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Abstract

Adversarial attack is an emerging threat to the trustability of machine learning. Under-
standing these attacks is becoming a crucial task. We propose a new vision on neural
network robustness using Riemannian geometry and foliation theory, and create a new
adversarial attack by taking into account the curvature of the data space. This new ad-
versarial attack called the dog-leg attack is a two-step approximation of a geodesic in the
data space. The data space is treated as a (pseudo) Riemannian manifold equipped with
the pullback of the Fisher Information Metric (FIM) of the neural network. In most cases,
this metric is only semi-definite and its kernel becomes a central object to study. A canon-
ical foliation is derived from this kernel. The curvature of the foliation’s leaves gives the
appropriate correction to get a two-step approximation of the geodesic and hence a new
efficient adversarial attack. Our attack is tested on a toy example, a neural network trained
to mimic the Xor function, and demonstrates better results that the state of the art attack
presented by Zhao et al. (2019).

Keywords: Neural Networks, Robustness, Fisher Information Metric, Information ge-
ometry, Adversarial attacks.

1. Introduction

Lately there has been a growing interest in the analysis of neural network robustness and the
sensitivity of such models to input perturbations (Fawzi et al. (2018); Shaham et al. (2018);
Kolter and Wong (2018); Raghunathan et al. (2020)). Most of these investigations have
highlighted their weakness to handle adversarial attacks (Szegedy et al. (2014)) and have
proposed some means to increase their robustness. Adversarial attacks are real threats
that could slow down or eventually stop the development of neural network models or
their applications in contexts where robustness guarantees are needed. For example, in
the specific case of aviation safety, immunization of critical systems to adversarial attacks
should not only be guaranteed but also certified. Therefore, addressing the robustness of
future on-board or air traffic control automated systems based on such models is a main
concern.
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Adversarial attacks are designed to fool classification models by introducing perturba-
tions in the input data. These perturbations remain small and in the case of images for
example, may be undetectable to the human eye. So far, most of the research effort has
focused on designing such attacks in order to augment the training dataset with the con-
structed adversarial samples and expecting that training will be more robust. Among these
methods, one can refer to the Fast Gradient Sign methods (Goodfellow et al. (2015)), robust
optimization methods (Madry et al. (2019)), DeepFool (Moosavi-Dezfooli et al. (2016)), and
others (Fawzi et al. (2017)). There are major drawbacks with these approaches. Most at-
tacks are data dependent and provide no guarantees that all relevant attacks have been
designed and added to the training set. Furthermore, the training procedure does not re-
ally learn the sensitivity of the model to possible attacks, it is just preventing from specific
ones. However, crafting adversarial attacks by exploiting the properties of neural network
learning is useful to understand the principles at play in the robustness or sensitivity of
neural architecture.

Many authors consider neural network attacks and robustness properties in a flat Eu-
clidean input space. Yet, it is commonly admitted that to learn from high dimensional
data, data must lie in a low dimensional manifold (Fefferman et al. (2016)). Such manifold
has its own curvature with no reason to be flat in general. Furthermore, to analyze neural
network model separation capabilities and its robustness, it is critical to understand not
only the topology of the decision boundaries in the input space but also the topology of
iso-information regions induced by the neural network. Again, there is no reason to believe
that these sub-manifolds have zero curvature in general. The Fisher information metric
(FIM) is a valid metric for such purpose. Indeed, the network output is seen as a discrete
probability that lies on a statistical manifold. The FIM may then be used as a Riemannian
metric at the output and the pullback metric of the Fisher information as a metric for the
input manifold (Zhao et al. (2019)). The importance of the FIM in the context of deep
neural networks has already been pointed out by several authors. In Karakida et al. (2019),
it is shown that the FIM defines the landscape of the parameter space and the maximum
FIM eigenvalue defines an approximation of the appropriate learning rate for gradient meth-
ods. The FIM with respect to data (local data matrix) instead of network parameters has
also been investigated from a geometric perspective in Grementieri and Fioresi (2021). The
authors have shown that training data are organized on sub-manifolds (leaf) of a foliation
of the data domain. A few authors have also tried to exploit this geometric knowledge
to construct adversarial attacks or get some form of immunization from them. In Zhao
et al. (2019), the direction of eigenvector corresponding to the maximum eigenvalue of the
pullback FIM metric is used as a direction of attack where as in Shen et al. (2019), similar
developments are proposed to robustify the model by regularizing the neural network loss
function by the trace of the FIM.

In this work, we build on the work of (Zhao et al. (2019)) and exploit further the
geometric properties of the foliation of the pullback metric of the neural network FIM.
More specifically, we show that the curvature of the leaf of the foliation can be utilized
to construct a two-step attack procedure referred as dog-leg attack. Given a budget of
attack, meaning the Euclidean norm of the attack vector, we first move in the direction
of the eigenvector corresponding to the maximum eigenvalue of the FIM as proposed in
Zhao et al. (2019) and then make another move that takes into account the curvature. The
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two steps could be seen as a discretized move along a geodesic curve. The interest of this
procedure is not only to prove that, for a given budget of attack, it is possible to construct
worst attacks than those proposed in Zhao et al. (2019) but also and more importantly to
emphasize the role of curvature in the sensitivity of neural network models. Mathematically,
this translates into the expression of the quadratic form approaching the Kullback-liebler
divergence between the network output probability distribution at the origin of the attack
and the probability distribution at the point reached by the attack. Indeed, we show that
this expression makes explicit use of the Riemannian curvature tensor of the foliation in the
input space. Experimentally, the two-step procedure is illustrated and tested against the
one step attack on the XOR toy problem. The small experiment confirms that exploiting the
curvature leads to higher fooling rates of the neural network when attacks are generated at
random points with the two-step rather than the one-step strategy.

The paper is organized as follows. Section 2 details the general mathematical framework
of this study and defines precisely the adversarial attacks that are considered. In the first
part of Section 3, the construction of the local attack by Zhao et al. (2019) is recalled. Next,
in Section 4, the main developments of this research are detailed, consisting in extending
the local attack using the geometry of the problem resulting in the so-called two-step attack.
Section 5 is dedicated to the application of the method to a simple play-test problem. It
details more precisely the required calculations on a simple low dimensional problem and
provides illustrations of the resulting foliation at the heart of the technique. Section 6
concludes the article. Appendix A gathers some of the proofs of mathematical results and
Appendix B reminds some important concepts of Riemannnian geometry that are used
throughout the article.

