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ABSTRACT
In an airway network, some critical links exist that are vital for the structural integrity and performance of the
network. The detection of such links may assist with improving the imbalance between the limited airspace
capacity and the ever-increasing traffic demand, which elicit flight delays, significant economic losses, etc.
However, it is challenging to identify such links as they evolve (both in space and time) with changing
traffic flow dynamics. This paper proposes a complex network approach for spatial-temporal critical links
detection in a given airway network. First, flight track data is employed to characterize the airway network
as weighted spatial-temporal networks. Then edge centrality and network percolation metrics are adopted
to detect the critical links in each snapshot of the spatial-temporal networks. Afterward, the critical links
detected by the two metrics are spatially overlapped to determine the final critical links over time. To
examine the operational validity of the proposed method, we carry out a case study on the Southeast Asia
airway network derived from one-month flight track data. Results demonstrate that the spatial distribution
of the critical links varies over different traffic scenarios, and most of the identified critical links are found
in the transition sectors with complex traffic situations. Four links, which are parts and at crosses of major
trunk airways connecting to major navigation aids (VOR/DME) in the studied network, appear highly in all
examined traffic scenarios. The unavailability of such links may lead to traffic flow disruptions. Observations
by subject matter experts from air-traffic data visualizations demonstrate that the complex network-based
methods can dynamically identify airway links that are operationally critical under time-evolving air-traffic
scenarios. With good traffic flow prediction tools in the future, this method can be adopted to predict critical
links in airway networks to better assist controllers in real-time air traffic management.

INDEX TERMS Air transportation, airway network, spatial-temporal network, critical link detection,
network centrality, percolation theory

I. INTRODUCTION

ALthough the air traffic demand during the outbreak of
the COVID-19 pandemic almost came to a standstill,

the traffic demand is now on its way to ramping up across
nations as many traveling restrictions are lifted [1]. To ac-
commodate the projected air traffic demand, air transport sys-
tem needs to continuously evolve both in terms of infrastruc-
ture and operationally [2]. Currently, the biggest challenge
confronted by air navigation service providers (ANSPs) is
the capacity-demand dilemma, as known as the imbalance

between airspace capacity and traffic demand [3], [4], which
is the major source for en-route congestion that elicits not
only traffic delays, but also environmental impact [5], [6].
Note that the en-route phase of aircraft is based on flight plans
which typically follow airway networks with intermediate
waypoints (nodes) forming the links in the network. An
airway network constitutes the virtual highway in the sky on
which the air traffic operates. Therefore, it is very promising
to manage congestion by improving air traffic flow on airway
networks [7], [8].
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In the literature, some researchers aim to optimize the net-
work traffic flow to mitigate traffic congestion. For example,
in [9], a network-based dynamic air traffic flow model for
en-route airspace traffic flow optimization was proposed to
maintain the balance between demand and capacity. In [10], a
collaborative flight route-planning method was demonstrated
to reduce en-route airspace congestion by amending flight
plans to avoid congested sectors. The optimization of air
traffic flow on airway networks adapts traffic flow to the
airway network structure which is restricted by the structure
of the airway network. Therefore, some researchers pro-
pose to mitigate congestion by optimizing the designs of
airway networks [7]. In [11], a multi-objective optimization
algorithm was introduced to optimize the crossing waypoint
locations of Air Traffic Service (ATS) routes, with the ob-
jective being the maximization of the flight efficiency and
airspace capacity. In [12], an airway network optimization
model was developed to minimize the total operational cost
with airspace restriction and air route network capacity being
considered as the major constraints. In [13] the authors pro-
posed to remove some links in the potentially over-designed
airway networks based on the theory of Braess’s Paradox.
They discovered that the total flight duration on an airway
network could be reduced by making minor changes to the
airway network structure.

It should be pointed out that en-route congestion usually
emerges locally in an airway network. The local congestion
on some links can propagate to their vicinity [8], which
then essentially impedes traffic flows in the airspace and
exacerbates the traffic congestion. In the presence of limited
airspace capacity and the saturated airway network, it is of
great significance to identify such critical links in an airway
network. Generally speaking, a critical link in a complex
network is a link whose failure will significantly affect the
network’s performance in terms of structural integrity, func-
tionality, etc [14]. When an airway network is of concern,
we regard a critical link as the airway link (connecting two
waypoints), which acts as a pivot link and whose failure
may decrease the network’s structural integrity concerning
the given traffic scenario. Therefore, identification of such
critical links in an airway network can assist air traffic man-
agers with better traffic flow planning and decision making.

Critical links detection in complex networks is not new and
has long been explored [15]–[17]. One of the most popular
methods for critical links detection in complex networks is
based on network centrality metrics [18]. A centrality metric
provides a straightforward way of calculating how central a
network’s component is. The second widely adopted methods
are based on network vulnerability analysis in the presence
of link failures [19]. The underlying idea is that the critical
links of a network should be the links whose failures will
decrease its robustness in the face of perturbations [20],
[21]. In recent years, many researchers have applied network
theories to detect critical links in transportation networks by
investigating the networks’ performance such as the overall
travel cost [22], the total demand losses [23], decreased

network capacity [24], etc.
Although various methods have been proposed for criti-

cal links detection in transportation networks, existing ap-
proaches mainly have three drawbacks. Firstly, methods like
the one proposed in [25] are model-driven, neglecting the
merits of real-world traffic data [26]. Secondly, many meth-
ods only consider a single metric such as network centrality
metric [27], [28], traffic capacity [24], network robustness
[29], [30], etc., to quantify the criticality of a network’
links [16]. Multiple criteria should be taken into account for
critical links detection for real application purposes to avoid
uncertainty and unreliability [31]. Thirdly, as indicated in
[32] that the majority of existing methods only deal with
static networks, while real-world transportation networks are
time evolving. Meanwhile, most if not all of the existing
studies are urban traffic networks oriented [33], [34], render-
ing their direct applications to air traffic networks infeasible,
given its four-dimensional nature. In this paper, we propose
to detect critical links in airway networks using spatial-
temporal network models. Note that the critical links in an
airway network would evolve over time. Therefore, it is not
reasonable to detect critical links in binary and static airway
networks. In view of this, we first construct weighted spatial-
temporal airway networks based on given flight track data.
We then introduce edge betweenness centrality and network
percolation theory to detect critical links in each snapshot
of the temporal networks. Finally, comparisons among the
detection results using the two metrics are made to determine
the final critical links for the snapshot of the given traffic
scenario. A case study is carried out on the Southeast Asia
airway network which is derived from one-month flight track
data for the calendar year 2018 to demonstrate the efficacy of
the proposed method. The studied network covers the ATS
routes in Singapore Flight Information Region (FIR) and
transiting links between Singapore FIR and its neighbouring
airspace. For the purpose of simplicity, we term this network
as Southeast Asia Airway Network (SEAN) throughout the
paper.

II. RELATED BACKGROUNDS
A. SPATIAL-TEMPORAL NETWORKS
A complex network is usually depicted by a graph that is
composed of a set of node/vertices and links/edges. Math-
ematically, a graph G is denoted by G = {V,E} with V and
E respectively being the sets of nodes and links. Usually, we
use n = |V | and m = |E| to respectively denote the number
of nodes and edges in G.

