ ( ), ∞ ( ))
and let : ( ) → +1 ( ) be the coboundary operator:

         = ∀ ∈ 0 (∇) ( 1 ⊗ ... ⊗ +1 ) =Σ 1 (-1) [ ( (.. ⊗ ˆ ⊗ .. ⊗ +1 )) ( ) -Σ ≠ (.. ⊗ ˆ ⊗ .. ⊗ ∇ ⊗ ..]
The complex ( (∇), ) is the Koszul-Vinberg complex of ( , ∇), with cohomology groups denoted by (∇). The following proposition gives a cohomological definition of a Hessian manifold .

Proposition 4.2 ( [14]

). A locally flat manifold ( , , ∇) is Hessian manifold in the sense of [START_REF] Shima | Geometry of hessian manifolds[END_REF] if vanishes identically .

H

The opposite of geodesic completeness is hyperbolicity in the sense of Vey [ [20]].Hyperbolic affine manifolds are closely related to Hessian manifold.This notion of hyperbolicity has been studied by many authors Koszul[ [13], [START_REF] Koszul | Domaines bornés homogenes et orbites de groupes de transformations affines[END_REF], [START_REF] Koszul | Variétés localement plates et convexité[END_REF]], Vey[ [20], [START_REF] Vinberg | Theory of homogeneous convex cones[END_REF]],Kobayashi[ [9], [START_REF] Kobayashi | Projectively invariant distances for affine and projective structures[END_REF]].The notion of hyperbolicity is among the fundamental notions of the geometry of Koszul.It may be addressed and studied form many perspectives. We highlight here the algebraic topology point of view, which is richer than the Riemannian geometry one. As an example, the theory of affine representations of Lie groups plays a key role in Lie group theory of Heat after Jean-Marie Souriau.

5.1. Developing map of locally flat manifold. Given a locally flat structure ( , ∇), we fix a point 0 ∈ and we consider the pairs {0, [0, 1]} and { 0 , M}. We go to deal with the space of differentiable paths

: {0, [0, 1]} → { 0 , M} .
The notation means that (0) = 0 .

The quotient modulo the fixed ends homotopy is denoted by M. The application

M [ ] → ( [ ]) = (1) ∈ M
is is a universal covering of M.The universal covering of ( , ∇) is denoted by ( , ∇). Consider a path c, ∈ [0, 1],let be the parallel transport

: T 0 M → T ( ) M.
The developing map D is defined as it follows:

: M [ ] → ( [ ]) = ∫ 1 0 -1 ( ( ) ∈ T 0 M Definition 5.1. A locally flat manifold ( , ∇) is called hyperbolic if is a diffeomorphism
of ˜ onto a convex domain not containing any straight line (Koszul [13]).

Remark 5.2. This definition is equivalent to the fact that is diffeomorphic to the orbit space

=

where is an open convex domain not containing any straight line in R and is a discrete subgroup of the Lie group ( ) (see J. L. Koszul [START_REF] Koszul | Déformations de connexions localement plates[END_REF][START_REF] Vey | Sur une notion d'hyperbolicité des variétés localement plates[END_REF]).

Theorem 5.3. (see [START_REF] Koszul | Déformations de connexions localement plates[END_REF]) For a locally flat manifold ( , ∇) being hyperbolic, it is necessary that it exists a de Rham closed differential 1-form on whose covariant derivate ∇ is positive definite. If is compact then this condition is also sufficient.

Remark 5.4. The existence of the nonvanishing Koszul 1-form proves that M is fibered over S 1 [START_REF] Tischler | On fibering certain foliated manifolds overs1[END_REF].Topological consequences follow,the Euler characteristic X( ) = 0 and the first Betti number 1 ( ) ≥ 1.