2. Problem statement

2.1 Setup

In this paper, we are studying the behavior of a neural network N : X → M. Its output
can be considered as a parameterized probability density function pθ (y | x) ∈M whereM
is a manifold of probability density functions, x ∈ X is the input, y ∈ Y is the targeted
label and θ ∈ Θ is the parameter of the model (for instance the weights and biases in a
perceptron). The geometric study of such probability distributions is part of Information
Geometry (Nielsen, 2020).

In this case,M and X are two (pseudo) Riemannian Manifolds when equipped with the
Fisher Information Metric (FIM). Fisher Information is originally a way to measure the
variance of a distribution along a parameter. It was then used as a Riemannian metric by
Amari, which gave birth to Information Geometry (see Nielsen, 2020). Measuring how the
distribution of the predicted labels changes with input perturbations falls exactly in our
usecase. This explains why the FIM is a good candidate to be X and M’s metric.

Definition 1 (Fisher Information Metric) The Fisher Information Metric (FIM) on
the manifold X at the point x is defined by the following positive semi-definite symmetric
matrix:

(Gx)ij = −Ey|x,θ
[
∂xi∂xj (ln p(y | x, θ))

]
.
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Remark 1 Note that this definition is not the usual definition of the Fisher Information.
Indeed, the one defined by Fisher, used in the work of Amari and many other, differentiate
with respect to the parameter θ where we differentiate with respect to the input x. Gremen-
tieri and Fioresi (2021) call this new metric the local data matrix to avoid confusion.

An important question arising when dealing with Fisher information metric is to know
when going in the converse direction is feasible. Given a Riemannian manifold (X , g), is it
possible to find a probability family such that g is exactly its Fisher information. This is
exactly what is behind the next definition.

Definition 2 (Statistical model) A statistical model for a Riemannian manifold (X , g)
is a probability space (Ω, T , P ) such that:

• It exists a family of probabilities px, x ∈ X , absolutely continuous with respect to P .

• For any x ∈ X:

gij(x) = Epx [∂i log px∂j log px]

Remark 2 When px is C2 with support not depending on x and the conditions for exchang-
ing derivative and expectation are satisfied, then:

gij(x) = −Epx [∂ij log px]

In such a case, the metric g is Hessian.

In nearly all cases considered in machine learning, the metric g is only semi-definite. It thus
makes sense to consider its kernel.

Definition 3 Let g be a semi-definite metric on a manifold X . A tangent vector X ∈ TxX
is said to belong to the kernel kerx g of gx if for any Y ∈ TxX , g(X,Y ) = 0.

Proposition 2.1 Let (X , g) be a connected manifold with g a semi-definite metric. If it
exists a torsionless connection ∇ on TX such that ∇g = 0, then the mapping x ∈ X → kerx g
defines an integrable distribution, denoted by ker g.

Proof It is clear that for any x ∈ X , kerx g is a linear subspace of TxX . Let X,Y, Z be
vector fields such that Y ∈ ker g. Then, since ∇g = 0 by assumption:

X (g(Y, Z)) = g (∇XY,Z) + g (Y,∇XZ)

Since Y ∈ ker g:

X (g(Y, Z)) = 0 = g (∇XY,Z)

and so, for any X, ∇XY ∈ ker g. This proves that the parallel transport of a vector in ker g
is a vector in ker g. The dimension of ker g is thus constant. Now, if X,Y ∈ ker g, by the
above result and since ∇ has vanishing torsion: [X,Y ] = ∇XY − ∇YX ∈ ker g, proving
that ker g is an integrable distribution.
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Remark 3 If the dimension of ker g is not constant, then no torsionless connection ∇ can
be such that ∇g = 0. However, there is still a singular foliation associated with ker g, with
a canonical stratification by the dimension of ker g.

Proposition 2.2 Under the assumptions of prop. 2.1, g defines a transverse metric for
the ker g foliation.

Proof This is essentially prop 3.2, p. 78 in Molino (1988).

The leaves of the ker g foliation are neutral submanifolds for the fisher information metric,
that is moving along them will not modify the output distribution. On the other hand,
the transverse metric is a measure of output variation when moving in a direction normal
to the leaves. For a given euclidean budget, the efficiency of an attack will thus be higher
when the transverse curvature is large.

2.2 Adversarial attacks

One primary goal of this article is to craft the best adversarial attack possible, or at least
approach it. An adversarial attack aims at disturbing the output of the neural network by
adding noise to the original input. The FIM with respect to the input is a good measure
of dissimilarities between outputs, given a displacement of the input. Therefore, one would
like to maximize the geodesic distance1 d(x0, xa) between the input point x0 and the point
xa after the attack.

Proposition 2.3 The geodesic distance can be expressed with the Riemannian norm and
the logarithm map2:

d(x0, xa)
2 =

∥∥logx0 xa
∥∥2
X = Gx0

(
logx0 xa, logx0 xa

)
.

The optimal solution will thus be the x̂a maximizing this quantity, with some constraints.
Indeed, one of the characteristics of a good adversarial attack is to be as undetectable as
possible by usual measurements on the input. A usual measure for that is the Euclidean
distance between x0 and xa. Therefore, a Euclidean constraint on a local parametrization
of the attack is relevant: ‖v‖22 with xa = xa(v) and v ∈ Tx0X

Proposition 2.4 The optimal attack with a Euclidean budget of ε > 0 verifies:

max
v

∥∥logx0 (xa (v))
∥∥2
X subject to ‖v‖22 ≤ ε

2.

A regular optimization algorithm could solve this problem, but the amount of calcu-
lus would be tremendous since the Riemannian logarithm requires to solve an ODE with
boundary conditions each time. This greedy solution is thus not feasible in practice. To get
close to the optimal solution, the Riemannian logarithm must be approximated.

