Duc-Thinh Pham

Phu N Tran

Sameer Alam

Vu Duong

Daniel Delahaye

Deep Reinforcement Learning based Path Stretch Vector Resolution in Dense Traffic with Uncertainties

Keywords: reinforcement learning, air traffic control, deep deterministic policy

With the continuous growth in the air transportation demand, air traffic controllers will have to handle increased traffic and consequently, more potential conflicts. This gives rise to the need for conflict resolution advisory tools that can perform well in high-density traffic scenarios given a noisy environment.

Unlike model-based approaches, learning-based approaches can take advantage of historical traffic data and flexibly encapsulate environmental uncertainty. In this study, we propose a reinforcement learning approach that is capable of resolving conflicts, in the presence of traffic and inherent uncertainties in conflict resolution maneuvers, without the need for prior knowledge about a set of rules mapping from conflict scenarios to expected actions. The conflict resolution task is formulated as a decision-making problem in a large and complex action space.

The research also includes the development of a learning environment, scenario state representation, reward function, and a reinforcement learning algorithm inspired from Q-learning and Deep Deterministic Policy Gradient algorithms.

The proposed algorithm, with two stages decision-making process, is used to train an agent that can serves as an advisory tool for air traffic controllers in resolving air traffic conflicts where it can learn from historical data by evolving overtime. Our findings show that the proposed model gives the agent the

Introduction

Air traffic control (ATC) plays a crucial role in the air traffic management (ATM) system as it is responsible for maintaining flight safety and efficiency. Air Traffic Controllers (ATCOs) must maintain a safe separation distance between any two aircraft at all times. Conflict or loss of separation, between any two aircraft, occurs when the distance between them is smaller than the separation standard, for example, 5 nautical miles laterally and 1000 feet vertically during the en-route phase of flight [START_REF]Separation methods and minima[END_REF]. When a potential loss of separation is detected, ATCOs are responsible for issuing resolution advisory, or vector instructions, to one or both aircraft to resolve the conflict. A maneuver may include a heading change or speed change for lateral conflict resolutions, or a flight level change (climb or descend) for vertical conflict resolutions. With the continuous growth in the air transportation demand [START_REF]IATA, 20 year passenger forecast[END_REF], ATCOs will have to deal with increased traffic in their respective sectors. In such a situation, conflict resolution tools are needed to support ATCOs in high-density traffic scenarios, with inherent uncertainties in the environment.

Many mathematical models for conflict resolution have been proposed in the literature. Heuristic methods are studied as one of the potential approaches conflict resolution have several common limitations. First, complete knowledge of the mapping from conflict scenarios to maneuvers is required; this makes mathematical models highly complex and results in poor quality resolutions in the presence of high uncertainty, as the full knowledge about the environmental uncertainty could never be obtained. Second, the input scenarios must be well standardized for the mathematical models to work properly, and the models do not self-evolve when dealing with unseen and non-standard scenarios (i.e. there is no learning). In this work, we attempt to overcome these drawbacks by considering a reinforcement learning approach for conflict resolution where the learning model does not require prior knowledge of how to efficiently resolve a conflict, and can self-evolve when being exposed to unseen scenarios.

However, for decision-making problems like conflict resolution, their large and continuous state and action spaces are challenging for machine learning methods. Recently, the combination of deep learning and reinforcement learning, which is called deep reinforcement learning (DRL), has increased the potential of automation for many decision-making problems that were previously intractable because of their high-dimensional state and action spaces. In [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], Mnih et al. introduced the Deep Q-Network model which could learn to play a range of Atari 2600 video games at a superhuman level, directly from raw image pixels. Also, AlphaGo [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF], that defeated a human world champion in Go used neural networks that were trained using supervised learning and RL, in combination with a traditional heuristic search algorithm. Two major challenges must be considered when applying DRL in real-world problems like conflict resolution: sample complexity and hyper-parameters sensitivity. The first challenge is common for most of popular on-policy DRL algorithms such as Trust Region Policy Optimization (TRPO) [START_REF] Schulman | High-dimensional continuous control using generalized advantage estimation[END_REF], Proximal Policy Optimization (PPO) [START_REF] Schulman | Proximal policy optimization algorithms[END_REF] and Asynchronous Advantage Actor Critic (A3C) [START_REF] Mnih | Asynchronous methods for deep reinforcement learning[END_REF], because they require new samples at each gradient step. Off-policy algorithms, such as Q-learning based algorithms [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], Deep Deterministic Policy Gradient (DDPG) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] have shown their advantages in sample efficiency. However, DDPG still face the problem with stability and hyper-parameter sensitivity [START_REF] Duan | Benchmarking deep reinforcement learning for continuous control[END_REF][START_REF] Henderson | Deep reinforcement learning that matters[END_REF]. To overcome the second challenge, maximum entropy formulation is a promising approach to provide a substantial improvement in exploration and robustness. Prior work has proposed model-free DRL algorithms that perform on-policy learning with entropy maximization [START_REF] O'donoghue | Combining policy gradient and q-learning[END_REF], as well as off-policy methods based on soft Q-learning and its variants [START_REF] Schulman | Equivalence between policy gradients and soft q-learning[END_REF][START_REF] Nachum | Bridging the gap between value and policy based reinforcement learning[END_REF][START_REF] Haarnoja | Reinforcement learning with deep energy-based policies[END_REF]. However, they generally do not exceed the performance of state-of-the-art off-policy algorithms, such as DDPG. Later, Soft Actor Critic (SAC) [START_REF] Haarnoja | Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[END_REF] is reported to be able to overcome both challenges and provides better performance than DDPG in complex, high-dimensional tasks. In this work, DDPG and SAC will be selected as learning algorithms for our conflict resolution.