In [START_REF] Boyom | Numerical properties of koszul connections[END_REF] Michel Boyom has given a cohomological analogue of the theorem above and his result states as follows:

Theorem 5.5. Let ( , , ∇) be a compact Hessian manifold then the following assertions are equivalent:

• [ ] = 0 ∈ 2 (∇).
• ( , ∇) is hyperbolic 6. H ∇ Definition 6.1. The Hessian operator ∇ 2 : ( ) → 1 2 ( ) is, for a fixed ∈ ( ), the covariant derivative of the 1 1 ( )-tensor ∇ . For any triple ( , , ) of vector fields, its expression is given by:

∇ 2 , = ∇ (∇ ) -∇ ∇ . Proposition 6.1. The product ( , ) ∈ ( ) ↦ → ∇ has associator ∇ 2
Proof. This a direct consequence of def. 6.1, since: ., ) be a system of local coordinate functions of and let ∈ X( ). We set

= , = ∇ = Σ Γ .
The principal of symbol of the Hessian differential operator can be expressed as (6.1)

(∇ 2 ) ( , ) = Σ Ω , ( )
where

Ω ( ) = 2 + Γ + Γ -Γ + Γ + Γ Γ -Γ Γ (6.2) The geometric symbol ∇ of ∇ 2 is ∇ ( ) ( , ) = Σ 2
he Hessian differential operator ∇ 2 is involutive (The Koszul-Spencer complex is acyclic).

Definition 6.3 ( [4]

). Let ( , ∇) be a gauge structure. The sheaf of solutions of its Hessian equation, denoted by J ∇ ( ), is the sheaf of associative algebras:

↦ → { ∈ ( ), ∇ 2 = 0}
with product defined in prop. 6.1.

The space of sections of J ∇ ( ) will be denoted in the sequel by ∇ .

Proposition 6.2. The pair ( ∇ , ∇) is an associative algebra with commutator Lie algebra ( ∇ , [-, -] ∇ ) where the bracket [ , ] ∇ is:

[ , ] ∇ = ∇ -∇ .
When ∇ has vanishing torsion, ( , ∇) is said to be a symmetric gauge structure and the Lie algebra ( ∇ , [-, -] ∇ ) is obviously a Lie subalgebra of the Lie algebra of vector fields ∇) is symmetric gauge structure, then the Lie subalgebra ∇ ⊂ X( ) is finite-dimensional over the field of real numbers.

(X( ), [-, -]); Proposition 6.3 ( [4]). If ( ,
The next propositions shows that ∇ may be trivial.

Proposition 6.4. Let (M,g) be a Riemmian manifold and let Ric be its Ricci curvature tensor.It comes:

∇ ⊂ ( )
Proof. Let (X,Y) be a couple of vector fields on M and let ∈ ∇ .We have:

∇ ( , ) = (∇ 2 ) ( , ) -(∇ 2 ) ( , )
Taking the trace we deduce that: 

( , ) = 0 Then ∇ ⊂ ( ) Corollary 
∇ = ∇ + ∇ 2
we deduce that ∇ is subset of killing vector field on M.By assumption < 0, From the theorem of Bockner we deduce that

∇ = {0}
As an easy consequence of Lie's third theorem, it comes: Up to a Lie group isomorphism, it exists a unique simply connected Lie group ∇ whose Lie algebra is isomorphic to the Lie algebra ∇ . Definition 6.4. [START_REF] Palais | A global formulation of the lie theory of transformtion groups[END_REF] ∇ is called completely integrable if its the linear counterpart of a locally effective differentiable acion:

∇ × M ( , ) → . ∈ M.
In a compact manifold M every infinitesimal action of a finite dimensional Lie group is integrable. That is due to the fact every vector field X is complete in the meaning that X is a generator of a one parameter subgroup of the group of diffeomorphisms be a finite dimensional real vector space. Its group of affine isomorphisms, denoted by Aff( ), is defined as the semi-direct product:

Aff( ) = GL( )

where is by abuse of notation the group of translations of .