Definition 4 (Adversarial Attack Problem)

max
v

∥∥logx0 xa(v)
∥∥2
X subject to ‖v‖22 ≤ ε

2. (AAP)

1. see Definition 10 in Appendix B
2. see Definition 13 in Appendix B
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3. A local method

Zhao et al. (2019) have proposed a method to approximate the solution of a near-(AAP)
problem. Their formulation of the Adversarial Attack Problem is not exactly the same
though. The criteria they are maximizing is not the geodesic distance, but the Kullback-
Leibler divergence. The matter with (KL) divergences is that it is not a distance, and thus
not symmetric. Nevertheless, a second order Taylor approximation gives us that:

DKL (pθ (y | x) ‖ pθ (y | x+ v)) ≈ 1

2
vTGxv =

1

2
Gx (v, v) =

1

2
‖v‖2X .

If we do not take into account the curvature of the input space and confound logx0 xa(v)
and v, the problem solved by Zhao et al. (2019) is an approximation of (AAP). Doing so
amounts to approaching geodesic by Euclidean lines in the local parametrization given by
v.

Proposition 3.1 The vector v̂ maximizing the quadratic form v 7→ vTGxv is an eigenvector
of the FIM Gx corresponding to the largest eigenvalue. Its re-normalization by ε2

‖v̂‖22
gives

an approximated solution to (AAP). This method is illustrated by Figure 1.

v

xo

ε

xa

Figure 1: The one-step spectral attack in action. The circle represents the Euclidean budget.
The blue curve represents the leaf of the kernel foliation.

Proof
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To maximize this quadratic form under the constraint ‖v‖22 = ε2, Karush-Kuhn-Tucker’s
optimality conditions3 ensure that there exists a scalar λ ∈ R such that:

∇v
(
vTGxv

)
− λ∇v

(
‖v‖22 − ε

2
)

= 0

=⇒
(
Gx +GTx

)
v̂ = λ2v̂

=⇒ Gxv̂ = λv̂.

Otherwise said, the optimum v̂ is in the set of Gx’s eigenvectors. In this case:

‖v̂‖2X = v̂TGxv̂

= v̂Tλv̂

= λ ‖v̂‖22
= λε2.

Thus, v̂ corresponding to the largest eigenvalue maximizes the Riemannian norm.

This first method is very local and does not take into account the curvature of the
data. Hence, in regions of X where this curvature is strong, we cannot rely on this method
anymore.

4. A two-step attack

The procedure detailed below is inspired by Powell’s dog-leg method4 in optimization which
consists in making a first step in the gradient direction, and then a second step in the Gauss-
Newton direction to correct the trajectory of the iterates. The idea here is to take a first
local step v as in section 3, and then take a second step. The two-step nature of this
attack allows the second step to take into account the curvature of the area around the
example. This method is able to exploit the geometry of the problem to construct a better
approximation of the original problem.

Let v be the solution of (AAP) using the method of section 3 but with a budget of
µ2 < ε2.

The new problem to solve is the following:

max
w
‖w‖2X subject to


‖w + v‖22 ≤ ε2

‖v‖22 = µ2 < ε2

v eigenvector of Gx

(S2P)

One could solve this problem the same way as in section 3 by taking w the eigenvector
of Gx+v with the largest eigenvalue once again (see Figure 2). By doing that, we linearly
approach the geodesic between x0 and xa by two Euclidean lines. Taking more steps would

3. See Kuhn and Tucker (2014) for more details.
4. See Lourakis and Argyros (2005) for a detailed explanation of this method.
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approximate better the geodesic. Using only two steps as proposed is a simple procedure
from a computational point of view and it will achieve significantly better results than
taking just one step as we will see in section 5.

v

w

xo

µ

ε

xa

Figure 2: The dog-leg attack in action. The two circles represent the Euclidean budget.
The blue curves represent the leaves of the kernel foliation.

To explicit the action of the curvature at x of the input space on the trajectory of
this multi-step attack, we will approximate Gx+v by its value at x using normal coordi-
nates5. Additionally, the calculation of G being expensive, this approximation will save
computational time.

Remark 4 In the sequel of the article, for any vector (or tensor) x, x̄ will denote x ex-
pressed in terms of normal coordinates.

Proposition 4.1 If x are the normal coordinates at x0 and if R is the Riemannian curva-
ture tensor, then

wTGx+vw ≈
∂xm

∂xi
∂xn

∂xj

(
δmn +

1

3
Rmkln(x)vkvl

)
wiwj (1)

5. see Definition 12 in Appendix B
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Proof

wTGx+vw = (Gx+v)ij w
iwj

=
∂xm

∂xi
∂xn

∂xj
(
Gx+v

)
nm

wiwj

≈ ∂xm

∂xi
∂xn

∂xj

(
δmn +

1

3
Rmkln(x)vkvl

)
wiwj .

Proposition 4.2 By denoting w =
(
∂xm

∂xi
wi
)
m

= Pw and Rv = Rmkln(x)vkvl, Equation 1

can be rewritten with matrix notation by the following:

‖w‖2X ≈ ‖w‖
2
2 +

1

3
wTRvw. (2)

Remark 5 In what follows, ‖w‖2X will always be taken at x + v, and be approximated by
the right hand of Equation 2. Additionally, we compare w and v without taking into ac-
count parallel transport since the Christoffel symbols vanish around the origin of the normal
coordinates.

The transition matrix P is equal to
(
∂xi

∂xj

)
i,j

and its inverse to
(
∂xi

∂xj

)
i,j

. We should have

for instance:
Gx = P TGxP = P T InP and P−1

T
GxP

−1 = In

The matrix P−1 =
[
v1√
λ1
· · · vn√

λn

]
with vi the eigenvector of Gx associated with the

eigenvalue λi satisfies this equation (the family is chosen to be orthonormal: vTi vj = δi,j).
Note that this gives us

P =


√
λ1v

T
1

...√
λnv

T
n

 .
Remark 6 The pullback metric Gx is always degenerate in this problem. Indeed, the di-
mension of its image is strictly bounded by the number of classes of the given task6.

To take this into account, if d = dim ImGx, one can rewrite the metric in normal
coordinates by:

Gx =

[
Id 0d,n−d

0n−d,d 0n−d,n−d

]
.

The transition matrix P−1 is equal to
[
v1√
λ1
· · · vd√

λd
vd+1 · · · vn

]
.

Proposition 4.3 If w is a solution to S2P, then there exists a scalar λ ≥ 0 such that(
P TBP − λIn

)
w = λv (3)

with B = In + 1
3Rv.

