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Abstract

With the continuous growth in the air transportation demand, air traffic con-

trollers will have to handle increased traffic and consequently, more potential

conflicts. This gives rise to the need for conflict resolution advisory tools that

can perform well in high-density traffic scenarios given a noisy environment.

Unlike model-based approaches, learning-based approaches can take advantage

of historical traffic data and flexibly encapsulate environmental uncertainty. In

this study, we propose a reinforcement learning approach that is capable of re-

solving conflicts, in the presence of traffic and inherent uncertainties in conflict

resolution maneuvers, without the need for prior knowledge about a set of rules

mapping from conflict scenarios to expected actions. The conflict resolution task

is formulated as a decision-making problem in a large and complex action space.

The research also includes the development of a learning environment, scenario

state representation, reward function, and a reinforcement learning algorithm

inspired from Q-learning and Deep Deterministic Policy Gradient algorithms.

The proposed algorithm, with two stages decision-making process, is used to

train an agent that can serves as an advisory tool for air traffic controllers in

resolving air traffic conflicts where it can learn from historical data by evolv-

ing overtime. Our findings show that the proposed model gives the agent the
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capability to suggest high quality conflict resolutions under different environ-

mental conditions. It outperforms two baseline algorithms. The trained model

has high performance under low uncertainty level (success rate ≥ 95% ) and

medium uncertainty level (success rate ≥ 87%) with high traffic density. The

detailed analysis of different impact factors such as environment’s uncertainty

and traffic density on learning performance are investigated and discussed. The

environment’s uncertainty is the most important factor which affects the perfor-

mance. Moreover, the combination of high-density traffic and high uncertainty

will be the challenge for any learning models.

Keywords: reinforcement learning, air traffic control, deep deterministic

policy gradient, conflict resolution, actor-critic, learning environment

1. Introduction

Air traffic control (ATC) plays a crucial role in the air traffic management

(ATM) system as it is responsible for maintaining flight safety and efficiency. Air

Traffic Controllers (ATCOs) must maintain a safe separation distance between

any two aircraft at all times. Conflict or loss of separation, between any two5

aircraft, occurs when the distance between them is smaller than the separation

standard, for example, 5 nautical miles laterally and 1000 feet vertically during

the en-route phase of flight [1]. When a potential loss of separation is detected,

ATCOs are responsible for issuing resolution advisory, or vector instructions, to

one or both aircraft to resolve the conflict. A maneuver may include a heading10

change or speed change for lateral conflict resolutions, or a flight level change

(climb or descend) for vertical conflict resolutions. With the continuous growth

in the air transportation demand [2], ATCOs will have to deal with increased

traffic in their respective sectors. In such a situation, conflict resolution tools

are needed to support ATCOs in high-density traffic scenarios, with inherent15

uncertainties in the environment.

Many mathematical models for conflict resolution have been proposed in

the literature. Heuristic methods are studied as one of the potential approaches
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for resolving conflict with multiple aircraft as in [3, 4, 5]. A comprehensive

review is reported in Kuchar et al. [6]. Some recent works look into enhanc-20

ing the capability of such automated conflict solvers. For instance, Yang et al.

[7] used probability reach sets to represent aircraft locations, and aircraft de-

confliction is performed by separating these reach sets using second-order cone

programming with aircraft dynamics considered. However, this approach does

not perform well in handling a large number of aircraft with uncertainty. In25

recent research, Hao et al. [8] employed aircraft’ reachable space, where conflict

resolution scheme accounts for the intent of the aircraft via aircraft’ space-time

Prism. The execution time for this method scales up significantly with the num-

ber of aircraft involved, especially when a fine grid is applied. Model predictive

control (MPC) is also a promising approach to conflict resolution. Yokohama [9]30

applied MPC to perform trajectory prediction and conflict resolution simulta-

neously, in which the aircraft separation condition is implicitly imposed during

trajectory prediction. However, the mathematical model is highly complex, and

the resolution quality depends on the quality (noise-free) of available historical

data. MPC was also employed in the work of Jilkov et al. [10], in which the35

authors proposed multiple models for conflict resolution considering the mini-

mization of the cost due to the maneuver, using the efficient algorithm. In an-

other approach, advanced surrounding traffic analysis was proposed as the basis

for conflict resolution decision [11]. The analysis of surrounding traffic includes

the concept of aerial ecosystem and traffic complexity evaluation for the deter-40

mination of resolution, in which the domino effect, i.e., the number of aircraft

causally involved in the separation service, is considered. Large scale conflict

resolution models were also proposed by Liu et al. [12] and Allignol et al. [13].