In reality, the nodes of complex networks like airway
networks carry geographical coordination information. Such
networks are generally called spatial networks. Note that
some complex networks are time-evolving, i.e., their struc-
tures change over time. Such networks are generally called
temporal networks. Mathematically, a temporal network
G can be denoted by a network sequence, i.e., G =
{Gt0 , ..., Gti , ...} with Gti being the snapshot at time point
ti or for a certain time period. A complex network carrying
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both spatial and temporal information is normally modelled
as a spatial-temporal network.

B. NETWORK CENTRALITY

For a given complex network, one may wish to know which
nodes or edges are more important than others concerning
the network structure. The network centrality metric provides
an outlet for that purpose. In the literature, many centrality
metrics are available [18], [35]. There are mainly two types
of centrality metrics, viz., node centrality and edge centrality,
while the latter is generally the extensions of the former ones.

In this study, we adopt edge centrality metrics as the
purpose of this study is to detect critical links from a given
airway network. Specifically, we adopt the betweenness cen-
trality metric (CB

E), which has been tested to have a larger
impact on a network’s robustness [18]. For a given network
G, the betweenness centrality for an edge e ∈ E is calculated
as

CB
E(e) =

2

n(n− 1)

∑
i ̸=j

pij(e)

Pij
(1)

in which pij(e) is the number of shortest paths between nodes
i and j running through edge e, and Pij is the total number
of shortest paths between nodes i and j.

C. PERCOLATION THEORY

Complex networks, in reality, suffer from various perturba-
tions. Consequently, the components of a network may break
down, and potential risk is likely to happen. To better design
the structure of a network to make it robust to perturbations,
it is pertinent to analyse the dynamics of a complex network
subject to perturbations. Percolation theory has proven as an
effective instrument for analysing the capability of a complex
network in the face of perturbations [36], [37].

Suppose that 1 − p fraction of network components are
disconnected to the rest of the focal network due to exter-
nal/internal perturbations. The disconnection of those failed
network components can fragment the focal network into
pieces amongst which there exists the largest connected
component (LCC) [38]. The LCC of a network is an essential
indicator for capturing the network’s capability in response
to perturbations. When p = 0, the LCC of the network
disappears, simulating the scenario that the focal network
is entirely down due to perturbations. For p = 1, it corre-
sponds to the situation that the network is not suffering from
perturbations and the LCC keeps its original state. When p
increases from 0 to 1, the size of the LCC changes with
p. When p reaches a particular value, the size of the LCC
shows a notable change, such as a sharp decline or becomes
extremely small or even zero. Such a value of p is generally
termed as the percolation threshold denoted by pc.

III. RESEARCH PROBLEM AND CONTRIBUTION

A. PROBLEM DESCRIPTION
This paper aims to identify the critical links in a given
airway network. In this paper, we define the critical links
in an airway network from the network theory perspective.
Specifically, we define the critical links as the airway links
that meet the following two requirements:

1) the links act as the traffic pivots through which shortest
paths frequently pass;

2) the links that act as the bridges whose failures will
significantly decrease the network’s structural integrity in the
face of perturbations.

Note that for different traffic situations, the critical links
may vary. Therefore, directly detecting critical links in a
static and unweighted airway network is not of practical
usage. Thus, in this paper, we propose to detect the critical
links spatially and temporally for different traffic situations.
Moreover, instead of using a single metric, two metrics
in network theory, i.e., network centrality and percolation
theory, are adopted and combined to identify the critical
links in the spatial-temporal networks. Centrality is a widely
applied metric for quantifying the importance of a network’s
components (nodes and links). Large centrality values can
distinguish the pivots links through which shortest flight
paths frequently pass, while the percolation theory is an
effective method for measuring the structural integrity of a
given network concerning network component failures.

Fig. 1 presents a graphical illustration of the studied
research problem. In the network modelling step, for a
given airway network, we process the flight track data to
construct weighted spatial-temporal airway networks G =
{Gt0 , ..., Gti , ...} with Gti being the weighted network snap-
shot built for a certain time period ti. Then, we adopt central-
ity metric and network percolation theory to identify critical
links from each network snapshot Gti . Finally, in the final
critical links determination step, the critical links obtained
by percolation theory and edge centrality are compared and
integrated to determine the final critical links. The detailed
methodology will be presented in the Research Methodology
section.

B. RESEARCH CONTRIBUTION
This work suggests a complex network perspective towards
spatial-temporal critical links detection in airway networks.
The research highlights are summarized as follows.

1) We adopted two network approaches, i.e., percolation
theory and network centrality, for dynamic critical
links detection in spatial-temporal airway networks
constructed from real flight data. Compared to many
existing methods that only consider a single metric,
such as network centrality metric, the proposed method
combines two metrics that identify the critical links
from both airway network structure and air traffic
structure perspectives using real traffic data. Moreover,
existing studies for critical links detection primarily
deal with static networks that do not fit airway net-
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FIGURE 1: A graphical illustration to the proposed research problem of detecting critical links in a given airway network by
making use of complex network theories.

works due to their time-evolving nature under different
traffic situations.

2) We verified the efficacy of the proposed critical link
identification method from three perspectives: 1) air
traffic volume perspective, i.e., the ratio of flights in
SEAN transiting through the identified critical links;
2) airspace design perspective, i.e., positions of the
identified critical links on trunk jet routes and their
connections to key navigational aids; 3) operational
perspective, i.e., a spatial view based on both airspace
as well as traffic flow structures, and a temporal view
based on varying traffic scenarios.

3) We further visualized the real-time movements of
flights and the dynamic changes of critical links over
time. Observations made by Subject Matter Experts
(SMEs) from the traffic visualization demonstrated that
the network-theory-based method could dynamically
identify critical links which are operationally critical
in fact.

IV. RESEARCH METHODOLOGY
A. METHODOLOGY OVERVIEW
As can be seen from Fig. 1, the proposed method for criti-
cal link detection contains three key steps: spatial-temporal
network modelling, critical links detection based on network
theories, and final critical links determination.

Given the flight track data during a specific time, the
network modelling step constructs spatial-temporal airway
networks based on the flight fixes and flight paths. Besides,
the normalized average flight speed on each link in an airway
network is determined and is taken as the weight for the
corresponding link.

The critical links detection step works on the constructed
spatial-temporal airway networks. This step will leverage two
network methods, i.e., edge centrality metric and percolation
theory, to detect critical links from each network snapshot.
For each network snapshot, the critical links detection step
is likely to yield different critical links. The critical links
determination step is to compare and analyse all the detected

critical links and merge them to filter out the final critical
links for the studied airway network.

B. NETWORK MODELLING
The purpose of network modelling is to construct the
weighted spatial-temporal airway networks for the critical
links detection step. Network modelling consists of two
steps, namely, extract the airway network configuration and
determine the weight on each link from the flight track data.
In this study, we use the normalized average ground speed in-
stead of the number of aircraft on each link as its weight. The
main reason is that buffer time for airborne congestion as well
as the risk of delay propagation through the entire airway
network can be reduced if flights can faster transit through
their routes [39]. Moreover, when an airway link is faced with
congestion or other disruptions, major reactive measures in
operational air traffic flow management (ATFM) are flights
vectoring and speed adjustment [40]. These measures will
consequently influence the speed of flights transiting through
the affected links. The travel speed on a link is normalized
using the daily maximum speed. Therefore, the lower weight
of a link indicates that the current traveling speed on the link
is more degenerated than the best daily traffic situation.