6. See (Grementieri and Fioresi, 2021) for the proof.
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Proof Using again the KKT conditions but with the constraint that ‖v + w‖22 =
∥∥v + P−1w

∥∥2
2
≤

ε2, it implies that there exists a scalar λ ≥ 0 such that:

∇w
(
‖w‖22 +

1

3
wTRvw

)
− λ∇w

(∥∥v + P−1w
∥∥2
2
− ε2

)
= 0

=⇒ w +
1

3
Rvw − λ

(
P−1

T (
P−1w + v

))
= 0.

Thus

P T
(
In +

1

3
Rv

)
Pw = λ (w + v)

⇐⇒ P T
(
B − λP−1TP−1

)
Pw = λv

⇐⇒
(
P TBP − λIn

)
w = λv

where B = In + 1
3Rv.

Corollary 4.3.1 In normal coordinates, Equation 3 rewrites

PP TBw = λ (w + v) ie
(
PP TB − λIn

)
w = λv.

Remark 7 Note that PP T = diag (λi).

Corollary 4.3.2 Whenever λ is not an eigenvalue of P TBP ,
(
P TBP − λIn

)
is non-singular

and
w = λ

(
P TBP − λIn

)−1
v. (4)

It remains to be found a λ such that the constraint ‖w + v‖22 ≤ ε2 is satisfied. There
are two cases:

1. either ‖w + v‖22 = ε2 and λ > 0,

2. or ‖w + v‖22 < ε2 and λ = 0.

4.1 The case λ > 0

We will use the constraint ‖w + v‖22 = ε2 to find λ. We suppose in what follows that 2λ
is not an eigenvalue of B, ie (2λ − 1) is not an eigenvalue of 1

3Rv. The constraint may be
written as:

‖w + v‖22 =
∥∥∥λ (P TBP − λIn)−1 v + v

∥∥∥2
2

=
∥∥∥(λ (P TBP − λIn)−1 + In

)
v
∥∥∥2
2
.

Lemma 4.4
λ
(
P TBP − λIn

)−1
+ In =

(
P TBP − λIn

)−1
P TBP.
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Proof

(
P TBP − λIn

) (
λ
(
P TBP − λIn

)−1
+ In

)
= λ

(
P TBP − λIn

) (
P TBP − λIn

)−1
+
(
P TBP − λIn

)
= ��λIn + P TBP −��λIn

= P TBP.

Thus,

ε2 = ‖w + v‖22 =
∥∥∥P TBP (P TBP − λIn)−1 v∥∥∥2

2
. (5)

To find λ that satisfies Equation 5, we will study the vanishing points of:

ϕ : [0,∞[ −→ [0,∞[

λ 7−→
∥∥∥P TBP (P TBP − λIn)−1 v∥∥∥2

2
− ε2

However, finding the vanishing points of such a function is not an easy task. Several
methods may be used. A numerical method such as the Newton’s method (Dennis Jr and
Schnabel, 1996) could be applied.

Alternatively, observe that problem S2P can be simplified by using the triangular in-
equality to get back to an easier eigenvalue problem. Indeed, consider the following problem:

max
w
‖w‖2X subject to


‖w‖2 ≤ ε− µ
‖v‖22 = µ2 < ε2

v eigenvector of Gx

(S2.2P)

This new problem is illustrated on Figure 3 below. The green circle is the true budget
and the two other smaller circles represent the triangular inequality approximation. One
can see that the second step w does not reach the green circle but stop before due to the
approximation.
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v

w

xo

µ

ε

xa√
ε2 − µ2

Figure 3: The dog-leg attack in action with the triangular inequality simplification. The
three circles represent the Euclidean budget. The blue curves represent the leaves of the
kernel foliation.

Proposition 4.5 Any solution of S2.2P problem will satisfy the constraint of S2P problem.

Proof Indeed, by the triangular inequality, ‖w + v‖2 ≤ ‖w‖2 + ‖v‖2 ≤ (ε− µ) + µ = ε.

With this new constraint, KKT’s conditions boil down to

P TBPw = λw

or in normal coordinates:
PP TBw = λw.

Proposition 4.6 A solution to S2.2P is to choose w to be the eigenvector of PP TB with
the highest eigenvalue λ and with the appropriate Euclidean norm of ε− µ.

4.2 The case λ = 0

In that case, w is in the interior of the boundary of the problem. The problem reduces to

Bw = 0

⇐⇒ Rvw = −3w.

This means that w is the optimal second step if w ∈ KerB, ie if w is eigenvector of Rv
with eigenvalue −3. However, this case does not produce any interesting KKT admissible
point. Indeed,

12
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‖w‖2X = ‖w‖22 +
1

3
wTRvw

= ‖w‖22 − w
Tw

= 0.

Therefore, the case λ = 0 does not lead to useful adversarial attacks when the previous
approximations are applied to the problem. The study of this singularity is left as future
work.

5. A simple play-test example

5.1 Setup

In this section, we compare numerically the efficiency of the local method (section 3), the
two-step method (section 4) when the FIM is recomputed at the intermediary point and
the two-step method when the normal coordinates approximation is used (Equation 1 of
section 4). These three methods are tested against a simple neural network Nθ with one
hidden layer of k neurons and sigmoids as activation functions. Its architecture is depicted
on Figure 4.

x1

x2

Nθ(x)

Hidden
layer

Input
layer

Output
layer

W1 W2

Figure 4: XorNet Nθ with 3 hidden neurons.

To be more precise, σ : a ∈ Rd 7→
(

1
1+e−ai

)d
i=1
∈ Rd is the sigmoid function and if

x ∈ R2, W1 ∈M2,k(R), W2 ∈Mk,1(R), we have

Nθ(x) = σ (W2σ (W1x+ b1) + b2) . (6)

This neural network is then trained to approximate the very simple function Xor:
{0, 1} → {0, 1} defined in Table 1.

Xor 0 1

0 0 1
1 1 0

Table 1: Xor function.
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The output Nθ(x) is seen as the parameter p of a Bernoulli law and associates to the
network the following probability distribution: p(y | x, θ) where θ is the vector containing
the weights and biases (Wi, bi), x is the input and y is the true label.

Proposition 5.1 The random variable y | x, θ follows Bernoulli’s law of parameter p =
Nθ(x) = p (1 | x, θ).