Machine learning techniques, specifically reinforcement learning algorithms, have also been employed to build automated system in air traffic control. Focusing on en-route conflict resolution, [START_REF] Brittain | Autonomous air traffic controller: A deep multi-agent reinforcement learning approach[END_REF][START_REF] Brittain | A deep multi-agent reinforcement learning approach to autonomous separation assurance[END_REF][START_REF] Brittain | One to any: Distributed conflict resolution with deep multi-agent reinforcement learning and long short-term memory[END_REF][START_REF] Guo | Safety enhancement for deep reinforcement learning in autonomous separation assurance[END_REF] develop deep distributed multi-agent reinforcement learning frameworks to resolve conflicts by aircraft speed adjustment. Those frameworks are able to identify and resolve conflicts between aircraft in a high-density, stochastic, and dynamic en-route sector with multiple intersections. Besides, several studies apply RL for conflict avoidance and congestion management. [START_REF] Mollinga | An autonomous free airspace en-route controller using deep reinforcement learning techniques[END_REF] presents a RL algorithm to guide an arbitrary number of aircraft every 5 seconds across a three-dimensional, unstructured airspace while avoiding conflicts and collisions. Multi-agent DRL for collision avoidance in dense airspace is also proposed in [START_REF] Li | Optimizing collision avoidance in dense airspace using deep reinforcement learning[END_REF]. In [START_REF] Ghosh | A deep ensemble multi-agent reinforcement learning approach for air traffic control[END_REF], authors propose a deep ensemble multi-agent RL for controlling speed to reduce the traffic congestion, avoid conflict resolution and improve schedule conformation. As observed from the literature, most of the studies on applying deep reinforcement learning for conflict resolution formulate this problem as a continuous control problem in which all aircraft are controlled or navigated at each time step for avoiding all potential conflicts throughout a given airspace [START_REF] Brittain | A deep multi-agent reinforcement learning approach to autonomous separation assurance[END_REF][START_REF] Brittain | One to any: Distributed conflict resolution with deep multi-agent reinforcement learning and long short-term memory[END_REF][START_REF] Guo | Safety enhancement for deep reinforcement learning in autonomous separation assurance[END_REF][START_REF] Mollinga | An autonomous free airspace en-route controller using deep reinforcement learning techniques[END_REF][START_REF] Ghosh | A deep ensemble multi-agent reinforcement learning approach for air traffic control[END_REF][START_REF] Dalmau | Air traffic control using message passing neural networks and multi-agent reinforcement learning[END_REF]. Besides the work of Mollinga et al. [START_REF] Mollinga | An autonomous free airspace en-route controller using deep reinforcement learning techniques[END_REF] which considers three kinds of maneuvers (e.g., speed, altitude, heading), the other ones only focused on speed control for conflict avoidance. More importantly, among those studies, only Guo et al. [START_REF] Guo | Safety enhancement for deep reinforcement learning in autonomous separation assurance[END_REF] proposes the approach for considering uncertainty from the environment.

However their uncertainty is still simply modelled as an uniform random noise, applied on each element of the state vector. Furthermore, since all of the above studies are designed for fully autonomous conflict resolutions, those approaches are unsuitable for a decision support tool where any resolution should be provided to ATCO with sufficient look-ahead time (e.g., at least 4 to 8 minutes before the potential conflict happens) for his/her judgement and decision. To achieve this request, the predictability of the traffic scenario under uncertainties within a given airspace is an important factor. Different from mentioned studies, Tran et al. [START_REF] Tran | An interactive conflict solver for learning air traffic conflict resolutions[END_REF] proposed a DRL approach which is trained using controllers' decisions to provide human's preferred path stretch vector resolutions. The work focuses on the ability to suggest ATCO-like decisions rather than solving the potential conflicts, moreover, there is no environment uncertainty considered in their study. Thus, in this study, we propose a novel approach using Reinforcement Learn-ing for conflict resolution in the presence of surrounding traffic and uncertainty.

The algorithm is designed to provide a full path stretch vector resolution (i.e., lateral maneuver) with at least 4 minutes look-ahead time. More importantly, different levels of the uncertainty in implementation of the maneuver are also modelled and considered. Finally, this approach is designed and evaluated while considering some operational constraints as a decision support tool or an advisory tool for ATCO.

The concept diagram of our approach is illustrated in Figure 1. Conflict scenarios involving multiple aircraft are generated and presented to the agent by the learning environment. The agent, which is driven by RL algorithm, learns to resolve these conflicts by applying several maneuvers given the environmental uncertainty. The agent receives a reward for every maneuver it has tried as performance feedback, and the value of the reward depends on the quality of the maneuvers: positive rewards for maneuvers that successfully resolve the conflicts and negative rewards, or penalties, for maneuvers that are unable to separate the conflicting aircraft safely. Noting that the mentioned maneuvers are the the final maneuvers after searching process. The learning objective is to maximize the reward, and the agent is assumed trained when it consistently gains (converges) high rewards for resolving unseen conflict scenarios. Like ATCOs, the agent can learn by resolving conflicts and has the ability to selfevolve via trial-and-error.

In operational environment, the feedback for each maneuver or decision can be accessed only after it is executed. Thus, the classical setting where the uncertainty is implemented in learning environment and return multiple feedback to estimate the expected reward under uncertainty is impractical. To overcome this limitation, our agent will interact with learning environment during searching process but only the final selected resolution is evaluated under uncertainty. This modification increases the challenge for training model under uncertainty, however, it also makes this work more suitable for online learning in operational environment.

The major contribution of this work is to formulate the conflict resolution problem as a decision-making problem which is then addressed by a RL algorithm. Firstly, an learning algorithm (named DDPG-2S, after the two stage action it uses) is introduced by combining Q-learning and DDPG to handle maneuver actions. Secondly, uncertainty in applying maneuver is introduced in learning environment. Finally, all components in proposed framework are discussed in details for developing reinforcement learning approaches for conflict resolution. In addition, the impact of different factors such as traffic density and uncertainty level on the learning performance are also investigated and discussed in detail. In this study, we give special considerations to the following sub-tasks.

1. Rather than time-based action like continuous control problem, we design our problem such that the agent performs time-independent actions when searching for possible maneuvers.

2. We develop a learning environment for conflict detection and resolution with the following characteristics.

• The reward function is designed to consider not only the conflict status of the scenarios but also the quality (e.g., deviation, maneuverability, etc.) of the maneuvers.

• Maneuver's uncertainty is encapsulated in the learning model with different levels.

• A novel scenarios representation (state vector) is proposed which contains information of the conflict scenario such as conflict status, optimal status and uncertainty level. This state vector must be carefully designed in order to guarantee the convergence of the training.

3. The learning model is designed to handle multi-dimensional actions with different physical scales and units (e.g. time and distance).