The flight track data required for network modelling in-
cludes the flight paths of each flight, i.e., the flight fixes of
the flight trajectory and the time when the flight is reported to
be at these fixes. From the flight path information, we will be
able to construct the airway network configuration by setting
the flight fixes as the nodes and determining the connections
between nodes, i.e., links, from the path of each flight. If there
are flights whose paths pass the link between two nodes, the
two nodes will be considered as connected. Consequently,
there will be a link connecting the two nodes on the resulted
airway network. In this manner, the airway network will be
constructed entirely from the flight track data.

With the time information of flights reaching the fixes, the
average speed sa,j of a flight fa on the link ej of its path can
be computed by averaging the length Lj of ej over the flight
duration T a

j on ej :
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sa,j =
Lj

T a
j

(2)

Note that we are identifying critical links for the kth time
period Tk (from t0k to t1k), therefore the required weight
wj on link ej is the normalized average flight speed of all
flights passing ej during Tk, instead of simply normalizing
the average flight speed of all flights passing ej . This means
that for flight fa, only the part lka,j on ej , that has been flown
during Tk, will be considered, so we cannot simply take the
mean of the average flight speed sa,j of all flights on link
ej . From the available traffic data, it is not able to obtain
the exact time line of flight fa when it is on ej during Tk.
Therefore, to reduce the bias, we assume that the flight fa
is flying on ej with the constant speed sa,j . Then, given the
entry time ta,jen and exit time ta,jex of fa, the flight duration T k

a,j

of fa on ej during Tk can be determined:

T k
a,j = min{ta,jex , t1k} −max{ta,jen , t0k} (3)

Then, lka,j can be estimated as Lj weighted by the propor-
tion of T k

a,j to Tk:

lka,j =
Lj × T k

a,j

Tk
(4)

The average speed skj on link ej during Tk can be calcu-
lated by averaging the sum of flight distances of all the flights
on ej over the according sum of flight duration:

skj =

∑F
a=1 l

k
a,j∑F

a=1 T
k
a,j

(5)

where F is the total number of flights passing link ej during
Tk.

Finally, the weight wj on link ej during the given time
period Tk is determined by normalizing the average speed skj
with the daily maximum speed sjmax on link ej :

wj =
skj

sjmax

(6)

In this way, the weight on link ej is determined, which will
be a number between 0 and 1.

C. CRITICAL LINKS DETECTION
To measure how critical an edge of a network is, we adopt
two methods from the viewpoint of network theory. The first
method is to make use of the edge centrality metric. The
second method is based upon network percolation theory.

1) Centrality Method
Centrality is a class of straightforward metrics for quantify-
ing the importance of a network’s components. For a given
airway network, we use Eq. 1 to calculate the centrality for
each link. Note that there exist a couple of edge centrality
metrics in the literature. In this work, only the betweenness
centrality metric is adopted. The main reason is that the

betweenness centrality is involved with the shortest paths in
a network which is more appealing to airway networks.

After getting the centralities of the edges, we then rank
the edges based on their centralities. Edges with the highest
centralities are regarded as critical links. Specifically, the top
K are taken as the critical links. In the experiments, we set
K = 10. Note that K cannot be too large as it would not
be possible for an airway network to have too many critical
links. Also, K cannot be too small as the detection results
need to compare in the subsequent analysis with what is
detected by using the percolation theory.

2) Percolation Based Method
Percolation theory has been widely applied to investigate
the structural properties of diverse complex networks, in-
cluding transportation networks. For example, the authors
[14] introduced percolation theory to detect critical links
in urban traffic networks. Percolation theory uses statistical
physics principles and graph theory to analyse changes in
the structure of a complex network subject to perturbations.
The percolation threshold pc signifies the transition point of
a given network, thus, shedding light on probing its critical
sub-structures.

1) Critical Threshold Identification
Inspired by network percolation theory, we carry out an

experimental study on a given airway network. Note that the
lower weight of a link means that the current traveling speed
on the link is more degenerated than the best daily flight
speed on this link. Therefore, these lower-weight links can be
regarded as failed links which can potentially slow down the
flights and induce congestion. By incrementally closing these
low weight links, we will observe the links whose closure
will lead to a transition of the airway network from the phase
of connected to the phase of disconnected.

Note that an airway link Ej is characterized by the weight
wj . Therefore, for a given threshold of q ∈ [0, 1], the link Ej

can be classified into two categories: functional when wj ≥ q
and dysfunctional when wj < q. This can be represented as:

Ej =

{
1,

0,

wj ≥ q

wj < q
(7)

As the value of q increases, more low-weight links are
closed, which makes the network sparser. Note that the
weight on a link refers to the normalized average flight speed
on that link. It indicates that as q increases, links with low
flight speeds are closed, and links with higher flight speeds
remain active. In this way, a functional airway network can
be constructed for a given q value according to the traffic
dynamics of the original airway network.

As q increases, the original network will be disintegrated
into several isolated clusters because of the closure of some
low speed links. Therefore, the size of the largest cluster
decreases, and the second-largest cluster reaches a maximum
at the percolation threshold qc which is the transition to the
disconnected phase from the connected phase of an airway
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(a) (b)

(c) (d)
FIGURE 2: Percolation process on the SEAN. (a) The relative sizes of LCC1 and LCC2 are shown as a function of q. The sudden
decrease of the size of LCC1 and the increase of the size of LCC2 indicates that, at the percolation threshold qc, LCC1 is broken
into several isolated clusters because of the closure of some links. Therefore, the network transits from a largely connected
phase to a disconnected phase at qc. The LCC1 of the SEAN (b) at and (c) after the critical threshold qc with respect to the
percolation process. (d) The critical links with respect to the critical threshold qc. Each node number represents a unique node
in the network.

network, as shown in Fig. 2a. The y-axis of Fig. 2a refers to
the fraction of the size of the largest connected component
(LCC1) or the second-largest connected component (LCC2),
which is a value between 0 and 1.

As an indicator of the robustness characteristics of network
connectivity [41], the percolation threshold qc in this percola-
tion process quantifies the organization efficiency of real air
traffic. Flights can travel to most nodes in the airway network
(the largest connected component of airway network) with
normalized speed below qc, while flights will be trapped in
small isolated clusters when they fly with normalized speed
above qc. Hence, qc measures effectively the maximum nor-
malized speed with which flights can travel over a large part
of the airway network, which reflects the global efficiency of
air traffic from a network perspective.

2) Critical Links Identification
At the critical threshold qc, LCC1 of an airway network

exists , and LCC2 is relatively small in size. As reflected in
Fig. 2a, when more links are further removed from LCC1,
then LCC1 will break down into small pieces. As a conse-
quence, the size of LCC2 grows. Fig. 2b further takes SEAN

as an example to better show this point.
Fig. 2b displays the structure of LCC1 of a weighted

SEAN at the critical threshold qc with respect to the perco-
lation theory. In Fig. 2c, LCC1 fragments into pieces after
qc due to the removal of the critical links. Fig. 2d shows the
critical links. The critical links are identified as follows:

Ec = {e ∈ E | we < qc + δ} (8)

in which δ is the interval for the variation of variable q, q ∈
[0, 1].