5.2 Computing the output FIM

The output of the network is the manifold of Bernoulli probability densities parameterized
by the open segment ]0, 1[.

Proposition 5.2 Let p ∈]0, 1[ and Gp the Fisher Information Metric at the point p.

Gp =
1

p

1

1− p
(7)

Proof

Gp = −Ey|x,θ
[
∂2p (ln p(y | x, θ))

]
= −E

[
∂2p (y ln p+ (1− y) ln (1− p))

]
= −E

[
∂p

(
y

p
− (1− y)

1− p

)]
= −E

[
− y

p2
− (1− y)

(1− p)2

]
=

1

p
+

1

1− p

=
1

p

1

1− p
.

5.3 Computing the pullback metric

Let x ∈M be a point associated with p by the network.

Lemma 5.3 The Fisher Information Metric Gx on X is the pullback metric of Gp by the
neural network Nθ.

Corollary 5.3.1 If J =
[
∂p
∂xj

]
j=1,2

=
[
∂Nθ(x)
∂x1

∂Nθ(x)
∂x2

]
, then

Gx = JTGpJ. (8)

Proposition 5.4 If a = σ′ (W2σ (W1x+ b1) + b2) and Σ = diag
(
σ′ (W1x+ b1)j , 1 ≤ j ≤ k

)
,

then

J = aW2ΣW1 and Gx =
1

p

1

1− p
JTJ. (9)

14
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Proof

∂Nθ(x)

∂xj
= σ′ (W2σ (W1x+ b1) + b2)

∂W2σ (W1x+ b1) + b2
∂xj

= σ′ (W2σ (W1x+ b1) + b2)

k∑
i=1

(W2)i
∂σ (W1x+ b1)i

∂xj

= σ′ (W2σ (W1x+ b1) + b2)
k∑
i=1

(W2)i σ
′ (W1x+ b1)i

∂ (W1x+ b1)i
∂xj

= σ′ (W2σ (W1x+ b1) + b2)
k∑
i=1

(W2)i σ
′ (W1x+ b1)i (W1)i,j

= aW2Σ (W1)·,j

where a = σ′ (W2σ (W1x+ b1) + b2) and Σ = diag
(
σ′ (W1x+ b1)j , 1 ≤ j ≤ k

)
.

Knowing how to compute the metric at any point unlocks the computation of the local
method seen in section 3 and the two-step method seen in section 4 when the FIM is
recomputed at the intermediary point. To use the information at the origin of the attack,
it is necessary to compute the curvature on the data space in normal coordinates as seen in
Equation 1 of section 4. Additionally, studying the curvature of the input space is insightful
to understand the behavior of the correction step in the two-step attack, and more generally
to understand why adversarial attacks are, in some cases, so efficient.

Nonetheless, the pullback metric being almost always only semi-definite for machine
learning tasks, it makes sense to consider its kernel. The curvature will have a decomposition
term on the kernel of g and a decomposition term on its orthogonal. To craft the attack,
the orthogonal term will be the only curvature component of interest as stated at the end of
Section 2.1. Thus in the following subsection, we compute the metric kernel for this neural
network.

5.4 The metric kernel foliation

Definition 5 The kernel of a metric G at the point x is defined by

kerxG =
{
X ∈ TpM | XTGxY = 0, ∀Y ∈ TpM

}
.

This kernel defines an integrable distribution when Frœbenius’ condition7 is satisfied,
and with this distribution emerges a Riemannian foliation on the input manifold, foliation
defined by the action of the neural network.

Lemma 5.5 kerxG = ker J .

7. For more details, see Chapter 1 of Molino
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Proof (of the lemma). We omit 1
p

1
1−p during the proof because it is always non-zero.

• Let us prove first that kerxG ⊂ ker J . If X ∈ kerxG, then XTJTJX = 0. Hence
(JX)T (JX) = 0, or written otherwise: ‖JX‖ = 0. Hence JX = 0 and X ∈ ker J .

• Then we can prove that kerJ ⊂ kerxG. This inclusion is simply due to the fact that

if X ∈ ker J , we have for all Y ∈ TpM that XTJTJY = ��
��(JX)T︸ ︷︷ ︸

=0

JX = 0.

Let U ∈ ker J . Remind that

a = σ′ (W2σ (W1x+ b1) + b2) and Σ = diag
(
σ′ (W1x+ b1)j , 1 ≤ j ≤ k

)
.

Then

JU = 0

⇐⇒ aW2ΣW1U = 0

⇐⇒ W2ΣW1U = 0. (because a 6= 0)

Writing W2ΣW1 =
[
α1(x) α2(x)

]
and U =

[
u1
u2

]
, one gets the following equality:

α1(x)u1 + α2(x)u2 = 0.

Proposition 5.6 If at least one of the αj(x) is non-zero, the distribution at x is one
dimensional and given by Px = Span (α2(x)∂1 − α2(x)∂1).

Remark 8 If α1(x) = α2(x) = 0, the leaf at x is singular and is of dimension 0.

With the Xor function, the dimension of the leaves is 1, thus the condition of Frœbenius
is trivially satisfied and P is integrable.

Proposition 5.7 If γ : t ∈ I 7→ γ(t) ∈ M is an integral curve for the distribution P , it
satisfies the following PDE:

γ′(t) = α2 (γ(t)) ∂1 − α1 (γ(t)) ∂2

= W2Σγ(t)W1

[
0 −1
1 0

]
.

It can be solved numerically quite easily with a finite difference method8. Figure 5
provides illustrations of the computed neural network kernel foliation with such a method
for the Xor function (Figure 5a), and for the Or function (Figure 5b).

8. See for example Demailly (2016).
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(a) Task: Xor

0.0 0.2 0.4 0.6 0.8 1.0
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0.8
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(b) Task: or

Figure 5: Kernel foliation: the leaves are represented by the blue lines, the red dots are the
0 result and the green dots are the 1 results.

Remark 9 For readability, the transverse leaves are not represented but can be easily de-
duced from this figures.

These results are quite interesting. First of all, we notice that a linearly separable
problem such as the or function seems to have hyperplanes as leaves. In fact, it is easy to
show that if the neural network is replaced by a linear form x 7→ 〈n, x〉+ b, then the leaves
are hyperplanes defined by the normal vector n.