There is a natural affine representation of the Lie algebra ∇ in itself as a vector space:

∇ → ( ) = (∇ , ) ∈ ( ∇ ) × ∇ = ( ∇ ).
with affine action given by:

( ). = ∇ + , ∀ ∈ ∇ .
By virtue of the universal property of simply connected finite dimensional Lie groups, there exist a unique continuous affine representation

∈ ∇ → ( ∇ ( ), ∇ ( )) ∈ ( ∇ ).
Proposition 7.1. With the above notations, ∇ is a linear representation of ∇ in ∇ and ∇ is a ∇ valued 1-cocycle of Proof. The couple (f,q) is a continuous homomorphism of the Lie group ∇ on the Lie group ( ∇ ), thus, for any 1 , 2 ∈ ∇ :

( ( 1 ). ( 2 ), ( 1 ) ( 2 ) + ( 1 )) = ( ( 1 . 2 ), ( 1 . 2 )) .
The cohomology of the Lie group ∇ value in his Lie algebra ∇ is defined by the complex [START_REF] Boyom | Sur les structures affines homotopes à zéro des groupes de lie[END_REF][START_REF] Cartan | Homological algebra[END_REF][START_REF] Chevalley | Cohomology theory of lie groups and lie algebras[END_REF] : The condition : (2) The cohomology class [ ∇ ] vanishes;

... → ( ∇ , ∇ ) → +1 ( ∇ , ∇ ) → +2 ( ∇ , ∇ ) →
∇ ( 1 . 2 ) = ∇ ( 1 ) ∇ ( 2 ) + ∇ ( 1 ) ∀ 1 , 2 ∈ ∇ is equivalent to ∇ ∈ 1 ( ∇ , ∇ ).
(3) The affine representation

∇ → ( ∇ ( ), ∇ ( ) ∈ Aff( ∇ )
is conjugated to the linear representation

∇ → ∇ ( ) ∈ ( ∇ ).
Proof. Let us first show that (1) implies (2). Let -0 be a fixed point of the affine action ( ∇ , ∇ ), then ∇ ( ) (-0 ) + ∇ ( ) = -0 , ∀ ∈ ∇ . Therefore one has:

∇ ( ) = ∇ ( ) ( 0 ) -0 , ∀ ∈ ∇ .
So the cocycle is exact. To prove that (2) implies (3), consider the affine isomorphism ( , 0 ). It is nothing but the translation by 0 → + 0 ;

We calculate ( , 0 ) ( ∇ ( ), ∇ ( )) ( , 0 ) -1 = ( ∇ ( ), 0 ∇ ) Where ∇ stands for the zero element of the vector space ∇ . Finally, (3) implies (1). This assertion means that there exists an affine isomorphism ∇ → ( ) + 0 ∈ ∇ such that ( , 0 ) ( ∇ ( ), ∇ ( )) ( , 0 ) -1 = ( ∇ ( ), 0 ∇ ), ∀ ∈ ∇ The calculation of the left member yields the following identities:

( ) : ∇ ( ) = ∇ ( ) (7.1) ( ) : ( ∇ ( )) + 0 -[ ( ∇ ( ) -1 ] ( 0 ) = 0 ∇ . (7.2)
The identity ( ) yields:

∇ ( ) = ∇ ( ) ( -1 ( 0 )) --1 ( 0 ), ∀ ∈ ∇ .
Taking into account identity ( ), we obtain:

∇ ( ) = ∇ ( ) ( 0 ) -0 , ∀ ∈ ∇ .
So the vector -0 is a fixed point of the affine representaion ( ∇ , ∇ ).

Definition 7.3. The affine representation ( ∇ , ∇ ) is called the canonical affine representation of the gauge structure ( , ∇)

When the infinitesimal action ∇ is integrable, the proposition above is a key tool to relate the canonical affine representaion of ( , ∇) and the hyperbolicity problem for the orbits of ∇ .