D. CRITICAL LINKS DETERMINATION

For each snapshot Gti of the constructed spatial-temporal
networks, there are two sets of detected critical links, one
yielded by centrality metric and the other one by perco-
lation theory. Note that edge betweenness centrality helps
to identify links that act as the traffic pivots with which
shortest paths frequently pass through, while percolation
theory identifies links that act as the bridges whose failures
will decrease the network’s structural integrity significantly.

6 VOLUME x, 2021



Ma et al: Critical Links Detection in Spatial-Temporal Airway Networks Using Complex Network Theories

Links identified by both percolation theory and betweenness
centrality can meet the requirements of critical links defined
in this paper, i.e., pivot links contributing to shortest flight
paths and bridge links contributing to structural integrity.
Therefore, we take the overlapped links of the two link sets,
which are identified respectively by betweenness centrality
and percolation theory, as the final critical links Eti

c of Gti .
The critical links Eti

c are identified for time period ti. Note
that the critical links will evolve over time following different
traffic situations. This critical link determination process will
dynamically provide critical links for different periods. By
observing the changes of critical links, temporal distribution
of the critical links can be obtained. We further merge Eti

c

across the time horizon to get the critical links for the original
airway network G. By doing so, a holistic view of the spatial
distribution of the critical links for a given airway network
can be achieved.

V. EXPERIMENTAL STUDY
A. NETWORK MODELLING

The above section describes the proposed method for critical
links detection in an airway network with given flight track
data. To check the efficacy of the proposed method, in this
section, we carry out a case study on the SEAN. SEAN sits
on the juncture of six neighboring FIRs and covers south
China sea airspace, where most of the air traffic from China
converges towards South-East Asia. Despite its small size,
it has features of various airspace, e.g., radar, procedural,
and oceanic. Moreover, SEAN has complex traffic struc-
tures comprising the confluence of en-route air traffic from
neighboring airspace, climbing traffic from the terminals,
descending traffic to the terminals. The complexity in the
traffic structure and the high traffic demand are likely to
induce air traffic congestion during peak hours, making it
significant to detect critical links in such an airway network.
The network structure of SEAN is shown by blue lines in
Fig. 3a. The black dashes represent the sector boundaries of
Singapore FIR.

The SEAN shown in Fig. 3a consists of 118 nodes and 174
links. In the experiments, one-month (1st Dec. 2018 to 31st
Dec. 2018) en-route flight track data provided by the Civil
Aviation Authority of Singapore is used. December is the
peak season for air transportation due to the increasing travel
demand during the holiday. During this period, the high traf-
fic demand provides the advantage and possibility to reveal
the critical links in airway networks which significantly affect
the network’s performance in terms of structural integrity,
functionality, etc. The tested one-month data records the
information of 44215 flights, including flight fixes and the
time passing those fixes.

Based on the one-month flight track data, we further con-
struct the weighted spatial-temporal airway networks. Note
that the distributions of the critical links may change over
time. Therefore, the spatial-temporal airway networks are
constructed over time for different time slots. Fig. 3b displays
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FIGURE 3: The network structure of (a) SEAN with spatial
information. The black dashes represent the sector bound-
aries of Singapore FIR, and the green nodes represent the
waypoints whose names are shown in red letters and (b)
the weighted SEAN with the weights being the normalized
average flight speed on the links.

a snapshot of the weighted spatial-temporal airway networks
for SEAN during a 30-minute time slot.

B. CRITICAL LINK DETECTION
To study the evolution of critical links overtime under dif-
ferent traffic situations, spatial-temporal networks are con-
structed for different time slots characterizing the evolution
of traffic situations. Moreover, the length of the time slots
chosen may influence the critical links detection outcome.
Therefore, in the experiments, the weighted spatial-temporal
airway networks are constructed with different time scales.
Expressly, we respectively set the time scales to be 15
minutes, 30 minutes, 45 minutes, and 60 minutes, resulting
in four sets of spatial-temporal networks. The reason for
adopting the four time scales between 15 to 60 minutes is
that “15-minute” and “60-minute” (1 hour) are the commonly
used horizons for evaluation of controllers’ workload and
air traffic planning purpose [42]–[45]. For example, in the
MAP (Monitor Alert Parameter) model, the airspace capacity
is computed on a 15-minute basis [46]. For the one-month
en-route flight track data from 1st Dec. 2018 to 31st Dec.
2018, there will be 2976, 1488, 992, 744 weighted networks
constructed over time when the time scales are set as 15
minutes, 30 minutes, 45 minutes and 60 minutes, respec-
tively. Then the critical links Will be detected from each
set of the networks using both percolation theory and edge
betweenness centrality metric.
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FIGURE 4: The number of critical links detected from 1st Dec. 2018 to 31st Dec. 2018 using the percolation theory applied to
the spatial-temporal SEAN with different time scales. The average number of critical links detected for each snapshot under 15
minutes, 30 minutes, 45 minutes and 60 minutes are 1.9543, 2.5673, 2.8697 and 3.1116 respectively.

1) Variations of the Number of Critical Links
As mentioned in Section IV-C1, for the centrality metric, we
always choose the top 10 links with the highest centrality
values
to be the critical links of each weighted network. Therefore,
here we first analyze the variations of the number of critical
links over time, detected by using percolation theory.

Fig. 4 visualizes the temporal distribution of the number of
critical links detected by using network percolation theory. In
the percolation studies, we set the interval δ for the variation
of variable q, q ∈ [0, 1], to be δ = 0.001. The curves in Fig.
4 show that the number of detected critical links varies over
time. However, the maximum number does not exceed 18,
while the average number of critical links detected for each
snapshot under 15 minutes, 30 minutes, 45 minutes and 60
minutes are 1.9543, 2.5673, 2.8697 and 3.1116, respectively.

It can be observed from Fig. 4 that as the length of the time
slot for constructing the temporal networks increases from
15 minutes to 30 minutes, 45 minutes, and 60 minutes, there
is also a slight increase in the number of the critical links
identified. The possible reason could be that the fluctuations
in the traffic situation on some links and the influence of a sin-
gle link over the network percolation process are neutralized
when the time span of traffic data to construct the weighted
network increases.

Moreover, we can observe from Fig. 4, especially from
Fig. 4(a), that the number of identified critical links seems
to change cyclically daily. The troughs in the curve usually

appear from 18:00 UTC to 23:00 UTC, especially around
21:00 UTC. From 23:00 UTC to the following 18:00 UTC,
some peaks in the identified critical links show up. The rea-
son for such a phenomenon is likely to be hub airport nature
of Singapore Changi airport. This oscillatory behaviour of
the number of identified critical links is due to hub-nature of
Singapore Changi Airport. An overview of the hourly level of
activity of Singapore Changi Airport reveals distinct patterns
related to its connectivity. Changi airport acting as a hub (the
airport as an intermediary location) has several noticeable
surges of activity during the day. Surges at hub airports are
often characterized by several inbound flights arriving within
a time-frame, and about 2 hours later, a surge of outbound
departures can be observed. For most hub airports, there is
a peak of activity around 7 AM and another peak around
7 PM, which mostly corresponds to short-haul flights and
preferences for passengers to depart in the morning and
return in the evening.