Second of all, one can see that there is a singular point close to the middle point (0.5, 0.5)
for the Xor task. Clearly, it is also easy to see that around that central point, the curvature
of the leaves is the highest. Since the two-step adversarial attack makes use of the curvature,
we can conjecture that it is in the central region that the second step will have the most
impact. This phenomena will be confirmed in subsection 5.6.

5.5 Computing the curvature

In this section, we are computing the extrinsic curvature of a leaf in order to compute the
two-step attack. But first, we compute the Levi-Civita connection. In the following of
the article, we will use i, j, k, l ∈ {1, . . . ,dimX} as indices and we will use the Einstein
summation notation.

Definition 6 (Levi-Civita connection) In coordinates ei, if Γkij are Chrystoffel’s sym-
bols, then the Levi-Civita connection is defined by:

∇̊ejei = Γkijek .
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Proposition 5.8 When the activation function σ is the sigmöıd function, the Christoffel
symbols of the Levi-Civita connection for the FIM at point x ∈ X are:

Γkij =

[(
(W2σ (W1x+ b1) + b2)− p−

1

2

)(
αi(x)δkj + αj(x)δki − αk(x)gij

)
+ p(1− p)∂αi(x)

∂xj
αk(x)

]

Definition 7 (Riemannian curvature) The Riemannian Curvature Tensor R is defined
such that for all three tensor fields X,Y, Z,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

In local coordinates, this gives:

Rlijk = dxl (R (∂i, ∂j) ∂k)

= dxl
(
∇∂i∇∂j∂k −∇∂j∇∂i∂k −∇[∂i,∂j ]∂k

)
=
∂Γlkj
∂xi

−
∂Γlki
∂xj

+ ΓαkjΓ
l
αi − ΓαkiΓ

l
αj .

Remark 10 In normal coordinates, at the origin point, one has:

Rijkl =
1

2
(∂i∂lgjk + ∂j∂kgil − ∂i∂kgjl − ∂j∂lgik) .

Finding an explicit form for R is unreasonable, but since we are in the simpler case where
the dimension of the transverse leaves is 1, a quick approximation can do the trick. In fact,
leaves are embedded submanifolds of the euclidean space and the extrinsic curvature, i.e.
the second fundamental form, can be computed as the rate of rotation of the normal vector.

To approximate the second step w of the two-step attack, we look at the rotation speed
of the unit normal to the kernel leaf ~n when moved by an infinitesimal step dx. This
infinitesimal step is taken in the direction of the transverse leaf, and is Euclidean. Since
the rotation rate is approximated by finite difference, one can expect the angle variation
to be very small. To ensure numerical stability, the usual procedure based on its cosine
computation using inner product is replaced by one using the cross product. The next
lemma gives the expression of the sine of the angle variation between two close positions on
curve transverse to the ker g foliation.

Lemma 5.9 If ~ny is the normal to the kernel leaf at y ∈ X , and if ·×· is the cross product,
then the infinitesimal variation of angle is

|dθ| = arcsin (‖~nx × ~nx+dx‖2) .

Please note that in the small angles approximation, the sine can be replaced by the angle
itself, thus recovering the usual infinitesimal rotation representation as a cross product (this
is in fact a Lie algebra representation in the usual sense).
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To approximate the effect of the curvature during the Euclidean step v, one has to
compute the rotation matrix R of angle dθ:

R =

[
cos (dθ) − sin (dθ)
sin (dθ) cos (dθ)

]

Proposition 5.10 If v is the first step, the approximated second step is given by w = Rv
ands then re-normalized to get ‖w‖2 + ‖v‖2 = ε2.

The attack v + w is what we will call the TwoStepSpectralAttack in section 5.6.

5.6 Numerical results

To compare the different attacks, we train a neural network with 150 hidden neurons on
5000 random points taken in the square [0, 1]2. We then compute the three different attacks
which are the One Step Spectral Attack presented in section 3, the Standard Two Step
Spectral Attack presented at the beginning of section 4 where we compute the FIM at xo
and xo + v, and the Two Step Spectral Attack where we approximate the curvature as
explained in subsection 5.5. These attacks are computed on 5000 random points selected
in a square I of variable length. The fooling rate is then computed as the quotient of the
number of fooled prediction by the total number of points. The budget is selected between
0 and 0.5. The first step in the two-step attacks is set to have Euclidean budget of 80% of
the entire budget. We plot the results below on Figure 6.
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Figure 6: Fooling rates with respect to the Euclidean budget with random points taken in
I.

On each figure, the two-step attacks tend to beat the one step attack, at least for the
smallest budgets. The two-step attack is especially strong on the area where the curvature
is the strongest (see Figure 6a). Indeed, as seen on Figure 5a, the curvature is really strong
at the center of the square [0, 1]2. The eigenvector of the FIM associated with the greatest
eigenvalue is always orthogonal to the leaf kernel. Therefore, striking close to the middle
region without taking into account the curvature usually results in not changing the output
label: (0, 0)↔ (1, 1) or (1, 0)↔ (0, 1). This is why the two-step attacks get better results.
The fact that the Standard Two Step Spectral Attack and the approximated one get similar
results, with the first one always a bit better is not surprising since the second one is a close
approximation of the first one.

These plots confirm our intuition that using the information of local curvature to craft
an adversarial attack is meaningful. It also also highlights the role of the leaves of the kernel
foliation in the sensitivity of neural networks to attacks.
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6. Conclusion

This paper explores the relationship between adversarial attacks and curvature of the data
space. Using the curvature information, we have proposed a two-steps attack that achieves
better results than the One Step Spectral Attack presented by Zhao et al. (2019). The ana-
lytical mathematical expression of the proposed attack explicitly uses the curvature tensor
of the FIM kernel leaves. This emphasizes the importance of geometry in the construction
of an efficient attack. Additionally, with simple experiments on a toy example, we have
illustrated and confirmed that exploiting such geometrical information is relevant and actu-
ally outperforms a state of the art strategy. The mathematical construction of the proposed
method opens also new opportunities for future research. Indeed, it is clear that, in the
case of neural networks, the geometrical properties of the leaves of the kernel foliation is
related to its robustness as explained above but more generally to its power to separate
data points. Therefore, the geometry of the foliation is directly linked to the complexity of
the model (i.e. the neural network architecture). A deeper analysis of these aspects should
help us in gaining knowledge and some explainability of the underlying principles at play in
neural network learning and more generally deep learning methods. This will be the focus
of our future research.
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A. Proofs

A.1 Proof of Proposition 5.8

Lemma A.1 Let i, j, k ∈ {1, . . . ,dimX}. Then

Γkij =
1

2
gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
.

