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Aircraft trajectory complexity metric: an image

processing approach

B. G. NGUYEN∗, D. DELAHAYE†, P. MARÉCHAL‡

Abstract

In this paper we propose an image processing approach to air traffic
management. We derive a method for extracting the main flows, and then
develop an airspace complexity indicator along the main flows. This index
can be used at the macroscopic level. Our algorithm was tested on data
from the French airspace.

1 Introduction

1.1 Complexity

The operational capacity of a control sector is currently measured by the
maximum number of aircraft able to cross the sector in a given time period.
This measurement does not take account of the orientation of traffic and con-
siders geometrically structured and disordered traffic in the same manner. Thus,
in certain situations, a controller may continue to accept traffic even if the oper-
ational capacity is exceeded (structured traffic); in other situations, controllers
may be obliged to refuse additional traffic even though operational capacity
is not reached yet (disordered traffic). Thus, a measurement in terms of the
number of aircraft per unit of time constitutes an insufficient metric for the
representation of the level of difficulty corresponding to a particular traffic sit-
uation.

Ideally, in the context of operational control, one should find a metric which
precisely measures the level of mental effort needed to manage a set of aircraft.
Without going so far, it is possible to find complexity metrics which go beyond
a simple measurement of the number of aircraft. We will start by clarifying two
essential concepts to use in the rest of this section:

• Control workload: measurement of the difficulty for the traffic control
system of treating a situation. This system may be a human operator or an
automatic process. In the context of operational control, this workload is
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linked to the cognitive process involved in managing some traffic situation
(conflict prediction and resolution, trajectory monitoring, etc.).

• Traffic complexity: intrinsic measurement of the complexity associated
with a traffic situation. This measurement is independent of the system
in charge of the traffic and depends only on the geometry of trajectories.
It is linked to sensitivity to initial conditions and to the interdependency
of conflicts. Uncertainty with respect to positions and speeds increases
the difficulty of predicting future trajectories. In certain situations, this
uncertainty regarding future positions can increase exponentially, making
the system extremely complex in that it is virtually impossible to reliably
extrapolate a future situation. When a future conflict is detected, a reso-
lution process is launched which, in certain situations, may generate new
conflicts. This interdependence between conflicts is linked to the level of
mixing between trajectories.

The search for metrics of the complexity of air traffic has attracted consider-
able attention in recent years, particularly in the United States and in Europe.
The first projects were launched in Germany in the 1970s, and since then the
subject has continued to develop. Currently, NASA, MIT and Georgia Tech are
involved in work on the subject within the framework of the NextGen project.
In Europe, the DSNA, the DLR and the NLR are involved in similar activities
linked to SESAR.

1.2 Main flow

As for previous metrics, the objective of our metric is to measure the level
of complexity of a given traffic situation. Our approach is based on the notion
of dominant trajectory also called major flow or main flow. In [2], the definition
of the major flow was given as follows:

When radar tracks are observed over a long period of time in a
dense area, it is very easy to identify major flows connecting major
airports. The expression “major flows ”is often used but never rigor-
ously defined. Based on an exact trajectory distance and a learning
classifier, it is possible to answer the following questions: Given a
set of observed trajectories, can we split it into “similar ”trajec-
tory classes? If yes, classes with highest number of elements will
rigorously define the major flows. Given those classes and a new
trajectory, can we tell if it belongs to a major flow and which one?
The principle of the major flows definition is to use shape space to
represent trajectory shapes as points and to use a shape distance
(the shape of a trajectory is the path followed by an aircraft, that
is the projection in the 3D space of its 4D trajectory. The speed on
the path has no impact).

In order to successfully plan and accommodate the increased number of
flights, one must be able to identify major flows in the airspace. In [6, 7],
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Histon, J.M. et al. indicated the importance of the standard flows crossing a
sector. They also showed that complex sectors have many entry and exit points
with many interacting flows. The major flows and their interactions constitute
the basis for air traffic controllers to build their abstraction of a sector.

In the study [12], the authors consider that sector capacity should be based
on the geometric distribution of major flows in sectors. A list of flow features
is then used to describe traffic flow patterns. Based on such features, they
proposed a method for computing the sector capacity. The method avoids mea-
suring the controller workload directly and predefining the controller workload
threshold.