While the work in [12] uses aircraft location network and limits its resolution’s

maneuver to velocity adjustment only, the model in [13] provides for 3D con-45

flict resolution with limited uncertainty. In [14] authors propose using quantum

heuristics to solve a simplified version of the Air Traffic Management conflict-

resolution problem for wind-optimal trajectories involving minimum trajectory

modifications. From our observation of the literature, mathematical models for
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conflict resolution have several common limitations. First, complete knowledge50

of the mapping from conflict scenarios to maneuvers is required; this makes

mathematical models highly complex and results in poor quality resolutions in

the presence of high uncertainty, as the full knowledge about the environmental

uncertainty could never be obtained. Second, the input scenarios must be well

standardized for the mathematical models to work properly, and the models55

do not self-evolve when dealing with unseen and non-standard scenarios (i.e.

there is no learning). In this work, we attempt to overcome these drawbacks by

considering a reinforcement learning approach for conflict resolution where the

learning model does not require prior knowledge of how to efficiently resolve a

conflict, and can self-evolve when being exposed to unseen scenarios.60

However, for decision-making problems like conflict resolution, their large

and continuous state and action spaces are challenging for machine learning

methods. Recently, the combination of deep learning and reinforcement learn-

ing, which is called deep reinforcement learning (DRL), has increased the po-

tential of automation for many decision-making problems that were previously65

intractable because of their high-dimensional state and action spaces. In [15],

Mnih et al. introduced the Deep Q-Network model which could learn to play a

range of Atari 2600 video games at a superhuman level, directly from raw image

pixels. Also, AlphaGo [16], that defeated a human world champion in Go used

neural networks that were trained using supervised learning and RL, in combi-70

nation with a traditional heuristic search algorithm. Two major challenges must

be considered when applying DRL in real-world problems like conflict resolu-

tion: sample complexity and hyper-parameters sensitivity. The first challenge

is common for most of popular on-policy DRL algorithms such as Trust Region

Policy Optimization (TRPO) [17], Proximal Policy Optimization (PPO) [18]75

and Asynchronous Advantage Actor Critic (A3C) [19], because they require new

samples at each gradient step. Off-policy algorithms, such as Q-learning based

algorithms [15], Deep Deterministic Policy Gradient (DDPG) [20] have shown

their advantages in sample efficiency. However, DDPG still face the problem

with stability and hyper-parameter sensitivity [21, 22]. To overcome the second80
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challenge, maximum entropy formulation is a promising approach to provide a

substantial improvement in exploration and robustness. Prior work has pro-

posed model-free DRL algorithms that perform on-policy learning with entropy

maximization [23], as well as off-policy methods based on soft Q-learning and its

variants [24, 25, 26]. However, they generally do not exceed the performance of85

state-of-the-art off-policy algorithms, such as DDPG. Later, Soft Actor Critic

(SAC) [27] is reported to be able to overcome both challenges and provides

better performance than DDPG in complex, high-dimensional tasks. In this

work, DDPG and SAC will be selected as learning algorithms for our conflict

resolution.90

Machine learning techniques, specifically reinforcement learning algorithms,

have also been employed to build automated system in air traffic control. Fo-

cusing on en-route conflict resolution, [28, 29, 30, 31] develop deep distributed

multi-agent reinforcement learning frameworks to resolve conflicts by aircraft

speed adjustment. Those frameworks are able to identify and resolve conflicts95

between aircraft in a high-density, stochastic, and dynamic en-route sector with

multiple intersections. Besides, several studies apply RL for conflict avoidance

and congestion management. [32] presents a RL algorithm to guide an arbitrary

number of aircraft every 5 seconds across a three-dimensional, unstructured

airspace while avoiding conflicts and collisions. Multi-agent DRL for collision100

avoidance in dense airspace is also proposed in [33]. In [34], authors propose a

deep ensemble multi-agent RL for controlling speed to reduce the traffic conges-

tion, avoid conflict resolution and improve schedule conformation. As observed

from the literature, most of the studies on applying deep reinforcement learning

for conflict resolution formulate this problem as a continuous control problem105

in which all aircraft are controlled or navigated at each time step for avoiding

all potential conflicts throughout a given airspace [29, 30, 31, 32, 34, 35]. Be-

sides the work of Mollinga et al. [32] which considers three kinds of maneuvers

(e.g., speed, altitude, heading), the other ones only focused on speed control

for conflict avoidance. More importantly, among those studies, only Guo et al.110