Learning Environment

In RL for conflict resolution (Figure 1), the main roles of the learning environment are to (1) present its state to the agent in a form that provides sufficient information to support the agent's decision-making, (2) receive and evaluate the agent's action, and (3) give feedback to the agent as a reward. To provide such environment to the agent for learning to resolve flight conflicts, we develop a scenario generator that generates conflict scenarios and represents them in a form perceivable to the agent. Also, the agent's action is defined and the mapping from the agent's actions to the maneuvers taken by the ownship is established. A reward function is designed for the assessment of the maneuver suggested by the agent. We also consider the environmental uncertainty that occurs during the implementation of the agent's actions.

The learning environment can perform trajectory prediction and conflict detection to evaluate any maneuver of ownship in term of conflict status and deviation. After finding a good solution, the agent can recommend or apply it to resolve the real flight conflict and get the feedback (or reward) from operational environment. The result or sample will be stored in the agent memory and used to train the model later. The operational environment with uncertainty is mimicked by an function to evaluate maneuver applied uncertainty. Noting that even though applying Monte Carlo can be useful to evaluate quality of maneuver, in real scenarios, we might be able to obtain only one sample for each situation.

Conflict scenarios

We define a conflict scenario as a traffic scenario that occurs within a circular area of interest (airspace) of radius r, in which there is one pair of potential conflict between an ownship and an intruder aircraft, in the presence of surrounding traffic. An example of a conflict scenario considered in this study is shown in Figure 2a, and the conflict pair between the ownship and the intruder in this scenario is separately plotted in Figure 2b for clear presentation. In this study, the density traffic is reflected by the number of flights inside the sector in each conflict scenario. In which, flights' entry points, time or directions are randomly distributed. This setup makes the scenario more complicated than in real operation where the flights are organized into flows. Moreover, in operational environment, it is unusual to have multiple conflict in the sector for a given short time period. In most of the practical cases, controller needs to resolve one conflict scenario while avoiding creating secondary conflict. Therefore, in this work, we assume no conflict among the surrounding aircraft; in other words, a conflict always occurs between the ownship and another aircraft in the given airspace. With our designed high-density conflict scenario, the challenge is resolving the primary conflict while avoiding all secondary conflicts. This problem is also challenging because of dense traffic. Let n be the number of aircraft in the given airspace when a potential conflict is being considered, A i denote the locations of the aircraft at the moment the conflict scenario presented to the agent (t 0 = 0), and B i the locations where the aircraft exit the given airspace (0 ≤ i < n), see Figure 2a. Consequently, We now briefly describe the computation of CPA between the ownship and the intruder, and the same procedure is applied to find CPA between the ownship and the surrounding aircraft. Assume that all aircraft are cruising at the same speed of v c , and at the same flight level. At t 0 = 0, the ownship is at A 0 and the intruder A 1 . The velocities of the ownship and the intruder are

A i B i represent
- → u = v c (---→ A 0 B 0 / ---→ A 0 B 0) and - → v = v c (---→ A 1 B 1 / ---→ A 1 B 1)
, respectively. At a time t > 0, the locations of the ownship and the intruder are respectively given by

- → P (t) = -→ A 0 + ut and - → Q (t) = -→ A 1 + vt, and distance between them renders as d 1 (t) ≡ - → d 1 = -→ W 0 + (u -v)t where -→ W 0 = ---→ A 0 A 1 . Minimizing d 1 (t) yields the time-to-CPA as t CPA = - -→ W 0 • (u -v)/ u -v 2 ,
and the closure at CPA

as d 1(CPA) = d 1 (t CPA).
Here, it should be noted that when using the aforementioned CPA formula, a positive t CPA is only found if the two aircraft are converging toward each other. If the two aircraft are diverging (i.e., their CPA already happened somewhere in the past), the resultant t CPA is negative and the initial distance between them is checked to determine any potential loss of separation (at t CPA = 0). If the velocities of the two aircraft are identical, their distance is constant and the initial distance is used for determination of loss of separation (at t CPA = 0).

Ownship's Maneuver

A maneuver, e.g. maneuver A 0 MNB 0 in Figure 3a, is defined as a series of actions performed by the ownship: deviate from original path at time t 1 seconds and at location M (measuring from t 0 = 0 at A 0) by changing the heading by an angle α, and then keep heading along vector --→ MN in t 2 seconds before heading back towards B 0 at returning point N. Thus, a maneuver is fully defined by a set of three parameters (t 1 , α, t 2). In addition, a valid maneuver is defined as the maneuver that satisfies t 1 < t CPA , α ≤ 60 degrees, and t 2 takes a value such that the returning point N located within the interested area. In this study, we assume that any applied maneuver modifies the path of the ownship while leaves the intruder's path unchanged. reflect the aircraft's separation status in the scenario. We shall elaborate the evaluation of the agent's actions and the resultant maneuvers in the definition of reward function later in this section.

Environmental uncertainty

The working environment in air traffic control have high degrees of uncertainties. The controllers have to deal with unknowns originated from, for example, inaccurate trajectory prediction, equipment's measurement errors, weather, and other unexpected events in the airspace. Therefore, any conflict resolution tool for ATCOs must perform effectively in the presence of uncertainty. In this work, we consider environmental uncertainty as something that affects the accurate/precise implementation of the agent's conflict resolution actions. This is further explain as follows: uncertainty model implies that a less deviated and immediately implemented maneuver suffers less from the environmental uncertainties, while a maneuver with large deviation and further in time suffers more.

Scenarios representation

In RL, it is never too much to emphasize the importance of the environment's state representation, as any decision made by the agent is heavily influenced by the agent's perceived state of its environment, and the state representation determines how the agent apprehends the state. In the given problem, to ensure that actions taken by the agent always modify the separation status of the ownship, the scenarios representation must encapsulate the ownship's current separation status. Therefore, it is reasonable, and also important, to include the CPA closure vectors -→ d i in the state vector, because these vectors carry the essential information on the separation statuses of the ownship with other aircraft in the environment. With this in mind, we design the one-dimensional state vector s to represent a scenario as follows.

• The first element is σ indicating the current environmental uncertainty level.

• Separation status between the ownship and aircraft i is encapsulated by

8 elements: sep(O, i) = [P (O,i) , - → d i , - → di - → di , t CP A , (u -v)].
-P (O,i) : x-and y-positions of the ownship at CPA (2 elements)

- - → d i : CPA closure (1 element) - - → di - → di
: x-and y-directions of the CPA closure vector (2 elements)

-t CP A : Time to CPA (1 element) -(u -v):
Relative velocity between two aircraft (2 elements)

• Directional guidance vector (3 elements) v D = [--→ NO CPA , --→ NO CPA]: This
vector is chosen to be --→ NO CPA , where N is the returning point and O CPA the location at CPA of the ownship against the intruder at the beginning.