With all the previous notations, we have:

gij =
1

p(1− p)
(
JTJ

)
ij

=
1

p(1− p)
(a(x))2 αi(x)αj(x).

Let us compute the partial derivatives of the various terms of the last equation.

∂

∂xl

(
1

p(1− p)

)
= − 1

p2(1− p)2
∂p(1− p)

∂xl

= − 1

p2(1− p)2
∂Nθ(x)(1−Nθ(x))

∂xl

= − 1

p2(1− p)2
(Jl (1− p)− pJl)

= − 1

p2(1− p)2
(Jl (1− 2p)) .

∂ (a(x))2

∂xl
= 2

∂a(x)

∂xl
a(x)

= 2
∂σ′ (W2σ (W1x+ b1) + b2)

∂xl
a(x)

= 2σ′′ (W2σ (W1x+ b1) + b2)
∂ (W2σ (W1x+ b1) + b2)

∂xl
σ′ (W2σ (W1x+ b1) + b2)

= 2σ′′ (W2σ (W1x+ b1) + b2)
∂σ (W2σ (W1x+ b1) + b2)

∂xl︸ ︷︷ ︸
=Jl

= 2σ′′ (W2σ (W1x+ b1) + b2) Jl.

∂αj(x)

∂xl
=

k∑
i=1

(W2)i
∂σ′ (W1x+ b1)i

∂xl
(W1)ij

=
k∑
i=1

(W2)i σ
′′ (W1x+ b1)i (W1)il (W1)ij

= W2Σ
′
(

(W1)·,l � (W1)·,j

)
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with � the component-wise product (Hadamard product).

Lemma A.2 Let i, j ∈ {1, . . . ,dimX}, then
∂αj(x)
∂xl

= ∂αl(x)
∂xj

and the associated matrix is

thus symmetric.

Finally, we get:

∂gij
∂xl

=
∂

∂xl

(
1

p(1− p)

)
(a(x))2 αi(x)αj(x)

+
1

p(1− p)
∂ (a(x))2

∂xl
αi(x)αj(x)

+
1

p(1− p)
(a(x))2

∂αi(x)

∂xl
αj(x)

+
1

p(1− p)
(a(x))2αi(x)

∂αj(x)

∂xl
∂gij
∂xl

= − 1

p2(1− p)2
Jl (1− 2p) (a(x))2 αi(x)αj(x)

+
1

p(1− p)
2σ′′ (W2σ (W1x+ b1) + b2) Jlαi(x)αj(x)

+
1

p(1− p)
(a(x))2

∂αi(x)

∂xl
αj(x)

+
1

p(1− p)
(a(x))2αi(x)

∂αj(x)

∂xl
.

This gives:

∂gij
∂xl

=
1

p(1− p)

[
− Jl (1− 2p)gij

+ 2σ′′ (W2σ (W1x+ b1) + b2) Jlαi(x)αj(x)

+ (a(x))2
(
∂αi(x)

∂xl
αj(x) + αi(x)

∂αj(x)

∂xl

)]
.

Remark 11 In the case where σ is the sigmoid, then

σ′′(x) = σ′(x) (1− 2σ(x)) = σ(x) (1− σ(x)) (1− 2σ(x)) .

With this remark in mind, we can simplify the computations:

2σ′′ (W2σ (W1x+ b1) + b2) Jlαi(x) = 2
(
σ′ · (1− 2σ)

)
(W2σ (W1x+ b1) + b2) Jlαi(x)αj(x)

= 2a(x) ((W2σ (W1x+ b1) + b2)− 2Nθ(x)) Jlαi(x)αj(x)

= 2 ((W2σ (W1x+ b1) + b2)− 2p) a(x)a(x)αl(x)αi(x)αj(x)

= 2 ((W2σ (W1x+ b1) + b2)− 2p)αl(x)p (1− p) gij .
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∂gij
∂xl

=
1

p(1− p)

[
− Jl (1− 2p)gij

+ 2 ((W2σ (W1x+ b1) + b2)− 2p)αl(x)p (1− p) gij

+ (a(x))2
(
∂αi(x)

∂xl
αj(x) + αi(x)

∂αj(x)

∂xl

)]
.

Γkij =
1

2p(1− p)
gkl
[
− Ji (1− 2p)gjl

+ 2 ((W2σ (W1x+ b1) + b2)− 2p)αi(x)p (1− p) gjl

+ (a(x))2
(
∂αj(x)

∂xi
αl(x) + αj(x)

∂αl(x)

∂xi

)
− Jj (1− 2p)gil

+ 2 ((W2σ (W1x+ b1) + b2)− 2p)αj(x)p (1− p) gil

+ (a(x))2
(
∂αi(x)

∂xj
αl(x) + αi(x)

∂αl(x)

∂xj

)
+ Jl (1− 2p)gij

− 2 ((W2σ (W1x+ b1) + b2)− 2p)αl(x)p (1− p) gij

− (a(x))2
(
∂αi(x)

∂xl
αj(x) + αi(x)

∂αj(x)

∂xl

)]
Which can be factorized into

Γkij =
1

2p(1− p)
gkl
[
− (1− 2p) (Jigjl + Jjgil − Jlgij)

+ 2 ((W2σ (W1x+ b1) + b2)− 2p) p (1− p) (αi(x)gjl + αj(x)gjl − αlgij)

+ (a(x))2
[
αl(x)

(
∂αj(x)

∂xi
+
∂αi(x)

∂xj

)
+ αj(x)

(
∂αl(x)

∂xi
− ∂αi(x)

∂xl

)
+ αi(x)

(
∂αl(x)

∂xj
− ∂αj(x)

∂xl

)]]
We can simplify the last line thanks to the remark we have made before:

∂αj(x)
∂xl

= ∂αl(x)
∂xj

,

thus giving us:

Γkij =
1

2p(1− p)
gkl
[
− (1− 2p) (Jigjl + Jjgil − Jlgij)