2) Spatial Distribution of the Detected Critical Links
For different network snapshots, the detected critical links
could be unique. Therefore the spatial distributions of the
detected links are further compared. Specifically, for each
critical links detection metric, i.e., network percolation and
edge betweenness, the critical links detection results in each
weighted network are integrated by counting up the frequen-
cies of each link being detected as critical in all time slots.
The corresponding results are shown in Fig. 5.
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FIGURE 5: Critical links detected using the betweenness centrality metric (left column) and percolation theory (right column)
when applied to the spatial-temporal networks with different time scales. The purple (left column)/red (right column) links are the
determined critical links, and the link thickness is proportional to their frequencies being identified as critical links over time.

Fig. 5 shows that the frequencies of the critical links
detected by using the centrality metric are relatively higher
than that of percolation theory. The reason is that there are ten
critical links for each network snapshot when the centrality
metric is of concern. While using percolation theory, the
average number of critical links detected for each snapshot
is 2 to 3. Whichever method is used, Fig. 5 demonstrates
that only a small portion of the detected critical links have
relatively high frequencies.

Fig. 5 presents the detected critical links that vary in
numbers and detection frequencies for the time slot for con-
structing the corresponding spatial-temporal weighted net-
works. It can be observed that as the time scale of network
snapshots increases, the frequency of the detected critical
links decreases (thickness of the red/purple links reduces).
The main reason is that when the time scale increases, fewer
network snapshots will be constructed based on the one-
month traffic data. A short time slot captures the air traffic
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FIGURE 6: The number of the final critical links determined from 1st Dec. 2018 to 31st Dec. 2018 in the spatial-temporal SEAN
modelled with different time scales, i.e., 15 minutes (a), 30 minutes (b), 45 minutes (c) and 60 minutes (d).

within a short time window, thus providing a microscopic
view to investigate the network dynamics. A long time slot
gauges the air traffic over a long period, providing a macro-
scopic view of the network dynamics. There is no need to fix
the time slot when constructing the temporal networks. As a
result, a decision-maker can choose a proper time granularity
concerning a specific task and purpose.

The above experiments mainly demonstrate overall com-
parisons between the spatial distributions of the critical links
detected by the two network metrics as it is difficult to
compare the structural difference at each period. In what
follows, we present the critical link determination results.

C. CRITICAL LINK DETERMINATION
1) Number of Determined Critical Links
At each time period, we determine the critical links for the
corresponding network snapshot as the overlapped links of
the two critical link sets that are detected respectively using
the two network metrics. The variation of the number of final
critical links for the network snapshots over time is recorded
in Fig. 6.

By comparing Figs. 4 and 6 we can notice that the num-
ber of critical links determined for each network snapshot
reaches a reasonable level after overlapping the critical links
determined using network percolation metric and edge be-
tweenness centrality. We also can observe from Fig. 6 that,

under some time slots, multiple critical links exist, while
under some slots, only one critical link or no critical link is
identified.

2) Temporal Distribution of Determined Critical Links

The proposed network approach can detect the critical links
in a given airway network both spatially and temporally. Fig.
7 demonstrates the temporal distribution of the determined
critical links in the SEAN. In Fig. 7, the X-axis represents
the link ID of the 174 links in the SEAN, while the Y-axis
represents the time. More specifically, the X-axis view of
Fig. 7 shows the exact links out of the 174 links that have
been detected as critical for a given time horizon, while the Y-
axis view of Fig. 7 presents the criticality evolution (critical
or non-critical) of a specific link over time. The black block
(ID, time) illustrates that the link with the corresponding ID
on the X-axis has been identified as a critical link at the
corresponding time on the Y-axis.

It can be observed from Fig. 7 that there exist four common
links which are frequently being identified as critical. These
links are (identified by entry-exit waypoints) as follows:
“MABAL – VISAT”, “RAXIM – VMR”, “KILOT – OT-
LON”, and “KILOT – LIPRO” (marked with red arrows and
their corresponding names).
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(a) 15 minutes

(b) 30 minutes

(c) 45 minutes

(d) 60 minutes

FIGURE 7: Critical links identified over time under different time scales (i.e., 15 minutes (a), 30 minutes (b), 45 minutes (c) and
60 minutes (d)) in modeling the spatial-temporal networks. The variable on X-axis, ranging from 1-174, represents the 174 links
in SEAN, while the variable on Y-axis represents the time from 1st Dec. 2018 to 31st Dec. 2018. When a link (whose coordinate
is x on the X-axis) is identified as critical during a time period (whose coordinate is y on the Y-axis), the corresponding area of
the coordinate (x, y) will be marked as a black block.

3) Spatial Distribution of Determined Critical Links

Fig. 8 visualizes the spatial distributions of the final de-
termined critical links in the SEAN. The red links are the
determined critical links, and the thickness of the links is
proportional to their frequencies.

We can see from Fig. 8 that the majority of the critical
links are located in the sector highlighted in purple. This
sector is the most loaded in the airspace covered by SEAN,
within which traffic complexity and density are distinctly
higher than other sectors [47]. Also, it can be observed that
as the time scale of network snapshots increases, the number
of detected critical links together with their frequencies de-
creases (thickness of the red links reduces). Two reasons are
attributable to this phenomenon. First, fewer network snap-
shots will be constructed based on the one-month traffic data
when the time scale becomes larger. Therefore, the frequen-
cies decrease as there are fewer network observations. Sec-
ond, each spatial-temporal network snapshot is constructed
based on the traffic for a given time period. If the time
scale for constructing the weighted networks becomes larger,
then the weights on the airway links do not distinguish from
each other, resulting in homogeneous network observations.
Consequently, both the centrality metric and the percolation

theory will not work for a homogeneous network as each link
in the network acts importantly the same as others do.

D. VALIDATION ON THE IDENTIFIED CRITICAL LINKS
The above experiments have demonstrated the case study on
the critical links detection in the SEAN using the suggested
network theories. In this section, we validate the criticality of
the detected critical links from three perspectives.

1) Air Traffic Volume Perspective
One can see from Fig. 6 that the maximum number of
detected critical links in the SEAN is 5. Note that there are a
total number of 44215 flights passing through the SEAN in
Dec. 2018. The ratio of flights passing each of the five critical
links, appearing with the highest frequency under different
time scales, over the total number of flights is presented in
Table 1.

Note that the four links marked in bold in Table 1 are
the commonly identified critical links under different time
scales. It can be observed from Table 1 that the four links
have high relative usages by flight as the ratios of being
transited through by flights are large. If anyone of the four
links is blocked due to weather or airspace restriction, the
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(a) 15 minutes (b) 30 minutes

(c) 45 minutes (d) 60 minutes

FIGURE 8: Spatial distributions of the critical links in SEAN. The red links are the determined critical links, and the thickness of
the links is proportional to their frequencies.

TABLE 1: Ratio of flights (r) on each of the 5 high frequency links being detected as critical links under different time scales.