We shall discuss them in the definition of reward function.

• Turning vector (the last 3 elements

) v T = [--→ MN, --→ MN]: This vector is chosen to be --→ MN.
It reflects the current travel from turning point M to returning point N at each searching step.

Note that the total length of the state vector depends on the maximum number of aircraft n max being considered. The state vector is a fixed length vector in the form: s = [σ, sep(O, 1) ..., sep(0, n max), v D , v T]. In scenarios with less aircraft than n max , the default values are used to fill in those missing elements to maintain the fixed length vector.

Maneuver reward

The reward mechanism is designed to give merit to any maneuver suggested by the agent that successfully separates the aircraft and to punish one that fails to improve the separation status. The environment evaluates the reward based on the resultant state of the scenario upon implementation of the suggested maneuver: More positive rewards are given to maneuvers that improve the separation status, while maneuvers that worsen the situation are punished by negative rewards called penalties. Furthermore, for a valid maneuver that successfully resolves the conflict, the quality of the maneuver is also evaluated, such as deviation from the original trajectory and maneuverability of the resolution.

Let R m (s , a) being the reward function that takes an action a together with its resultant state vector s as two input arguments and returns the reward value. Also, we denote

d min = min i - → d i , (1 ≤ i < n),
as the minimum value among all the separation distances of the ownship against other aircraft. Then, the reward function is defined as

R m (s , a) =            e d min dsep -1 -1, for d min < d sep (1)
0, for a is an in valid maneuver (2)

(1 - ∆D ∆D max), otherwise (3)
where ∆D denotes the deviation of the maneuver from the original ownship's trajectory, and ∆D max the maximum deviation that could occur. In the definition of the reward function, Eq. 1 punishes invalid maneuvers that cause d min < d sep (negative reward) and therefore fail to separate the ownship from other aircraft. On the other hand, Eq. 3 calculates the non-negative rewards for valid maneuvers, which successfully separate the ownship and eliminate all potential conflicts, by evaluating the deviations of the maneuvers from the ownship's original trajectory. The values for the non-negative reward range linearly from 0 to 1. Less deviated maneuvers receive higher rewards, on a score scale of maximum 1. However, since the value 1 implies no deviation from the original trajectory, it does not resolve the primary conflict and must be penalized based on our formulation. Thus, it is worth to note that the reward for the best action in different conflict scenarios will vary and never achieve the maximum score 1.

Our definition for maneuver's deviation as follow.

∆D = w 1 * dist(M, O CPA) + w 2 * dist(N, O CPA), (4)
where dist() yields the distance between two points. Here, Eq. 3 and Eq. 4

imply that less deviated maneuvers shorten the distances MO CPA and NO CPA .

This reflects the design of the reward mechanism to maintain the positions of the action points (M and N) within the neighborhood of the initial conflict location, which could help preventing the maneuver from causing secondary conflicts with surrounding aircraft. This also justifies the inclusion of --→ NO CPA in the state representation as mentioned in section 2.4. From empirical estimation in our conflict scenarios, the value for ∆D max is approximately 100 NM.

The learning model of agent and Learning Mechanism

In our problem, the ultimate goal is to train the agent such that given a conflict scenario, it could resolve the conflict and earn a possibly highest reward after a finite number of actions, as quickly as possible. Instead of using classical optimization approaches, here, we adapt the Deep Deterministic Policy Gradient (DDPG) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] for our learning algorithm. The considered action has three parameters (t 1 , α, t 2) with different ranges and units that makes applying standard DDPG with 3-dimensional action challenging. In previous attempt in [START_REF] Pham | Reinforcement learning for two-aircraft conflict resolution in the presence of uncertainty[END_REF], applying DDPG directly to this problem, after certain number of training episodes, the learned agent becomes diverged and its performance drops significantly. From our investigation, one of the major reasons for that is the complexity of the action space. In this study, we overcome this issue by proposing a modification in handling action space. The action is converted from (t 1 , α, t 2) into (t 1 , x, y) (where (x, y) is the coordinates of returning point N) and a 2-stage learning strategy (separating t and (x,y) into two steps) is designed to improve model performance. This approach is an learning framework which combining searching optimal t 1 while predicting the optimal returning point N(x, y) for each given value of t 1 . We adopt DDPG as the learning algorithm for predicting optimal returning point N(x, y). For bench-marking, two DRL algorithms are used (DDPG and SAC) with 3-dimentional action space (t,x,y). In this section, we briefly describe our agent, show the characteristics of our 2-stage strategy using DDPG algorithm (called DDPG-2S) that make it appropriate for training the agent, and discuss the training process.

Deep Deterministic Policy Gradient (DDPG)

DDPG [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] is a model-free off-policy actor-critic algorithm, combining DPG [START_REF] Silver | Deterministic policy gradient algorithms[END_REF] with DQN [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. One of its main contributions is the introduction of a neural network approximating the actor's policy to deal with continuous action space.

The DDPG algorithm consists of the actor network, and the critic network. In which, the actor network, a = µ(s), is a mapping from a state s to an action a and the critic network assesses the quality of the action a (taken by the actor model) by calculating the action's value Q(s, a), given a scenario s.

To improve the robustness of the algorithm, replay buffer and soft target update are employed. The replay buffer is used to store the past experiences for batch training, and this could improve the independence of the samples used for training the two networks. Soft target update is another technique that stabilizes the learning (line 21 in Algorithm 1, where the update rate is controlled by τ).

Finally, DDPG algorithm allows us to conveniently control the exploration by introducing an exploratory noise policy µ N = N + µ, where the exploratory noise N is Ornstein-Uhlenbeck Noise (OU noise) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF]. Figure 6 shows examples of exploring search path during 10 steps with OU noise, governed by (µ e , θ e , σ e).