[31] proposes the approach for considering uncertainty from the environment.
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However their uncertainty is still simply modelled as an uniform random noise,

applied on each element of the state vector. Furthermore, since all of the above

studies are designed for fully autonomous conflict resolutions, those approaches

are unsuitable for a decision support tool where any resolution should be pro-115

vided to ATCO with sufficient look-ahead time (e.g., at least 4 to 8 minutes

before the potential conflict happens) for his/her judgement and decision. To

achieve this request, the predictability of the traffic scenario under uncertainties

within a given airspace is an important factor. Different from mentioned studies,

Tran et al. [36] proposed a DRL approach which is trained using controllers’ de-120

cisions to provide human’s preferred path stretch vector resolutions. The work

focuses on the ability to suggest ATCO-like decisions rather than solving the

potential conflicts, moreover, there is no environment uncertainty considered in

their study.

Figure 1: The concept diagram for the interaction between the learning environment and

the agent. Conflict scenarios involving multiple aircraft are generated and their features are

extracted. The feature vectors are presented to the agent by the learning environment. Then,

the agent proposes an action and receives a reward for that maneuver as performance feedback

under uncertainty.

Thus, in this study, we propose a novel approach using Reinforcement Learn-125
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ing for conflict resolution in the presence of surrounding traffic and uncertainty.

The algorithm is designed to provide a full path stretch vector resolution (i.e.,

lateral maneuver) with at least 4 minutes look-ahead time. More importantly,

different levels of the uncertainty in implementation of the maneuver are also

modelled and considered. Finally, this approach is designed and evaluated while130

considering some operational constraints as a decision support tool or an advi-

sory tool for ATCO.

The concept diagram of our approach is illustrated in Figure 1. Conflict

scenarios involving multiple aircraft are generated and presented to the agent by

the learning environment. The agent, which is driven by RL algorithm, learns to135

resolve these conflicts by applying several maneuvers given the environmental

uncertainty. The agent receives a reward for every maneuver it has tried as

performance feedback, and the value of the reward depends on the quality of

the maneuvers: positive rewards for maneuvers that successfully resolve the

conflicts and negative rewards, or penalties, for maneuvers that are unable to140

separate the conflicting aircraft safely. Noting that the mentioned maneuvers

are the the final maneuvers after searching process. The learning objective is

to maximize the reward, and the agent is assumed trained when it consistently

gains (converges) high rewards for resolving unseen conflict scenarios. Like

ATCOs, the agent can learn by resolving conflicts and has the ability to self-145

evolve via trial-and-error.

In operational environment, the feedback for each maneuver or decision can

be accessed only after it is executed. Thus, the classical setting where the un-

certainty is implemented in learning environment and return multiple feedback

to estimate the expected reward under uncertainty is impractical. To overcome150

this limitation, our agent will interact with learning environment during search-

ing process but only the final selected resolution is evaluated under uncertainty.

This modification increases the challenge for training model under uncertainty,

however, it also makes this work more suitable for online learning in operational

environment.155

The major contribution of this work is to formulate the conflict resolution
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problem as a decision-making problem which is then addressed by a RL algo-

rithm. Firstly, an learning algorithm (named DDPG-2S, after the two stage

action it uses) is introduced by combining Q-learning and DDPG to handle

maneuver actions. Secondly, uncertainty in applying maneuver is introduced in160

learning environment. Finally, all components in proposed framework are dis-

cussed in details for developing reinforcement learning approaches for conflict

resolution. In addition, the impact of different factors such as traffic density

and uncertainty level on the learning performance are also investigated and dis-

cussed in detail. In this study, we give special considerations to the following165

sub-tasks.

1. Rather than time-based action like continuous control problem, we design

our problem such that the agent performs time-independent actions when

searching for possible maneuvers.

2. We develop a learning environment for conflict detection and resolution170

with the following characteristics.

• The reward function is designed to consider not only the conflict

status of the scenarios but also the quality (e.g., deviation, maneu-

verability, etc.) of the maneuvers.

• Maneuver’s uncertainty is encapsulated in the learning model with175

different levels.