8. A 8.1. Statistical manifolds. In this section, We restrict our attention to Riemannian statistical manifolds (excluding the pseudo-Riemannian case) whose particular cases are non-degenerate Fisher information metrics of statistical models and their family ofconnections, ∈ R. We recall that a statistical manifold can be viewed as a triple ( , , ∇) formed of a Riemannian manifold ( , ) and a symmetric gauge structure ( , ∇) which are linked by the following identity:

(∇ ) ( , ) -(∇ ) ( , ) = 0, ∀( , , ) ⊂ X( )
The -dual, ∇ ★ is defined as:

(∇ ★ , ) = ( , ) -( , ∇ ), ∀( , , ).
Depending on needs, we will use the alternative definition: Definition 8.1. A statistical manifold is a quadruple ( , , ∇, ∇ ★ ) formed a positive Riemannian manifold ( , ) and pair of symmetric gauge structure ( , ∇, ∇ ★ ) which are linked by the following identity

( , ) -(∇ , ) -( , ∇ ★ ) = 0, ∀( , , ).
Example 1: Any Riemannian manifold ( , , ∇ ) where ∇ is the Levi-Civita connection of is a statistical manifold as ∇ is self-dual. We say in such a case that is a trivial statistical manifold.

Example 2: Let ( , , ∇, ∇ * ) any statistical manifold, the family ( , , ∇ ( ) , ∇ (-) ) ∈R where ∇ ( ) = 1+ 2 ∇ + 1- 2 ∇ * is a statistical manifold for any ∈ R. 8.2. Hyperbolic leaves in statistical manifold. Let ( , , ∇, ∇ * ) be a compact statistical manifold and ∇ be its Levi-Civita connection.We consider three gauge structures ( , ∇), ( , ∇ ★ ) and ( , ∇ ).By assumption, M is compact,therefore ∇ , ∇ ★ and ∇ are the infinitesimal counterpart of the following locally effective differentiable dynamical systems:

∇ × → (8.1) ∇ ★ × → (8.2) ∇ × → (8.3)
Remark 8.2. In the Riemannian geometry viewpoint, the orbits of ∇ are flat Riemannian manifolds. Up to an isometry and a finite covering, each such an n-dimensional orbit is a flat cylinder of over an Euclidean torus [START_REF] Wolf | Space of constant curvature[END_REF], namely

( T Γ × R -, 0 )
with the flat metric 0 induced from the ambient Euclidean metric of R . The integer k is the first Betti number of the orbit and Γ is finite group of isometry. Proof.

(1) By assumption is compact then ∇ is integrable,we conclude that ∇ is an infinitesimal action of ∇ on M.We have ∇ ( , ) ∇ = 0 then F ∇ is locally flat foliation in ( , ∇). The ∇ -orbits are ∇-auto-parallel then ∇ = 0. The leaves of F ∇ are Hessian submanifolds of ( , , ∇).

(2) By using the same arguments for ∇ ★ , the theorem is proved. Theorem 8.5. In a compact statistical manifold ( , , ∇, ∇ ★ ) the following assertions are equivalent:

(1) [ ∇ ] = 0 ∈ 2 (F ∇ ) (2) [ ∇ ★ ] = 0 ∈ 1 ( ∇ ★ , ∇ ★ ) (3) ( ∇ ★ , ∇ ★ ) has a fixed point. (4) ( ∇ ★ , ∇ ★ ) is affinely conjugated to its linear component ∇ ★ .
Proof. According to Theorem 7.2, assertions (2), ( 3) and (4) are equivalent. Therefore, it is sufficient to prove that assertions (1) and (2) are equivalent. Let us demonstrate first that (1) implies [START_REF] Barbaresco | Koszul information geometry and souriau lie group thermodynamics[END_REF] Since the class [ ∇ ] vanishes, it exist a de Rham closed differential 1-form such that:

∇ ( , ) = -( ) + (∇ ), ∀( , ).
By the defining property of statistical manifolds, it comes:

∇ ( , ) = ∇ (∇ ★ , ) + ∇ ( , ∇ ), ∀( , , ).
Let be the unique vector field satisfying:

( ) = ∇ ( , ), ∀ .
Using once again the defining property of statistical manifolds, we get:

∇ ( , ) -∇ (∇ ★ , ) -∇ ( , ∇ ) = 0.
Since left hand member is ∞ ( )-multilinear we can assume that ∈ ∇ and we get the following identity

∇ (∇ ★ , ) = ∇ ( , ) -∇ ( , ∇ ) = ∇ ( , ), ∀( , ) ⊂ X( ). Thus one has: ∇ ★ (-) -= 0 ∇ , ∀ ∈ X( ).
So theis a fixed point of ( ∇ ★ , ∇ ★ ).