The DDPG-2S for Conflict Resolution

When resolving a conflict, the agent could suggest a possible maneuver by computing the set of three parameters (t 1 , α, t 2) that fully defines the maneuver, as mentioned in section 2.2. We could see from Figure 3 that any value of (t 1 , α, t 2) is equivalent to a choice of (t, x, y), where t = t 1 is the heading change time, x and y are the coordinates of the returning point N, relatively to the center of the interested area. Moreover, the possible valid choices of (x, y) highly depend on t; therefore, it is rational to treat the agent's action as a two-stage decision-making process. This approach, DDPG for 2-stage action (DDPG-2S), is the combination of Q-learning and DDPG for learning process. In the first stage, the agent determines the heading change time t that results in the heading change point M. The decision of the heading change time t can be considered as one action and an expected value for each decision for the given scenario must be estimated. In this study, we used DDPG to estimate that value in the second stage. The second stage decides the coordinates (x, y) of the returning point N, being aware of the updated aircraft's locations at time t. This treatment of the agent's action is beneficial in two ways. First, as t and (x, y) are different in nature, the two-stage process allows us to handle them independently. Second, such approach avoids the computing of the original parameters (t 1 , α, t 2) using the same model, which could be problematic because they might be very different in scale. The detail description and explanation are discussed below.

Let's denote s the conflict scenario, a the maneuvering action, and t the time to implement the maneuver from the moment the conflict was presented to the agent. Given the conflict scenario s, the total reward the agent earns for performing an action (a, t) is R(s, a, t). Let Q(s, a, t) be the expected value of the reward: Q(s, a, t) = E[R(s, a, t)]. Given scenario s and action time t, the optimal action a * (performed at t) is defined as

a * = argmax a E[R(s, a, t)]
= argmax a Q(s, a, t).

(

) 5
Given the conflict scenario s, let V (s, t) be the value of taking the optimal action: V (s, t) = max a Q(s, a, t). The optimal time t * to maximize the value

V (s, t) is t * = argmax t V (s, t). (6)
Our ultimate goal is to maximize the expectation of the reward earned by the agent for resolving the conflict scenario s, or to find max a,t E[R(s, a, t)]. We decompose this optimization objective into two consecutive sub-objectives: [START_REF]Separation methods and minima[END_REF] find the optimal action a * and the respective value V (s, t) at all different times t chosen from a pre-defined time grid of N values (t ∈ [T 1 ..T N]) (Equation 5); and (2) select a value of t from [T 1 ..T N] that gives maximum value of V (s, t) (Equation 6). Here, the action a is the position of the returning point N as described in section 2.2. We solve the former sub-objective (Equation 5) using actor-critic reinforcement learning approach. In our conflict resolution problem, the possible space for the returning point is very large and continuous; therefore the employment of the Deep Deterministic Policy Gradient (DDPG) algorithm [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] as the actor-critic algorithm is justified.

The next important task is to mathematically define the intermediate action of the agent. We define an intermediate action a i as a moving step (dx i , dy i), and the agent performs a sequence of intermediate actions [a 0 , a 1 , ..., a k] ≡

[(dx 0 , dy 0), (dx 1 , dy 1), ..., (dx k , dy k)] in search of the optimal location (x, y) of the returning point N. Thus, the final action that constructs the ownship's maneuver is computed as

a = p 0 + a i , (7)
where p 0 is the initial position of the returning point N (i.e. the CPA location of the ownship against the intruder), and a i is the i -th searching step. Here, we impose dx i , dy i ≤ l to limit the distance that the agent is allowed to displace the returning point in each searching step (see section 4 for the value of l). The values of dx i , dy i and the total number of searching steps are controlled by the learning algorithm, which is elaborated in section 3.3.

In our approach, a i is determined by the policy function π(s i), in which s i was resulted from applying the previous action a i-1 . Thus, the searching episode in RL algorithm generates the sequence: (s 0 , a 0 , r 0) → (s 1 , a 1 , r 1) → where Scr min is the minimum score that is acceptable as a valid resolution.

Given a scenario s, let r i be the reward estimated after the agent performing intermediate action a i at the i -th searching step, we have

r i = R m (s i , p 0 + i k=0 a k). (8)
In this study, uncertainty is only effective at the final state when the episode has terminated, in order to reduce the computational cost and increase the applicable of this model. Therefore, after the searching stopped, the uncertainty N of the environment is applied on the final position of returning point N to re-estimate the actual final reward.

r D = R m (s D , p 0 + D k=0 a k + N) (9)
Our proposed 2-stage action DDPG-2S is described in Algorithm 1 below.

Learning mechanism

The interaction between the agent and the learning environment is the core mechanism for training and testing for RL as in Figure 5. The episode is designed as a searching process to locate an "acceptable resolution" (examples can be observed in Figure 7). At each step, the agent predicts the best intermediate action (dx, dy) to modify the current returning point and send it to environment. The learning environment updates the current maneuver by (x , y) = (x + dx, y + dy), evaluates it and sends feedback back to agent. The process is repeated until an "acceptable resolution" or the maximum number of searching steps has been reached. An acceptable resolution is defined as a resolution which gains a reward greater than the minimum reward threshold Scr min . After each of intermediate steps, the agent is punished by a penalty 495 (i.e. subtract its reward by 0.1), and this is to ensure that the agent tries to reach the terminal state as quickly as possible in order to avoid such repeated penalty.

The training process is illustrated in Figure 8. The main purposes of training phase include generating learning samples to input to replay buffer, training between the agent and the environment, a set of data samples is generated and stored in the buffer. For each training iteration, a batch of sample is sampled from the buffer and used as the input to train our model, called batch training.

The step by step algorithm for training is as follows.

505

1. Given the conflict scenario s .

2. The scenario s is shifted with random time duration t 0 to obtain shifted conflict scenario s 0 .

3. Feature extraction algorithm is applied on Shifted conflict scenario s i (i is initialized by 0 for each new scenario) to obtain state vector which is the 510 input for DDPG algorithm.

4. Given the state vector, current exploration actor policy (current actor model µ(s i |θ π) plus exploration noise N i) provides a candidate action a i ≡ (dx i , dy i).

Q ← θ Q , θ µ ← θ µ .
4: Initialize replay buffer R 5: for episode = 1, M do 6:

Initialize a random process N for action exploration.

7:

Receive scenario s from Environment

8:

Computing new scenario s1 by shifting all flights in s a duration heading change time t0 = random(T1, T N)

9:

for t = 1, Max steps do 10:

Select action at = µ(st|θ µ) + Nt according to current policy.