• A novel scenarios representation (state vector) is proposed which con-

tains information of the conflict scenario such as conflict status, opti-

mal status and uncertainty level. This state vector must be carefully

designed in order to guarantee the convergence of the training.180

3. The learning model is designed to handle multi-dimensional actions with

different physical scales and units (e.g. time and distance).

2. Learning Environment

In RL for conflict resolution (Figure 1), the main roles of the learning en-

vironment are to (1) present its state to the agent in a form that provides185
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sufficient information to support the agent’s decision-making, (2) receive and

evaluate the agent’s action, and (3) give feedback to the agent as a reward. To

provide such environment to the agent for learning to resolve flight conflicts,

we develop a scenario generator that generates conflict scenarios and represents

them in a form perceivable to the agent. Also, the agent’s action is defined and190

the mapping from the agent’s actions to the maneuvers taken by the ownship is

established. A reward function is designed for the assessment of the maneuver

suggested by the agent. We also consider the environmental uncertainty that

occurs during the implementation of the agent’s actions.

The learning environment can perform trajectory prediction and conflict195

detection to evaluate any maneuver of ownship in term of conflict status and

deviation. After finding a good solution, the agent can recommend or apply it to

resolve the real flight conflict and get the feedback (or reward) from operational

environment. The result or sample will be stored in the agent memory and

used to train the model later. The operational environment with uncertainty200

is mimicked by an function to evaluate maneuver applied uncertainty. Noting

that even though applying Monte Carlo can be useful to evaluate quality of

maneuver, in real scenarios, we might be able to obtain only one sample for

each situation.

2.1. Conflict scenarios205

We define a conflict scenario as a traffic scenario that occurs within a circu-

lar area of interest (airspace) of radius r, in which there is one pair of potential

conflict between an ownship and an intruder aircraft, in the presence of sur-

rounding traffic. An example of a conflict scenario considered in this study is

shown in Figure 2a, and the conflict pair between the ownship and the intruder210

in this scenario is separately plotted in Figure 2b for clear presentation. In this

study, the density traffic is reflected by the number of flights inside the sector in

each conflict scenario. In which, flights’ entry points, time or directions are ran-

domly distributed. This setup makes the scenario more complicated than in real

operation where the flights are organized into flows. Moreover, in operational215
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environment, it is unusual to have multiple conflict in the sector for a given

short time period. In most of the practical cases, controller needs to resolve one

conflict scenario while avoiding creating secondary conflict. Therefore, in this

work, we assume no conflict among the surrounding aircraft; in other words, a

conflict always occurs between the ownship and another aircraft in the given220

airspace. With our designed high-density conflict scenario, the challenge is re-

solving the primary conflict while avoiding all secondary conflicts. This problem

is also challenging because of dense traffic.

Figure 2: a) Example of a conflict scenario involving a two-aircraft conflict in the presence of

four surrounding aircraft. A0B0 is the ownship and A1B1 is the intruder. b) The conflict

pair where PQ is the closest distance between two aircraft.

Let n be the number of aircraft in the given airspace when a potential conflict

is being considered, Ai denote the locations of the aircraft at the moment the225

conflict scenario presented to the agent (t0 = 0), and Bi the locations where

the aircraft exit the given airspace (0 ≤ i < n), see Figure 2a. Consequently,

AiBi represent the aircraft’s trajectories and
−−−→
AiBi are the initial headings of

the aircraft. If the aircraft continue their journeys with this original flights plan,

the ownship (following route A0B0) and the intruder (following route A1B1)230

are converging; they will simultaneously reach P and Q (Figure 2b). Since the

scenario is generated such that the distance PQ is less than dsep, which is the

safe separation to maintain, the two aircraft are losing their safe separation

if none of them takes any maneuver. Here, PQ is called the closest point of

approach (CPA) between the ownship and the intruder, also denoted by the235
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CPA closure vector
−→
d1 from P to Q. Similarly, the CPAs between the ownship

and the surrounding aircraft are denoted by
−→
di where 2 ≤ i < n. Note that at

the beginning, ‖
−→
d1‖ < dsep while ‖

−→
di‖ ≥ dsep, 2 ≤ i < n; this imposes the single

initial conflict condition to the generated scenarios, which is the interest of this

work.240

We now briefly describe the computation of CPA between the ownship and

the intruder, and the same procedure is applied to find CPA between the own-

ship and the surrounding aircraft. Assume that all aircraft are cruising at the

same speed of vc, and at the same flight level. At t0 = 0, the ownship is at

A0 and the intruder A1. The velocities of the ownship and the intruder are245

−→u = vc(
−−−→
A0B0/‖

−−−→
A0B0‖) and −→v = vc(

−−−→
A1B1/‖

−−−→
A1B1‖), respectively. At a time

t > 0, the locations of the ownship and the intruder are respectively given by
−→
P (t) =