+ 2 ((W2σ (W1x+ b1) + b2)− 2p) p (1− p) (αi(x)gjl + αj(x)gil − αl(x)gij)

+ 2(a(x))2
∂αi(x)

∂xj
αl(x)

]
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Hence

Γkij =
1

2p(1− p)

[
− (1− 2p)

(
Jiδ

k
j + Jjδ

k
i − Jkgij

)
+ 2 ((W2σ (W1x+ b1) + b2)− 2p) p (1− p)

(
αi(x)δkj + αj(x)δki − αk(x)gij

)
+ 2(a(x))2

∂αi(x)

∂xj
αk(x)

]

We can simplify considering the fact that J = a(x)α(x):

Γkij =
1

2p(1− p)

[
(2 ((W2σ (W1x+ b1) + b2)− 2p) p (1− p)− a(x)(1− 2p))

(
αiδ

k
j + αjδ

k
i − αkgij

)
+ 2(a(x))2

∂αi(x)

∂xj
αk(x)

]

In the following, we will write Akij for what is inside the big brackets to simplify the
reading.

Remark 12 We notice that a(x) = σ′ (W2σ (W1x+ b1) + b2) = Nθ(x) (1−Nθ(x)) = p(1−
p) if σ is the sigmoid.

If we take into account the previous remark, we get:

Γkij =

[(
(W2σ (W1x+ b1) + b2)− 2p− (1− 2p)

2

)(
αi(x)δkj + αj(x)δki − αk(x)gij

)
+

1

p(1− p)
(p(1− p))2∂αi(x)

∂xj
αk(x)

]
Γkij =

[(
(W2σ (W1x+ b1) + b2)− p−

1

2

)(
αi(x)δkj + αj(x)δki − αk(x)gij

)
+ p(1− p)∂αi(x)

∂xj
αk(x)

]

and for the derivative of the metric we get:
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∂gij
∂xl

=
1

p(1− p)

[
− Jl (1− 2p)gij

+ 2 ((W2σ (W1x+ b1) + b2)− 2p) Jlgij

+ (a(x))2
(
∂αi(x)

∂xl
αj(x) + αi(x)

∂αj(x)

∂xl

)]
=

1

p(1− p)

[
(2 (W2σ (W1x+ b1) + b2)− 2p− 1) Jlgij

+ (a(x))2
(
∂αi(x)

∂xl
αj(x) + αi(x)

∂αj(x)

∂xl

)]
=

[
(2 (W2σ (W1x+ b1) + b2)− 2p− 1)αl(x)gij

+

(
∂αi(x)

∂xl
Jj + Ji(x)

∂αj(x)

∂xl

)]
.

B. Notions of Riemannian geometry

Let M = (M, g) be a real Riemannian manifold of dimension n.

Definition 8 (length of a path) Let γ : [0, 1] → M be a C1 path. The lenght of γ,
denoted l(γ) is defined by

l(γ) =

∫ 1

0
g
(
γ (t) , γ′ (t) , γ′ (t)

)1/2
dt

Definition 9 (geodesic) Let p, q be two points of M . The C1 path γ : [0, 1]→M is said
to be a geodesic between p and q if:{

γ(0) = p, γ(1) = q

l(γ) = inf
{
l(θ), θ ∈ C1 ([0, 1), M) , θ(0) = p, θ(1) = q

}
Definition 10 (geodesic distance) The Length of a geodesic between p and q is called
the geodesic distance, denoted d(p, q).

In what follows, the Levi-Civita connexion of M will be denoted ∇̊.

Definition 11 Let γ : [0, 1]→M be a C2 path. It it said to be a geodesic of ∇̊ is, for each
t ∈]0, 1[ the following holds:

∇̊γ̇(t)γ̇(t) = 0 (10)

The differential equation 10 translates in local coordinates to:

∂2γk

∂t2
(t) + Γkij (γ (t))

∂γi

∂t
(t)
∂γj

∂t
(t) = 0 (11)

For an initial point p = γ(0), Cauchy-Lipschitz theorem shows that ther is a unique
local solution to Equation 10.
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Proposition B.1 Let p ∈M . There exist ε > 0 such that for all v ∈ TpM , ‖v‖ < ε, there
exist a unique geodesic γ : [0, 1]→M such that γ(0) = p, γ′(0) = v. The function which to
such v associates γ(1) with γ the geodesic of ∇̊ such that γ(0) = p, γ′(0) = v is called the
exponential map and denoted expp.

Proposition B.2 Let v ∈ TpM , ‖v‖ < ε and let q = expp(v). Then γ : t ∈ [0, 1] 7→
expp(tv) is a geodesic between p and q. Besides, l(γ) = ‖v‖.

Remark 13 Note that ‖v‖ = g (p; v, v)1/2 is the riemannian norm and not the Euclidean
norm.

Definition 12 d expp(0) = Id and thus the exponential map is a local diffeomorphism.
Around each point, expp defines a chart of M . The local coordinates we get are called the
normal coordinates at p.

Definition 13 (logarithm map) Let p ∈ M and ε > 0 such that the exponential map is
defined in B(0, ε). For all q ∈M such that d(p, q) < ε we set:

logp(q) = v, expp v = q.

Remark 14 One can compute the logarithm by solving the following differential system:{
∂2γk

∂t2
(t) + Γkij (γ(t)) ∂γ

i

∂t (t)∂γ
j

∂t (t) = 0

γ(0) = p, γ(1) = q
(12)

Proposition B.3 In normal coordinates at p ∈M , geodesics with origin p are strait lines
going through the origin.

Definition 14 (parallel transport) Let v ∈ TpM and q = expp x. The geodesic between
p and q is γ : t ∈ [0, 1] 7→ tx in normal coordinates. Besides, the linear differential equation:

∇̊γ̇(t)X(t) = 0, X(0) = v

has a solution on [0, 1] called the parallel transport of v.

Parallel transport allows to go from a tangent vector at q = expp x to a tangent vector
at p.

29


	Introduction
	Problem statement
	Setup
	Adversarial attacks

	A local method
	A two-step attack
	The case >0
	The case = 0

	A simple play-test example
	Setup
	Computing the output FIM
	Computing the pullback metric
	The metric kernel foliation
	Computing the curvature
	Numerical results

	Conclusion
	Proofs
	Proof of Proposition 5.8

	Notions of Riemannian geometry