11:

Execute action at, observe reward rt, new state si+1, status dt

12:

Store transition (st, at, rt, st+1, dt) in R

13:

if dt = T rue then

14:

Break 15:

end if

16:

end for

17:

Sample a minibatch of K transitions (si, ai, ri, si+1, di) from R

18:

Compute expected output:

yi =      r(i) if di = 1 r(i) + γ * Q (si+1, µ (si+1|θ µ)|θ Q) if di = 0

19:

Update critic by minimizing the loss:

L = 1 K i (yi -Q(si, ai|θ Q)) 2

20:

Update actor policy using sampled policy gradient:

∇ θ µ (J) ≈ 1 K i ∇µQ(si, µ(si)|θ Q)∇ θ µ µ(si|θ µ)

21:

Update the target networks: Otherwise, the environment returns the intermediate constant reward r i = -0.1 and updates the resultant scenario s i+1 after applying action to modify the current maneuver.

θ Q ← τ θ Q + (1 -τ)θ Q θ µ ← τ θ µ + (1 -τ)θ
6. The sample tuples (s i , a i , r i , s i+1) is stored in replay buffer for later use in training model.

7. When the replay buffer has stored sufficient samples (≥ minimum start size), a batch of samples is sampled randomly from replay buffer for training.

8. The critic model is updated by minimizing the defined loss function (line 19 in 1). 9. The policy gradient is computed from the gradient of critic model and applied to update actor model at each step.

10. Finally, the target networks are updated by soft update mechanism.

11. If end of episode is reached, the searching is terminated and the process starts over from step 1. Otherwise, increase i by 1 and return to step 4. The testing phase or predicting phase is relatively simple since we only need to obtained the final recommended maneuver for a given conflict scenario (Figure 9). Only actor model is needed for this task. However, reward R and expected score Q are also computed for assessing the quality of suggested action. In practical use, the experiences generated in this phase can also be stored in replay buffer for tuning the model via batch training. This setting can help the model tuning to be faster and keep the model up-to-date with new incoming data. The step-by-step for maneuver prediction is described as follows.

1. Given unseen scenario s (i.e. from learning environment):

2. The heading change time t is looped over the range [T 1 ..T N] with the increment ∆t seconds. The conflict scenario s is shifted with each given heading change time t to obtain shifted conflict scenario s.

3. Feature extraction algorithm is applied on shifted conflict scenario s i to obtain state vector which is the input for actor model.

4. Given state vector, actor model suggests action a i ≡ (dx i , dy i).

5. The action is sent to the environment. If end of episode is reached, go to next step, else compute next state s i+1 , i = i + 1 and return to step 3.

6. Given state vector and "optimal" action, critic target model will provide the Q-value V (s, t) = max a Q(s, a, t).

7. Finally, after checking with all values of heading change time t, t * = arg max t V (s, t) , the "optimal" maneuver for given conflict scenario s is obtained (t * , a *) Detail for training and testing processes are also described in Algorithm 1 and Figure 5.

Experiment Configuration

Parameters for conflict scenarios

In our experiments, conflict scenarios are randomly generated in an interested area of radius r = 50 nm. For the initial conflict, d 1(CPA) < d sep where d sep = 5 nm, and 240 ≤ t CPA ≤ 480 seconds, given that the common speed of aircraft v c = 400 knots (nm/hr). This configuration implies that the potential loss of separation between two aircraft is foreseen 4-8 minutes. We consider the maximum number of aircraft in the airspace n max = 30; therefore, the state vector has fixed size of 239 (see section 2.4 for state representation). This value (30 aircraft) is also used in other conflict resolution like [START_REF] Brittain | Autonomous air traffic controller: A deep multi-agent reinforcement learning approach[END_REF] for a given airspace with simple airway network. Different from traditional scenario where 30 aircraft will follow predefined airways and flight levels, in our generated scenarios, aircraft don't follow any routes and all of them travel at the same flight level. Therefore, in this setting, n max = 30 can be considered as a high density traffic. In the event the number of aircraft is less than n max , the elements representing the absent aircraft are replaced by that of the intruder. During maneuvers implementation, we consider four levels of environmental uncertainty, σ = {0, 2%, 5%, 10%}.

Studies [START_REF] Paielli | Empirical test of conflict probability estimation[END_REF][START_REF] Alam | An ensemble approach for conflict detection in free flight by data mining[END_REF] on conflict detection and resolution have mentioned timeto-CPA t CP A and relative conflict angle φ (see Figure 2 for the definition of conflict angle) as important parameters. In this study, the values of those two parameters directly affect the boundary of our action space. In particular, 1. The values of these parameters are chosen after performing a grid-search technique. For example, γ ([0,1]) is the discount factor to weight the importance for future rewards. If γ ← 0, the agent will focus only on immediate rewards. On the other extreme, γ ← 1, the future rewards have greater weight in the model.

t
In our case, final step of episode is the required maneuvers which is the main source of reward, thus in this study γ ← 0.99.

Definition of Successful Resolution

Our definition for successful resolution is not only a resolution which successfully resolve a conflict without causing secondary conflict (feasible resolution), but also "high quality" or high reward. From our defined reward function, a maneuver with positive reward is equivalent to a feasible resolution and the higher the reward is , the smaller the deviation is. In this study, the threshold = 0.7 is set as minimum reward for a successful resolution. This threshold implies that the tolerant of maneuver's deviation is 30% of the maximum deviation (approximately 30NM). Based on this definition, we define the success rate as the percentage of conflict scenarios with successful resolutions over total evaluated conflict scenarios.

Benchmark

First of all, an meta-heuristic algorithm (Tabu-Search), inspired by [START_REF] Allignol | Large scale 3d en-route conflict resolution[END_REF], is developed. This algorithm can achieve the optimal resolution but have high computational cost and require certain "knowledge" of environment's uncertainty for working. Thus, we use it to filtering "infeasible" conflict scenario. We are working with high-density traffic and unstructured airspace, there are cases where there aren't any feasible or good lateral resolution for ownship to resolve potential conflicts. By using the optimal algorithm to filter out such scenarios ("infeasible"), the performance of our model can be accessed more accurately.

The list of conflict scenarios whose best rewards are greater than the threshold 0.7) is selected as evaluating sets. As a result, 1500 conflict scenarios are selected after this step.