Let us demonstrate now that (2) implies (1).

Let us assume that ( ∇ ★ , ∇ ★ ) has a fixed point 0 ∈ ∇ ★ . Then:

∇ ★ ( ) ( 0 ) + ∇ ★ ( ) = 0 , ∀ ∈ ∇ ★ .
To every ∈ ∇ ★ , we assign the one parameter subgroup

{ ( ), ∈ R} ⊂ ∇ ★ .
We have:

∇ ★ ( ( )) ( 0 ) + ∇ ★ ( ( )) = 0 , ∀ ∈ R.
Calculating the derivative at = 0, one obtains:

∇ ★ 0 + = 0. Finally: ∇ ( 0 , ) = ∇ (∇ ★ 0 , ) + ∇ ( 0 , ∇ ) Using ∇ ★ 0 = -, ∀
, one obtains the following identity:

∇ ( 0 , ) = -∇ ( , ) + ∇ ( 0 , ∇ ). By putting ( ) = -∇ ( 0 , ), it comes: ∇ ( , ) = ( ) -(∇ ), ∀( , )
Then one has [ ∇ ] = 0 ∈ 2 (∇), concluding the proof.

Corollary 8.1. Let ( , , ∇, ∇ ★ ) such that both ∇ and ∇ ★ be integrable. We assume that leaves of both F ∇ and F ∇ ★ satisfy one among the assertions of Theorem 8.5. Then every compact leaf of F ∇ (resp. F ∇ ★ ) is hyperbolic. [START_REF] Vey | Sur une notion d'hyperbolicité des variétés localement plates[END_REF], [START_REF] Kobayashi | Projectively invariant distances for affine and projective structures[END_REF], [START_REF] Wu | Some theorems on projective hyperbolicity[END_REF]). Let M be a closed hyperbolic manifold.Then M is a quotient of a properly convex cone.

Theorem 8.8. Let ( , ∇) be a closed hyperbolic manifold.Then

[ ∇ ★ ] = 0 ∈ 1 ( ∇ ★ , ∇ ★ ) and [ ∇ ] = 0 ∈ 1 ( ∇ , ∇ )
Proof.

Step 1: Koszul [START_REF] Koszul | Déformations de connexions localement plates[END_REF] From theorem 9.7, the universal covering ˜ is diffeomorphic to a convex cone not containing any straight line of R ,let's call it by Ω and a affine map from Ω to define by = • D -1 ,where : ˜ -→ and the developing map

D : ˜ -→ Ω.Let ∈ X(R ) define by ( ) = =1
is homotheties fields (ie this field is generated by a 1-parameter group of homotheties of center 0 and ratio ,then for all ∈ X(R ),we have ∇ 0 = where ∇ 0 is canonical flat connection on R .The vector field is (R )-invariant.Since Ω is salient then any affine automorphism of Ω is restriction of an element of (R ).The restriction of to Ω is invariant by the affine automorphisms of Ω. Therefore, there exists one and only one vector field on , such that = .Since is locally an isomorphism of locally flat manifolds ie( (∇ 0 ) = ∇):

∇ = ∇ 0 ∇ = then [ ∇ ] = 0 ∈ 1 ( ∇ , ∇ ) step 2
By assumption ( , ∇) is compact hyperbolic, so it exists a closed differentiable one form such that ∇ is positive define. Then = ∇ is Hessian metric and locally =

2

.We thus conclude that ( , , ∇) is a Hessian manifold. Let ∇ ★ be the dual of ∇, defined by:

(∇ ★ , ) = . ( , ) -( , ∇ )
∇ ★ is a locally flat connection on M.

We have:

( , ) = . ( ) -(∇ )
thus, it exists ★ ∈ X( ) such that ( ) = ( ★ , ),then we conclude that

( , ) = (∇ ★ ★ , )
for all ∈ X( ). We conclude that:

∇ ★ ★ = then [ ∇ ★ ] = 0 ∈ 1 ( ∇ ★ , ∇ ★ )
Corollary 8.2. Let ( , ∇) be a closed hyperbolic manifold.Then there exists closed one form Θ such that = ∇ ★ Θ. Theorem 8.9. Let ( , ∇) be a closed hyperbolic manifold.Then ( , ∇ ★ )is also hyperbolic manifold.