15minutes 30minutes 45 minutes 60 minutes

Link Name r (%) Link Name r (%) Link Name r (%) Link Name r (%)
MABAL – VISAT 10.68 MABAL – VISAT 10.68 KILOT – OTLON 5.68 RAXIM – VMR 5.69
KILOT – OTLON 5.68 KILOT – OTLON 5.68 AKOMA – VMR 13.37 AKOMA – VMR 13.37
LUSMO – OPULA 10.69 RAXIM – VMR 5.69 MABAL – VISAT 10.68 KILOT – OTLON 5.68
LUSMO – TERIX 9.90 KILOT – LIPRO 5.68 RAXIM – VMR 5.69 MABAL – VISAT 10.68
KILOT – LIPRO 5.68 LUSMO – OPULA 10.69 KILOT – LIPRO 5.68 KILOT – LIPRO 5.68

corresponding portion of flights as recorded in Table 1 will
be directly affected. For example, if the link “MABAL –
VISAT” is blocked, 10.68% of the total flights will therefore
be affected, and air traffic control operations such as flight
re-routing, speed control, vectoring, etc., would be required.

2) Airspace Design Perspective
Jet routes are equipped with ground-based navigation bea-
cons such as VOR/DME stations. A VOR/DME beacon emits
radio signals to provide surveillance information (range and
bearing) for flights to navigate through the sky [48], [49].
VOR/DME stations serve as important navigational aids con-
necting all significant traffic flow sources [50]. Fig. 9 presents
a snapshot of the aeronautical chart of SEAN in which the

four high-frequency critical links are annotated.

It can be seen from Fig. 9 that the three links “MABAL –
VISAT” (on airway M758), “KILOT – LIPRO” and “KILOT
– OTLON” (on airway M761) lie on airways (radio sig-
nals) radiated from PEKAN VOR/DME, which pilots and
controllers will primarily choose for easy use of naviga-
tion. Moreover, links “KILOT – LIPRO” and “KILOT –
OTLON” are on airway M761 between the outbound radio
of two VOR/DMEs (PEKAN VOR/DME and KUCHING
VOR/DME). This airway serves the heavy traffic between
Kuala Lumpur (in west Malaysia) and Kuching (in East
Malaysia) [51]. Link “MABAL – VISAT” is on the airway
from PEKAN VOR/DME to waypoint “LUSMO”, the meter-
ing point for flights entering sector 5 in Singapore airspace
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FIGURE 9: Geographical positions of critical links 1 - “MABAL – VISAT”, 2 - “KILOT – OTLON”, 3 - “KILOT – LIPRO” and 4 -
“RAXIM – VMR”. The picture is excerpted from the website of SkyVector [52].

fly to Indonesia, Philippines, East Malaysia, and Japan.
Waypoints “MABAL”, “VISAT”, “OTLON”, “KILOT”, and
“LIPRO” are the crossing points for airways radiated from
MERSING VOR/DME and PEKAN VOR/DME, which
serves major air traffic flows from airports in Singapore and
Malaysia. Link “RAXIM – VMR” caters to the heavy traffic
flow between Singapore and China. Waypoint “VMR” is at
MERSING VOR/DME, which is a crucial metering point
for flights from/to Singapore airports. Additionally, apart
from the four links, the rest of the seven links listed in
Table 1 (“LUSMO – OPULA”, “LUSMO – TERIX”, and
“AKOMA – VMR”), are all located on airways radiated from
VOR/DMEs.

3) Operational Perspective
This section presents the validation of the criticality of the
identified links from an operational perspective, considering
the feedback from operational experts. The detection results
are validated from an operational perspective, including i)
spatial view based on airspace and traffic flow structures, and
ii) temporal view based on real traffic scenarios.

i) Spatial view based on airspace and air traffic flow
structures

Table 2 summarizes the characteristic information of the
four critical links “MABAL – VISAT”, “KILOT – OTLON”,
“KILOT – LIPRO” and “RAXIM – VMR”. SMEs use this
information to analyse the spatial criticality of the identified
critical links. In the following paragraphs, the analysis of
each of the four links will be illustrated one by one.

1) Spatial criticality of link “MABAL – VISAT”: Airway
link “MABAL – VISAT” is located on Air Traffic Service
(ATS) route M758, which is a bidirectional airway. It accom-
modates high traffic volumes as the ratio of flights in SEAN
transiting through “MABAL – VISAT” is 10.68%. Given the
short length of the link, which is 41 nautical miles (nm),
“MABAL – VISAT” possesses a high traffic density while

the peak number of aircraft transiting through the link is 6 ~
7 per 15 minutes derived from the traffic data.

Table 2 lists the Entry – Exit waypoints, in SEAN, of
flights transiting through “MABAL – VISAT”. The right-
heading arrow indicates that the flights are transiting in
the direction presented in the table header, i.e., “MABAL
– VISAT”, and vice versa. The corresponding flight paths,
connecting these Entry – Exit pairs of flights transiting in the
direction of “VISAT – MABAL”, are highlighted by green
dashes in Fig. 10, while paths in the direction of “MABAL –
VISAT” are highlighted by green dashes in Fig. 11. It can be
seen from Fig. 10 that flights flying outbound of Singapore
FIR and taking the three major ATS routes, namely, L625,
N884, and M758, will transit through the link in “VISAT –
MABAL” direction. The ATS route of M758 facilitates the
smooth flow of heavy air traffic between Peninsular Malaysia
and East Malaysia, Brunei [53]. Air traffic on ATS route
M758 handles approximately 742 movements a week in 2016
[53]. The unidirectional ATS routes N884 and L625 cater
to the main traffic flow flying eastbound to the Philippines,
far east (Japan), USA, etc [51]. Fig. 11 shows that inbound
flights, from Peninsular Malaysia, Brunei, Philippines and
far east via ATS routes M767 (unidirectional), M758 (bidi-
rectional), merge to route M758 and transit through link
“MABAL – VISAT” to the west. From this point of view, the
critical link “MABAL – VISAT” serves as a pivot to spread
the eastbound flights in SEAN to the north-east world and
caters to westbound flights entering SEAN from the north-
east world.

The criticality of link “MABAL – VISAT” not only de-
pends on its high traffic density and its presence on the major
ATS route M758, but also depends on its position in the
airspace. Link “MABAL – VISAT” is located in the busiest
sector in the airspace covered by SEAN, with the highest
traffic load and complexity. The trunk route M758 intersects
with the major ATS routes M771 and N892, which cater for
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TABLE 2: Characteristic information of critical links “MABAL – VISAT”, “KILOT – OTLON”, “KILOT – LIPRO” and “RAXIM –
VMR”. The right-heading arrow “→” represents that the information is for flights transiting in the same direction as presented
in the table header, e.g., from “MABAL” to “VISAT”, and vice versa. “Entry - Exit in SEAN” denotes the entry waypoint and exit
waypoint in SEAN of flights transiting through the corresponding critical link, which are visualized with the corresponding flight
path in Figs. 10 and 11.