In [11], major flows are used to study the impact of severe weather con-
dition. Although analyzing aircraft trajectories is a vital component of such
tools, individual flight scale can either be prohibitively expensive due to the
large number of operations, or inappropriate for macroscopic features or trends
in big airspace. Hence, it is customary for analytical tools to include algorithms
that capture and aggregate the flight behavior while preserving an appropriate
level of fidelity [5].

There are several algorithms used to extract the major flows in a set of tra-
jectories. Some of them use traditional data reduction methods (e.g. Principal
Component Analysis (PCA)) with clustering methods (e.g. k-means). In [3],
Eckstein used PCA and k-means to build a flight taxonomy. Then, Gariel et al.
have improved this method by increasing data dimensionality (by adding head-
ing, angular position, etc.) and have used the DBSCAN clustering algorithm.
The advantage of this algorithm is that it does not require a priori selection of
cluster size and feature outlier identification. Marzouli et al. [8] also used PCA
and DBSCAN to identify flows, from which a mathematical graph (network) was
created. Recently, Enriquez and Kurcz [5] proposed another approach based on
spectral clustering to identify flows in terminal and en-route airspaces. In [4],
Enriquez extended this method to identify flows by accounting for the temporal
dimension.

Based on the project called FromDaDy (which stands for FROM DAta to
DisplaY), Marzouli et al. [8] have developed a visualization tool which is used
to display and extract specific recorded trajectories. A two step algorithm is
proposed. The first step uses the KDEEB algorithm (which stands for Kernel
Density Estimation-based Edge Bundling) so as to bundle the trajectories into
a less cluttered graph. Once this step is implemented, a given graph drawing
is transformed into a density map using kernel density estimation. The second
step collects flows through a sequence of brushing, picking, dropping algorithms.

In this paper, we propose a different approach which is based on image
processing. The paper is organized as follows. Section 2 describes how to build
a density map. The extraction of the main flows is given in Section 3. In
Section 4, we derive a new index of complexity basing the BV norm. Finally,
we provide illustrations in Section 5.
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2 Generating the Density map

This section describes how the density map is built. The initial data set
consists in a set of trajectories for several days of traffic in the French airspace.
Each trajectory is represented by a set of samples gathering positions, time,
speed vector and id which are accumulated on a map.

We set the size of the map to 800×1000 pixels. In order to increase efficiency
of the algorithm, we first interpolate data. Some of the previous interpolation
models have been tried and compared. For our purposes, cubic spline interpo-
lation has been chosen as it produces the best results in term of error between
models and observation. Cubic spline interpolation is easy to implement and
produces a curve that appears to be seamless. Furthermore, it is an efficient
and numerically stable method for determining smooth curves from a set of
points. After interpolating, we scale the trajectory as a mapping from R2 into
[0, 1] (2D image). It is then quite simple to build a matrix from such a 2D map.
This matrix (Map) will represent the aircraft density of the given airspace and
is built with the following process.

The map is built from the interpolated trajectories as follows: the value
at each square pixel of the map (indexed by the couple (i,j)) is the number
of trajectories going through this pixel. We then obtain a matrix with integer
values ranging from 0 to the total number of trajectories. Suppose that (x, y)
is a grid point of some trajectory. Then

Map[i][j] = Map[i][j] + 1, with i = ceil(y ∗ length), j = ceil(x ∗ width),

here length×width is the size of the map. The function ceil extract the integer
part of a given real number. The Figure 1 illustrates how we can build the
matrix of density map.

Figure 1: Establishing the matrix of density map
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3 Medial axis extraction

After getting the map from the above section it is possible to generate a
traffic picture. Figure 2 shows the density map of one day of traffic over France.
Major air traffic flows clearly appear in the airspace. This image is quite clear
but not sufficient for identifying major flows.

Figure 2: Traffic over France generated from the density map

In order to produce images which are easier to understand and sharper, we
scale the density map to a gray scale matrix. This allows to extract the flows
without losing the structure of the airspace. The Figure 3 (a) shows a grey scale
image of the traffic over France.

The map which we get from the density of traffic is analogous to the shape
of retinal image (See Figure 3 (b)).

In another context, namely that of angiography of the retina [9], the local
BV-norm turned out to be an interesting indicator of complexity, and provided
an efficient criterion for the classification of retinal images. This encouraged
us to envisage using the same criterion for the evalution of complexity in the
context of air traffic management. Intuitivemly, the reason is that the BV-
norm is well adapted to the measurement of local variations. As far as traffic
complexity is concerned, our intuition is that the local complexity is directly
related to the variations of the image whose construction was described earlier
in the paper. The simulations we shall provide in the last section corroborate
this intuition.
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(a) An Image which was created
from the gray matrix.