W .

Convex cones are examples of bounded domains. The studies of convex cones have been and continue to be among high standing subjects in geometry and in analysis. The pioneering works are those of Elie Cartan, but there is a wealth of subsequent works, see cartan1935domaines, koszul1961domaines, vinberg1967theory and many others. Nowadays the analysis in convex cones plays interesting role in the information geometry, bar-baresco2013information. Theorem 3.3 provides conditions under which compact orbits of ∇ are hyperbolic. We are going to demonstrate that up to difeomorphisms, compact leaves of F ∇ are quotient homogeneous convex cones. According to our previous notation, if is a compact leaf of F ∇ then ( ˜ ) is a homogeneous convex cone. For convenience, we introduce the following notion:

Let ( , , ∇, ∇ ★ ) be an integrable statistical manifold whose Hessian foliations are denoted by {F ∇ , ∇ , ∇} and

F ∇ ★ , ∇ ★ , ∇ ★ .
Henceforth, by abuse of notation, a leaf of

{F ∇ , ∇ , ∇}
is an Hessian manifold that we denote by

( , ∇ , ∇).
Its -dual is: ( , ∇ , ∇ ★ ). Theorem 9.5 links the Hessian class ∇ , namely:

[ ∇ ] ∈ 2 (∇)
and the radiant class of ( , , ∇ ★ ), namely:

[ ∇ ★ ] ∈ 1 ( ∇ ★ , ∇ ★ ).
We deduce that if is compact then:

[ ∇ ] ∪ [ ∇ ★ ]
is a characteristic obstruction of ( , ∇) being hyperbolic. Henceforth we assume these obstructions vanish.

We have already pointed out that if ˜ the universal covering of , it admits a unique locally flat structure ( ˜ , ∇) such that the covering map : ˜ → is a gauge morphism between ∇ and ∇. Theorem 9.1. [START_REF] Koszul | Domaines bornés homogenes et orbites de groupes de transformations affines[END_REF] 

Let {( , , ∇), [ ∇ ] ∪ [ ∇ ★ ]} being a compact Hessian manifold. If: {[ ∇ ] ∪ [ ∇ ★ ]} = {0} ∪ {0} .
Then for ( ˜ ) being a cone, it is sufficient that ˜ being homogeneous under the group of transformation of ( ˜ , ∇)♣ Theorem 9.2. Let ( , , ∇) be a statistical manifold and let F ∇ be its canonical Hessian foliation. If the characteristic obstruction vanishes:

{[ ∇ ] ∪ [ ∇ ★ ]} = {0} ∪ {0} .
Then, up to a affine diffeomorphism, every compact leaf of F ∇ is the quotient of a sharp open convex cone by a discrete group of (R )

♣

Proof. The action

∇ × →
gives rise to the action

∇ × ˜ → ˜ .
( , ∇) is homogeneous under the action of the Lie group ∇ and ( , ∇) is the quotient of ( ˜ , ∇) under the action of the fundamental group 1 ( ).

Therefore both 1 ( ) and ∇ are subgroups of the group

( ˜ , ∇).
It is easy to check that ∇ is included in the normalizer of 1 ( ). Since is transitively acted on by ∇ , every orbit of ∇ in ˜ is an open submanifold of ˜ . Since ˜ is connected the action of ∇ on ˜ is transitive.From the theorem 10.2 we deduce that the compact leaves of F ∇ are diffeomorphic to the quotient of a sharp open convex cone by a discrete group of (R ). where is constant.