MABAL – VISAT LIPRO – KILOT KILOT – OTLON RAXIM – VMR
ATS route M758 M761 M761 M771

Direction bidirectional bidirectional bidirectional unidirectional

Length (nm) 41 32 21 47

Flight ratio 10.68% 5.68% 5.68% 5.69%

Peak #aircraft/15mins 6 ~ 7 4 ~ 5 4 ~ 5 4 ~ 5

Mean speed (knots)→ 474.4 472.8 485.9 ———————–

Speed range (knots)→ 246.2 ~ 615.6 322.3 ~644.6 315.4 ~ 630.7 ———————–

Mean speed (knots)← 446.6 445.8 451.4 442.3

Speed range (knots)← 273.6 ~ 615.6 322.3 ~ 644.6 315.3 ~ 630.7 282.9 ~ 565.7

Entry – Exit in SEAN→ OLKIT – SAROX, AGOBA – SAROX AGOBA – SAROX
GULIB – SAROX KAMIN – SAROX KAMIN – SAROX
OLKIT – IDSEL AGOBA – OTLON AGOBA – OTLON ———————–
TEGID – SAROX KAMIN – OTLON KAMIN – OTLON
TEGID – IDSEL
GULIB – IDSEL

Entry – Exit in SEAN← KIMAT – OLKIT KIMAT – AGOBA KIMAT – AGOBA VMR – DUDIS
KIMAT – AKMON KIMAT – KAMIN KIMAT – KAMIN PARDI – DUDIS
KIMAT – LAXOR OTLON – AGOBA OTLON – AGOBA VTK – DUDIS
IDSEL – OLKIT OTLON – KAMIN OTLON – KAMIN PU – DUDIS
IDSEL – LAXOR OTLON – ARUPA OTLON – ARUPA VMR – AKMON
IDSEL – AKMON
KIMAT – TERIX
VMR – AKMON
KIMAT – SAROX
KIMAT – LUSMO

flights to and from the north (China, Vietnam, Thailand,
etc.) [47], [53], at the waypoints “VISAT” and “MABAL”
respectively. Therefore, managing the confluence of the ATS
route M771 and N892 against the South China Sea air traffic
flow on ATS routes M758 is a demanding task and puts
pressure on link “MABAL – VISAT” due to the complexity
exacerbated by the high density of crossing air traffic [54].

2) Spatial criticality of link “LIPRO – KILOT” and
“KILOT – OTLON”: Airway links “LIPRO – KILOT” and
“KILOT – OTLON” are on ATS route M761 (bidirectional
airway). The two links handle 5.68% of flights in SEAN.
Both of them have a short length, 32nm and 21nm respec-
tively, and handle 4 ~ 5 flights per 15 minutes. The traffic
density on the two links reaches a relatively high level,
considering the short lengths of the two links, leading to a
short space of time for reaction.

“LIPRO – KILOT” and “KILOT – OTLON” locate on
M761, which is a trunk route for air traffic in east – west
direction. Table 2 presents the Entry – Exit waypoints in
SEAN of flights transiting through links “LIPRO – KILOT”
and “KILOT – OTLON”. The right-heading arrow indicates
that the flights are transiting in the westbound direction of
“LIPRO – KILOT” and “KILOT – OTLON”, and vice versa.
The corresponding flight paths connecting the listed Entry –

Exit pairs are highlighted by red dashes in Fig. 10 (for east-
bound flights) and Fig. 11 (for westbound flights). It can be
observed from Fig. 10 that eastbound flights transit through
“OTLON – KILOT – LIPRO” on ATS route M761 and spread
to ATS route M761, M646 and N875, which accommodates
the major flows of air traffic between east Malaysia and
Peninsular Malaysia, Brunei, Philippine, Indonesia, etc [53].
Similarly, from Fig. 11 we can see that westbound flights
enter Singapore FIR through ATS routes M646 and N875.
Flights then merge to ATS route M761 and fly to the west
through links “LIPRO – KILOT – OTLON”.

Similar to link “MABAL – VISAT”, besides their high
traffic density and crucial position, links “LIPRO – KILOT”
and “KILOT – OTLON” are located within the highly uti-
lized sector (the sector highlighted in purple in Fig. 8).
Additionally, ATS route M761 crosses ATS route M771
and N892, which handle major traffic flows to and from
the north in SEAN [47], [53], at waypoints “OTLON” and
“KILOT” respectively. Traffic flow on ATS route M761
crosses north-eastbound traffic flow on ATS route N884 at
waypoint “LIPRO”. The high density of crossing traffic and
the short space of time for reaction due to the short lengths
of the two links have increased the pressure on handling the
high volume of air traffic on links “LIPRO – KILOT” and
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FIGURE 10: Routes of flights transiting through airway links identified through entry-exit waypoints as: “VISAT → MABAL” (green
dashes), “OTLON → KILOT → LIPRO” (red dashes) and “VMR → RAXIM” (purple dashes).

“KILOT – OTLON”, which makes the two links critical in
SEAN.

3) Spatial criticality of link “RAXIM – VMR”: Link
“RAXIM – VMR” is on the unidirectional ATS route M771
which accommodates outbound traffic flows heading to the
north. Therefore, only flights from south to north in SEAN
will transit through it, and there will be no flights on
“RAXIM – VMR” in the opposite direction, i.e., north to
south. It is a highly utilized link through which around 5.69%
flights in SEAN will transit. The length of “RAXIM – VMR”
is 47nm, and the peak number of flights on “RAXIM – VMR”
is normally 4 ~ 5 per 15 minutes.

Link “RAXIM – VMR” has an essential position in SEAN.
By referring to Fig. 9, it can be seen that waypoint “VMR” is
located at MERSING VOR/DME, which is a crucial beacon
point for aircraft flying in/out of Singapore. The majority
of the northbound traffic flow in SEAN will transit through
“RAXIM – VMR”. The Entry – Exit waypoints in SEAN, of
flights transiting through link “RAXIM – VMR”, are shown
in Table 2. The corresponding flight paths connecting the
Entry – Exit pairs are highlighted by purple dashes in Fig.
10. Combining Fig. 10 and Table 2, it can be observed that
three major traffic flows will converge at “VMR” and head
to the north via link “RAXIM – VMR” on route M771:
(1) northbound flights taking off from Singapore, transiting
through waypoints “PU”, “VTK” and heading to “VMR”,
(2) northbound traffic flow from Johor Bahru (in Malaysia),
(3) northbound traffic flow from Jakarta FIR via ATS routes
G579 (one of the busiest international routes in this region)

whose destination is beyond Singapore. The pressure of han-
dling the confluence of traffic at “VMR” and accommodating
the northbound flights to transit onto ATS route M771 in the
first place adds to the criticality “RAXIM – VMR”.

The convergence of different types of traffic contributes to
the criticality of link “RAXIM – VMR”. Departure flights
from Singapore and Johor Bahru, which are still in their
phase of climbing to the cruise level, will need to step
climb on link “RAXIM – VMR” due to en-route traffic
from Jakarta. Moreover, traffic on link “RAXIM – VMR”
enters the busiest sector in Singapore FIR at “RAXIM” and
immediately crosses the west-east direction traffic on ATS
route M761, which leads to a potential area of conflict at
“RAXIM” and affects the smoothness of traffic flow on
“RAXIM – VMR”.