(b) An example of a retinal image

Figure 3: Pictures illustrate similarities between the air traffic map and the
retinal image

We treat the main flows in the air traffic map as vessels in the eye image.
So, the remaining task of medial axis extraction has changed to the task of
detection and measurement of blood vessels in retinal images. Detection and
measurements of vessel caliber have been widely studied using a variety of meth-
ods. In the retinal vessel segmentation process, the outcome is a pixel-based
classification result. Any pixel is classified either as vessel or surrounding tissue.
A number of methods for segmenting vascular network have been reported. In
our research, we chose the algorithm of the authors Bankhead P et al. [1] to
get the features of the major flows (the centerlines, the diameters of flow, the
directions of flow, etc.). It is based on a flow representation, similar to the vessel
extraction in the previous sections.

The input data set contains 104072 trajectories which were collected during
one week, between 21st and 27th October 2013, in France. We applied the
algorithm to each day of traffic.

The Figure 4 shows that we can effectively apply the method for getting
medial axes. It also shows that almost all main flows in the air traffic were
totally extracted.
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Figure 4: Major flows extraction in the French airspace

4 Application of BV norm to airspace complex-
ity

The total variation has been introduced in Computer Vision first by Rudin,
Osher and Fatemi [10], as a regularizing criterion for solving inverse problems. It
has been proven to be quite efficient for regularizing images without smoothing
the boundaries of the objects. Normally, one can apply it for solving differential
equations as well as for image processing. By contrast, we use the total variation
not for reconstruction purpose, but rather for classification. Our images are
given (so we never have to minimize the TV), and we actually compute their
total variation only to analyze their features. In this paper the total variation
is used for measuring the change of image intensity.

We calculate BV norm at each point on centerlines of the flows in circle area
or in rectangular area.

4.1 Notations and Preliminary Remarks

Let X denote the Euclidean space RN×N . In order to define the discrete
total variation, we introduce a discrete (linear) gradient operator. If u ∈ X, the
gradient ∇u is a vector in Y = X ×X given by

(∇u)i,j =
(
(∇u)1i,j , (∇u)2i,j

)
with

(∇u)
1
i,j =

{
ui+1,j − ui,j if i < N

0 if i = N

(∇u)
2
i,j =

{
ui,j+1 − ui,j if j < N

0 if j = N
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for i, j = 1, ..., N .
Then, the total variation of u is defined by

J(u) =
∑

1≤i,j≤N

|(∇u)i,j | (1)

with |y| =
√
y21 + y22 for every y = (y1, y2) ∈ R2. We calculate the BV norm

along the main flows and use it as a metric of the complexity in the airspace.
After extracting all major flows and their features by using the algorithm

described in [1], we calculate the total variation on two different domains (circle
and rectangular) (see Figure 5 (a) and Figure 5 (b)).

(a) BV norm computation on circle
domain.

(b) BV norm computation on
rectangular domain

Figure 5: Pictures illustrate the domain on which BV norm is computed

In the case of a circular domain, the total variation at each point P is given
by

J(u) =
∑

(i,j)∈I

|(∇u)i,j | (2)

where I is the set of double indices corresponding to points in the disc of center P
and radius R. Note that R ≥ r, where r is the radius of flow at P (which is
determined by experiment).

In the case of a rectangular domain, the total variation is given by

J(u) =
∑

(i,j)∈D

|(∇u)i,j | (3)

where D is set of double indices corresponding to points in the rectangle with
center P , and width w ≥ 2r. The domain D is rotated by an angle θ, which is
the direction of the flow.

We used the color map to represent the value of BV norm at points located
along centerlines. The figures below illustrate the results when we calculate the
BV norm with different domains and the associated density map.
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Figure 6: BV-norm values computed with circular domain

Figure 7: Density map
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Figure 8: BV-norm values computed with rectangular domain

As expected, in both cases, the main complexity is located around the Paris
area which is known to be the most complex airspace in France. The BV-norm
gives more information on the complexity than the density.

5 Conclusions

In this work, we proposed a method to extract effectively main flows. And
then, we introduced a novel approach for defining an air traffic complexity indi-
cator. The algorithm was tested on data from the French airspace. It is shown
that this index provides a more valuable information than density in terms of
complexity. With this new indicator of air traffic complexity, we believe that it
can be used to improve and upgrade the concept of dynamic density.
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