As ★ ★ = then ( 1 , ) is hyperbolic.Now let : R → 1 the covering map, and consider the map (R, ˜ ) → ( 1 , )

.The compacts orbits is ∇ ( , ) is quotient R >0 Γ , here Γ is discrete subgroup of (R)

C

The characterization of hyperbolicity given in theorem 8.5 has an important application in elucidating the structure of some statistical manifolds as statistical models. In a future work, an explicit construction of an exponential family on leaves of a statistical manifold will be given along with an application to the classification of compact exponential models in dimension 4. R

Theorem 2 . 1 .( 1 )

 211 proved in this paper are summarized below. The following statements are equivalent : The affine action ∇ ∇ ( , ) → ∇ ( ). + ∇ ( ) ∈ ∇ has a fixed point;

Definition 4 . 1 .

 41 An affinely flat structure in a m-dimensional manifold is defined by a complete atlas:A = {( , Φ )} whose local chart changes Φ -1 • Φ are restrictions of affine transformations to the mdimensional affine space R .

∇ 2 ,

 2 = .( . ) -( . ). Definition 6.2. The Hessian equation ∇ is defined by: HE(∇) : ∇ 2 = 0 6.1. Local expression of Hessian equation of ∇. Let ( 1 , .

6 . 1 .Proposition 6 . 5 .

 6165 If ∇ is the Levi-Civita connection of an Einstein Riemannian manifold,then: ∇ = {0} Let ( , ) be a compact Riemanian manifold such that the < 0 then: ∇ = {0} Proof. By using the formula

with differential operator : ( 1

 1 , ......, +1 ) = ∇ ( 1 ). ( 2 , ......., +1 ) + (-1) (.., +1 , ...) + (-1) ( 1 , ...., )

Theorem 7 . 2 .( 1 )

 721 The next definition thus makes sens: The cohomology class [ ∇ ] ∈ 1 ( ∇ , ∇ ) is called the radiant class of the affine representation ( , ). We are now in position to state one of the main results of the article: The following statements are equivalent : The affine action ∇ ∇ ( , ) → ∇ ( ). + ∇ ( ) ∈ ∇ has a fixed point;

Example 3 :

 3 Let ( , ) some Riemannian manifold with ∇ the Levi-Civita connection with respect to g, and let ∈ \ {0}. The triplet ( , , ∇, ∇ * ) is a statistical manifold where ∇ = ∇ + ( , ) ( , ) and ∇ * = ∇ -( , ) ( , ) .

Notation 8 . 3 .Theorem 8 . 4 .

 8384 F ∇ is the foliation whose leaves are orbits of the Lie group ∇ and ∇ the restriction of to F ∇ . Let ( , , ∇, ∇ ★ ) be a compact statistical manifold. Then the foliation F ∇ (resp. F ∇ * ) is a Hessian foliation in ( , , ∇) (resp. ( , , ∇ * )).

8. 3 .Theorem 8 . 6 .Theorem 8 . 7

 38687 Cohomological characteristical of hyperbolicity of Hessian manifolds. The following nullity of Hessian class,nullity of radiant class affine representation and hyperbolicity of locally flat manifold the following theorem is another formulation of the hyperbolicity of a locally flat manifold in the sense of Koszul. It proves that the hyperbolicity can be described by the nullity of the radiant class of the affine dynamics of the dual connection. Let ( , , ∇) being a compact Hessian manifold.If the characteristic obstruction {[ ∇ ] ∪ [ ∇ ★ ]} = {0} ∪ {0} Then ( , ∇) is an hyperbolic manifold . ( [

1 .

 1 Characteristic function and Formalism of Barbaresco. The locally flat structure of ( , ∇) rises up on its universal covering ˜ as a locally flat structure ( ˜ , ∇) for which the projection : ( ˜ , ∇) -→ ( , ∇) is affine map.The locally flat structure on ˜ is defined by the local affine diffeomorphism D : ( ˜ , ∇) -→ (R , ∇ 0 ) where ∇ 0 is the standard locally flat connection define by ∇ 0 = 0 ∀ = 1, 2, ..., . The development map gives rise to an representation (∇) of the fundamental group 1 ( ) of in (R ), called the holonomy representation of . It is defined by the following commutative diagram: ∇ 0 ) ( ∇) / / (R , ∇ 0 ) D • = (∇) • D < ˜ , ∇, 1 ( ) >-→ (Ω, ∇ 0 , (∇)) ⊂ (R , ∇ 0 )