Then, two RL algorithms (DDPG and SAC) are developed as conflict resolution model for comparison with our proposal approach. The implementation borrows codes from stable-baselines [START_REF] Hill | Stable baselines[END_REF]. Noting that DDPG-2S and DDPG share architecture and hyper-parameters.

Results and Discussion

During the training process, the model's performance is assessed by the average reward (maximum score = 1). Figure 10 shows the smoothed curve of the three models' convergence after 300,000 iterations. In which, all models are converged (e.g., 0.85 for DDPG-2S, 0.8 for DDPG and 0.78 for SAC) after 150,000 iterations. In the training phase, it takes approximately 0.06 second for one iteration to finish (i.e., 5 hours for 300,000 iterations). In the testing phase, the agent takes approximately 0.02 second to a suggested resolution for one conflict scenario. The experimental computation was performed by a desktop PC with an Intel Xeon W-2123 CPU @ 3.60GHz, 16 gigabytes of system memory.

Figure 11 provides a closer look to the performance of the agent after convergence, indicated by the average reward and the success rate (defined in Section 4.3). To compare our proposed agent with baseline algorithms, the agent is evaluated over the set of 1500 conflict scenarios which are selected in Section 4.4. From Figure 11, we observe relations between the agent's performance indicators (i.e. score and success rate) and the number of aircraft involved.

Increasing the number of aircraft cause the performance to drop, and the environmental uncertainty even worsens this drop. Our model achieves a stable performance with high success rate and reward under the variation of number of aircraft (from 2 to 30) with low uncertainty (σ ∈ (0%, 2%)). It implies that the changing in the number of aircraft or the growing state-space isn't degraded with high traffic density. In the worst case, our model still achieves success rate ≈ 75% with the average reward ≈ 68.6.

To utilize the power of RL algorithm and improve its applicability, the proposed model might be developed as an advisory tool for ATCOs by recommending possible resolution for the detected conflict scenario. For this purpose, the proposed model is designed to be suitable for working in operational environment side-by-side with ATCOs. The success rate of the model could be further improved during the interaction between the agent and the controllers. In particular, feedback from the controller, i.e. accepting or rejecting agent's resolutions, could be collected to train the agent in order to enhance its experience.

However, for this purpose, a scenario transformation or mapping algorithm is needed to convert real conflict scenario to our abstracted ones. It is not a difficult task since our extracted features for the conflict scenario are generic for any conflict scenario, and will be addressed in our future work. In the event that the number of aircraft within the scenario is greater than n max , the first n max aircraft with smallest CPA closures could be selected as the input for the model.

Since the whole framework for training and testing agent is discussed in detail, this work can be easily adapted to different configurations and applications. Possible future considerations to improve the system include but not limited to (1) the enhancement of the scenarios state representation to help the agent to better "perceive" its learning environment and (2) the extension of the current work to multi-agent system for cooperative conflict resolutions.

Figure 1 :

 1 Figure 1: The concept diagram for the interaction between the learning environment and the agent. Conflict scenarios involving multiple aircraft are generated and their features are extracted. The feature vectors are presented to the agent by the learning environment. Then, the agent proposes an action and receives a reward for that maneuver as performance feedback under uncertainty.

Figure 2 :

 2 Figure 2: a) Example of a conflict scenario involving a two-aircraft conflict in the presence of four surrounding aircraft. A 0 B 0 is the ownship and A 1 B 1 is the intruder. b) The conflict pair where PQ is the closest distance between two aircraft.

 the aircraft's trajectories and ---→ A i B i are the initial headings of the aircraft. If the aircraft continue their journeys with this original flights plan, the ownship (following route A 0 B 0) and the intruder (following route A 1 B 1) are converging; they will simultaneously reach P and Q (Figure2b). Since the scenario is generated such that the distance PQ is less than d sep , which is the safe separation to maintain, the two aircraft are losing their safe separation if none of them takes any maneuver. Here, PQ is called the closest point of approach (CPA) between the ownship and the intruder, also denoted by the CPA closure vector -→ d 1 from P to Q. Similarly, the CPAs between the ownship and the surrounding aircraft are denoted by -→ d i where 2 ≤ i < n. Note that at the beginning, -→ d 1 < d sep while -→ d i ≥ d sep , 2 ≤ i < n; this imposes the single initial conflict condition to the generated scenarios, which is the interest of this work.

Figure 3 :

 3 Figure 3: a) An example of maneuver. The ownship makes a heading change α°at point M at t = t 1 , continues in the new heading MN during t 2 seconds, and heading back towards original end point at returning point N. A maneuver is fully defined by a set of three parameters (t 1 , α, t 2). b) The maneuver implemented in the traffic scenario.

Figure 3b demonstrates an

 Figure 3b demonstrates an example of a maneuver being implemented in a scenario. An employed maneuver changes the scenario from the current state into the next one by updating the CPA closure vectors -→ d i . The quality of a maneuver, therefore, is essentially determined by these CPA closure vectors, which

Figure 4 :

 4 Figure 4: Environmental uncertainty and its impact on the agent's action. Three main variables for the uncertainty are maneuver offset m of f set and maneuver distance m distance and the given uncertainty level σ. The offset uncertainty affects the position of the heading change point M, while the distance uncertainty affects the position of the returning point N.

.

 .. → (s D , a D , r D), and the episode terminates right after generating the last data tuple (s D , a D , r D). The termination condition is D = S max where S max is the maximum number of searching steps allowed in one episode, or r D ≥ Scr min

Figure 5 :

 5 Figure 5: The proposed framework for learning conflict resolution. A conflict scenario s from learning environment is shifted with heading change time t to obtain a conflict scenario s. Then it is used to create a feature vector for the agent. The agent includes an actor network (3 fully connected layers) and an critic network (3 fully connected layers). The red nodes are input nodes and blue ones are the output of each network. The action network is trained using policy gradient technique.

Figure 6 :

 6 Figure 6: Visualization of exploratory search path with Ornstein-Uhlenbeck noise (OUNoise) given a constant search path (10 steps with constant step-size is 5 NM). The red line shows the expected searching path without noise, while all dots with color gradient (the number of searching steps) show 200 search paths with OUNoise.

Algorithm 1 : 1 : 2 : 3 :

 1123 DDPG-2S Algorithm for 2-stages action Randomly initialize weight θ Q for Critic Net Q(s, a|θ Q) Randomly initialize weight θ µ for Actor Net µ(s|θ µ) Initialize target networks Q and µ by θ

µ 22 : end for 5 .