In summary, all of the four links accommodate a high
volume of air traffic flow in SEAN. Traffic flows on ATS
routes where the four links are located constitute a significant
part of traffic flows within SEAN [53]. The four links serve
a high traffic density due to their short lengths and the heavy
traffic demands. The four links are inside or connecting to
the heavily utilized sector, i.e., the sector highlighted in Fig.
8, within which trunk routes in different directions intersect
with each other. The four links lie on the trunk ATS routes,
and their waypoints are the intersection points of different
trunk links. Considering the above factors, emergencies, such
as system failure, will pose significant inefficiency challenges
on these links. Moreover, if an aircraft within the link has an
emergency, e.g., pressurization problem, the aircraft needs
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FIGURE 11: Routes of flights transiting through airway links identified through entry-exit waypoint as: “MABAL → VISAT” (green
dashes), “LIPRO → KILOT → OTLON” (red dashes).

to descent as soon as possible. Considering the high traffic
density and complexity on those links and the short time for
reaction, the controllers must anticipate and solve such issues
immediately.

ii) Temporal view based on real-time traffic scenarios
The above analyses manifest the criticality of the critical

links from a spatial view. To manifest the efficacy of the
critical link identification results from a temporal perspective,
we have visualized the real-time flight movements with flight
information (callsign, aircraft type, speed, flight level), as
shown in Fig. 12. Two layers of flight traffic are shown
in this figure as an example. Blue Dots represents aircraft
in the airspace. The corresponding critical links identified
under these traffic scenarios are marked in red and change
dynamically over time.

This visualization will allow it to observe the traffic situa-
tions under different periods and validate the real-time criti-
cal link identification results dynamically. Here in this paper,
two examples of air traffic scenarios and the corresponding
critical links identified are shown.

As shown in Fig. 13a, at UTC time 01-Dec-2018 03:12:00,
“MABAL – VISAT” (marked in red) is identified as a critical
link. This time is 11:12:00 local time of Singapore. At this
time, as shown in the figure, a high volume of flights transit
through link “MABAL – VISAT” on ATS route M758, from
both eastbound and westbound. Meanwhile, many north-
east direction flights are flying along ATS route M771 and
crossing traffic flow on M758 at waypoint “VISAT”. This
situation leads to a potential area of conflict at “VISAT”. On

the rest of the network, either the traffic density is not high or
the pressure of handling crossing traffic is low, making link
“MABAL – VISAT” critical at this period.

As shown in Fig. 13b, “RAXIM – VMR” is identified as a
critical link (marked in red) at UTC 01-Dec-2018 05:41:00.
UTC 05:41 is between 13:00 and 14:00 local time of Singa-
pore. At this time, more east-west bound flights are transiting
through ATS routes M758 and M761, which can also be
observed from Fig. 13b. Meanwhile, many flights transiting
from Singapore to MERSING (“VMR”) are flying in north-
north-east direction via ATS route M771. Traffic flow on
M771 enters the sector filled with heavy traffic at waypoint
“RAXIM”, which has a high density of flights at this time,
and immediately crosses the east-west direction traffic flow
on M761. This situation puts potential conflict pressure at
“RAXIM”. Moreover, departure flights on “RAXIM – VMR”
will need to step climb to the cruise level due to the crossing
traffic on M761. This also adds to traffic complexity on the
link “RAXIM – VMR”. The above facts make “RAXIM –
VMR” a critical link at this moment compared to other links.

The above analyses from the perspective of traffic vol-
umes, aeronautical charts, and the operational perspective
manifest that the proposed method is effective in identifying
critical airway links and can dynamically identify critical
links over time in accordance with changing traffic condi-
tions.
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FIGURE 12: Real-time visualization and simulation of air traffic data for SMEs’ analysis. The corresponding critical links identified
under the traffic scenario are marked as red segments. Only two flight levels, out of eleven, and the corresponding air traffic is
illustrated in this figure. The critical link identified evolves over time in accordance with the changes in air traffic.

(a) MABAL – VISAT (b) RAXIM – VMR

FIGURE 13: Examples of traffic scenarios under which “MABAL – VISAT” or “RAXIM – VMR” is identified as a critical link. The
critical links are marked in red. Each blue dot represents one flight in SEAN.

VI. CONCLUSIONS

Note that identifying critical links in an airway network can
assist with air traffic flow management, flight scheduling, and
resource allocation. This paper proposed complex network
models to detect critical links in a given airway network
dynamically. In order to quantify how critical a link of
an airway network is, two metrics were introduced, i.e.,
edge betweenness centrality (identify links act as the traffic
pivots with which shortest paths frequently pass through)
and percolation theory (identify links that act as the bridges
whose failures will decrease the network’s structural integrity
significantly). As the critical links of an airway network
can vary over time, spatial-temporal airway networks were

constructed based on flight track data. Then the two network
metrics were individually applied to each network snapshot
for critical link detection, and their results were spatially
intersected to determine the final critical links.

The proposed methodology is generic in the sense that it
can be applied to any air traffic network given the sufficient
data on air traffic. However, critical links detection in some
air traffic networks might be challenging. For example, in
European airspace, air traffic has significant vectoring, while
in Chinese airspace, air traffic usually adheres to flight plans
in en-route airspace. The proposed method was applied on
SEAN with one-month flight track data. The detection results
showed that the critical links in SEAN vary over time. The
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majority of the links were concentrated in the sector that
witnessed heavy transition traffic in the airspace covered by
SEAN. Some of the critical links appeared with a high fre-
quency and amongst which the four airway links “MABAL
– VISAT”, “KILOT – OTLON”, “KILOT – LIPRO”, and
“RAXIM – VMR” distinguished themselves from the rest.

Furthermore, we noticed that the four critical links belong
to airways connecting two navigation aids (VOR/DME) or
connecting one navigation aid (VOR/DME) to an impor-
tant metering point. Observations from aeronautical charts
showed that waypoints “MABAL”, “VISAT”, “OTLON”,
“KILOT”, “LIPRO” and “RAXIM” are the crossing points
of airways on the outbound radial of three navigation aids
(PEKAN VOR/DME, KUCHING VOR/DME and MERS-
ING VOR/DME), while the waypoint “VMR” is a metering
fix. These observations manifest that the detected critical
links based on the proposed method have operational signif-
icance. Further operational analysis by controllers validates
the operational criticality of the detected critical links from
both spatial and temporal views.

It is expected that the proposed method, which is based on
complex network theory, can help identify dynamic airway
links that are operationally critical as identified by SMEs.
Moreover, considering the temporal nature of the proposed
method, with good traffic flow prediction tools in the fu-
ture, this method can be adopted to predict critical links in
airway networks, which can help allocate resources in the
airspace better and assist controllers in real-time air traffic
management. Once a link is identified as critical for a given
time period, ATFM measures can be applied in advance to
prevent the potential failure of the critical link to reduce its
impact on the flow of air traffic. On the strategic planning
and pre-tactical planning stages of ATFM, by examining the
forthcoming demand and assessing the traffic pressure on
the critical links (such as the aforementioned four critical
links), steps can be taken to balance the traffic pressure and
operational efficiency on the critical links such as arranging
with the Air Navigation Service Providers (ANSPs) to pro-
vide adequate capacity on the critical links at the required
time, optimizing air traffic flows to reduce the traffic pressure
on the critical links, scheduling or rescheduling flights as
appropriate to avoid the critical links, and deciding the need
for tactical ATFM measures on the critical links. On Tactical
ATFM operations, re-routing traffic and flight level allocation
can be applied according to the changing traffic situation and
the corresponding critical links to ensure the smooth flow of
air traffic through the air traffic network.
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