By the theorem 53,Ω is sharp open convex cone of R and (∇) ⊂ (R ), thus it exists a local diffeomorphism ˜ fitting in the next diagram:

(Ω, ∇ 0 , (∇))

Let Ω sharp open convex cone of R and let Ω the closure of Ω. The set:

is called the dual cone of Ω.The holonomy (∇) act on Ω ★ by dual representation

where ∈ (∇) J-L Koszul and E.B. Vinberg have introduced the following integral of a sharp convex cone Ω:

where is the Lebesgue measure of R ★ . is an analytic function on Ω,with Ω ( ) ∈]0, +∞[,called the Koszul-Vinberg characteristic function of cone Ω. It satisfies [START_REF] Vey | Sur les automorphismes affines des ouverts convexes saillants[END_REF]:

(1) Ω is logarithmically strictly convex and Φ Ω ( ) = ( Ω ) is strictly convex.

(2) If ∈ (∇) then Ω ( ) = ( ) -1 Ω ( ).

(

In [START_REF] Barbaresco | Koszul information geometry and souriau lie group thermodynamics[END_REF],Frédéric Barbaresco introduced a probability density called Koszul density and defined by: For ∈ Ω and ∈ Ω ★ ,we define

Then { ( , ), ∈ Ω ★ } is an exponential family of probability distributions on Ω ★ parameterized by ∈ Ω.

10.2. Construction of Probability density on leaves of F ∇ . Our aim is to provide the leaves of F ∇ with a statistical model structure.

(∇) ⊂ ( , R) is an amenable group, thus it exists a mean ∈ ( ∞ ( (∇)), R) defined by:

and satisfying:

(1) If > 0, ( ) > 0.

(

Let:

, :

Then:

, ∈ ∞ ( (∇))

Proposition 10.1.

Proposition 10.2. Let the map

By the Theorem of Fubini-Tonelli,we have

Theorem 10.1. Let ( , , ∇) be an integrable statistical manifold and let F ∇ be its canonical Hessian foliation. If the characteristic obstruction vanishes:

Then, up to an affine diffeomorphism, every compact leaf of F ∇ is a parametric space of statistical models for a measurable set (Ω ★ , B (Ω ★ ))

< , > Where is define by:

We shall give a example of compact hessian manifold whose orbits are quotient of statistical models by a discrete subgroup.Let R 2 be a 2-dimensional real affine space with the natural flat affine connection and let { , } be an affine coordinate system of R 2 .

Let Ω be a domain define by > 0 and > 0.Consider a Riemannian metric on Ω given by = 1 2 2 + 1 2 2 . Then ( , ) is Hessian structure on Ω. Let Σ and be linear transformations on Ω defined by :

Then <Σ, > leave the Hessian structure ( , ) invariant. We denote Γ the group generate by {Σ, }, we can also write Γ as < 2 0 0 1 ; 2 0 0 3 >. Γ acts properly discontinuously on Ω and Ω Γ is is compact Hessian manifold which is diffeomorphic to a Torus. Let us denote by the projection from Ω to Ω Γ and by ( , ) the Hessian structure on Ω Γ .Since the space of all Γ-invariant parallel 1-forms on Ωis spanned by and .The space of all -parallel 1-forms on Ω Γ is spanned by and Φ where = ★ and = ★ Φ.Let and ˜ be a vector field on Ω Γ defined by ( ) = ( , ) and Φ( ) = ( ˜ , )for each vector field on Ω Γ .Then = ★ ( ) and ˜ = ★ ( ) and the vector space ∇ of all Hessian vector fields on Ω Γ is spanned by < , ˜ >.Since 2 is compact the ∇ is integrable.Let ( ) and ( ) is a 1-parameter group of transformations generated by and by .Let ∇ =< ( ), ( ) >. Consider > 0 and > 0, the compact homogeneous the orbit ∇ ( , ) = { . ( , ), ∈ ∇ } is a circle. Then we conclude that ( 1 , , 1 ) is Hessian manifold and satisfy = 0 and 1 = 1