 225 The action is sent to learning environment to compute the reward r i .515If the episode termination condition is reached, the uncertainty model adds random noise to the final action and re-computes the reward r D .

Figure 7 :

 7 Figure 7: Examples of a searching steps to suggest resolution. From left-to-right, the same conflict with 4 levels of traffic density (2, 6, 10, 14 aircraft) are presented. The red line is the intruder, the blue one is the ownship after maneuvered and green ones are the surrounding aircraft. Yellow lines are the searching paths of the agent while the stars show the position at each searching step.

Figure 8 :

 8 Figure 8: Training process diagram. The data generated during the interaction between the agent and the learning environment is stored in the replay buffer (S : state, A: action, R: reward, S': new state, D: Final step). A batch samples are sampled from buffer for training the agent (ANN-AN: actor network, ANN-CN: Critic Network).

Figure 9 :

 9 Figure 9: Testing Flowchart. Given the conflict scenario S, the actor network will predict the action A to resolve the conflict. The expected score Q is estimated by critic network while the real reward R can be obtained after applying the resolutio.

 CP A of conflict scenario constraints the possible range for selecting the heading change time t, while conflict angle φ implies the type of conflicts. We classify the generated conflicts into 24 groups, consisting of 4 groups of values of the time-to-CPA (t CPA ∈ [(240s, 300s], (300s, 360s], (360s, 420s], (420s, 480s]]) and 6 groups of different conflict angles (|φ| ∈ [(0°, 30°], (30°, 60°], (60°, 90°], (90°, 120°], (120°, 150°], (150°, 180°]]). This classification allows us to assess the model's performance in different classes of initial conflicts 4.2. Parameters for the agent Parameters used for training the agent are shown in Table

Figure 10 :

 10 Figure 10: Illustration of the convergence of three models (DDPG-2S, DDPG and SAC) in term of average reward (Maximum = 1) during 300,000 iterations.

Figure 11 :

 11 Figure 11: Average reward and success rate achieved by the agent after convergence. The performance of different traffic densities are reported (from 2 to 30 aircraft)

Figure 12 :

 12 Figure 12: Comparison of average rewards between the baseline model and the proposed DDPG-2S. From left-to-right, four figures demonstrate models' performance under four different levels of uncertainty while the axis is the number of aircraft in a conflict scenario.

Figure 12

 12 Figure12shows the experiment results of the baselines and proposed DDPG-2S model with some interesting observations. We can observe the drops in average rewards for high density traffic but it is insignificant when comparing to the impact of uncertainty level. Besides the direct affect of the success rate, the larger maneuver's magnitude is another reason for the drops. Because when the uncertainty increases, the maneuver must be larger to create more safety buffer.Besides, the high-density traffic scenarios are challenging due to multiple potential secondary conflicts. Combination of High-density traffic and uncertainty significantly increases the problem's complexity , reducing the success rate (Figure13), as the result, the significant drops in reward can be observed. In term of individual performance, DDPG-2S outperforms both DDPG and SAC for all

Figure 13 :

 13 Figure 13: Comparison of success rates between the baseline model and the proposed DDPG-2S. Four figures demonstrate models' performance under four different levels of uncertainty while the axis is the number of flights in a conflict scenario

Figure 14 :

 14 Figure 14: Examples of predicted resolutions in scenarios with different number of flights. The red lines are the intruder, the blue ones are the ownship after maneuvered and green ones are the surrounding aircraft. Two orange dots highlight the position of the heading change point and the returning point, and the color gradient shows the reward for each potential returning point.

Figure 15 :

 15 Figure 15: Distribution of proposed turning angles from our model in 1000 scenario.

 In this work, we have formulated the problem of conflict resolution in the presence of surrounding traffic and uncertainty as a reinforcement learning problem. Important components of the reinforcement learning algorithm for conflict resolution, such as learning environment, scenario representation, reward function, and learning models, have been discussed in detail. We have also laid out the evaluation of model's performance, which could be considered as a framework for the assessment of reinforcement learning method applied to conflict resolution problem. In which, the impacts of different levels of the environmental uncertainty σ and traffic density n on the model's performance are investigated and discussed. The environment uncertainty is the most important factor which affect the model's performance. Moreover, as observed in the result, the combination of high-density traffic and high uncertainty will be the challenge for any learning models.An extension of DDPG, named DDPG-2S, is proposed to handle 2-stage ma-neuvers under incomplete knowledge about environment. Our proposed algorithm has shown robust performance under high-density traffic and uncertainty condition. It outperforms both baseline algorithms (DDPG and SAC) in both achieved reward and success rate. Although the high uncertainty have strong impact in model's performance, DDPG-2S still obtains high success rate and average rewards. The trained model has high performance under low uncertainty level (success rate ≥ 95%) and medium uncertainty level (success rate ≥ 87%)

 One of possible configurations is considering different uncertainty settings, such as uncertainty in positions and speeds of aircraft or different uncertainty distributions. It is also possible to consider different models for trajectory prediction and probabilistic conflict detection in our framework. Another interesting adaptation is re-designing reward function for reflecting ATCOs' preferences. The objective function could dynamically evolve to reflect the controllers' preference when the agent is exposed to new feedback data provided by ATCOs. In addition, our models could be applied for training novice controllers, in which the agent can reproduce and recommend resolutions for trainee controllers to observe and learn.

 This research / project* is supported by the National Research Foundation, Singapore, and the Civil Aviation Authority of Singapore, under the Aviation Transformation Programme. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore and the Civil Aviation Authority of Singapore.

Table 1 :

 1 The set of parameters and their values for the proposed agent.

	Parameter Meaning	Value
	lr actor	Control learning rate of actor model	10 -4
	lr critic	Control learning rate of critic model	10 -3
	batch size	Size of training batch	64
	γ	Discount factor for future rewards	0.99
	τ	Control rate of updating target	10 -3
		networks for both models	
	µ e , θ e , σ e	Parameter set for exploration noise	0, 0.1, 2
	Scr min	minimum acceptable reward	0.7
	S max	Maximum number of searching steps	10
	l	Upper bound of agent's searching step	5NM
	∆t	Time step for heading change time	30 seconds

actor and critic target networks using DDPG algorithm. In the interaction