−→
A0 + ~ut and

−→
Q(t) =

−→
A1 + ~vt, and distance between them renders

as d1(t) ≡ ‖
−→
d1‖ =

−→
W0 + (~u − ~v)t where

−→
W0 =

−−−→
A0A1. Minimizing d1(t) yields

the time-to-CPA as tCPA = −
−→
W0 · (~u − ~v)/‖~u − ~v‖2, and the closure at CPA250

as d1(CPA) = d1(tCPA). Here, it should be noted that when using the afore-

mentioned CPA formula, a positive tCPA is only found if the two aircraft are

converging toward each other. If the two aircraft are diverging (i.e., their CPA

already happened somewhere in the past), the resultant tCPA is negative and

the initial distance between them is checked to determine any potential loss of255

separation (at tCPA = 0). If the velocities of the two aircraft are identical, their

distance is constant and the initial distance is used for determination of loss of

separation (at tCPA = 0).

2.2. Ownship’s Maneuver

A maneuver, e.g. maneuver A0MNB0 in Figure 3a, is defined as a series of260

actions performed by the ownship: deviate from original path at time t1 seconds

and at location M (measuring from t0 = 0 at A0) by changing the heading by an

angle α, and then keep heading along vector
−−→
MN in t2 seconds before heading

back towards B0 at returning point N. Thus, a maneuver is fully defined by a

set of three parameters (t1, α, t2). In addition, a valid maneuver is defined as the265
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Figure 3: a) An example of maneuver. The ownship makes a heading change α° at point M at

t = t1, continues in the new heading MN during t2 seconds, and heading back towards original

end point at returning point N. A maneuver is fully defined by a set of three parameters

(t1, α, t2). b) The maneuver implemented in the traffic scenario.

maneuver that satisfies t1 < tCPA, ‖α‖ ≤ 60 degrees, and t2 takes a value such

that the returning point N located within the interested area. In this study,

we assume that any applied maneuver modifies the path of the ownship while

leaves the intruder’s path unchanged.

Figure 3b demonstrates an example of a maneuver being implemented in a270

scenario. An employed maneuver changes the scenario from the current state

into the next one by updating the CPA closure vectors
−→
di . The quality of a ma-

neuver, therefore, is essentially determined by these CPA closure vectors, which

reflect the aircraft’s separation status in the scenario. We shall elaborate the

evaluation of the agent’s actions and the resultant maneuvers in the definition275

of reward function later in this section.

2.3. Environmental uncertainty

The working environment in air traffic control have high degrees of uncer-

tainties. The controllers have to deal with unknowns originated from, for exam-

ple, inaccurate trajectory prediction, equipment’s measurement errors, weather,280

and other unexpected events in the airspace. Therefore, any conflict resolution

tool for ATCOs must perform effectively in the presence of uncertainty. In this

work, we consider environmental uncertainty as something that affects the ac-

curate/precise implementation of the agent’s conflict resolution actions. This is
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further explain as follows:285

Figure 4: Environmental uncertainty and its impact on the agent’s action. Three main vari-

ables for the uncertainty are maneuver offset moffset and maneuver distance mdistance and

the given uncertainty level σ. The offset uncertainty affects the position of the heading change

point M, while the distance uncertainty affects the position of the returning point N.

Consider a situation in which the agent suggests a maneuver determined by

(t1, α, t2), e.g the green maneuver as shown in Figure 4, where moffset is the

expected maneuver offset, α the expected heading change, and mdistance the

expected maneuver distance. The ownship is expected to change its heading at

the expected heading change point M and turn back at the expected returning290

point N. Due to environmental uncertainties, however, the actual maneuver

is slightly deviated from the expected one. In particular, the actual heading

change point M′ is determined by the actual maneuver offset m′offset = moffset +

N (0, σ ∗ moffset), where N (0, σ ∗ moffset) is a Gaussian noise with zero mean

and variance σ ∗moffset. Similarly, the actual returning point N′ is computed295

as (x′, y′) = (x, y) + N (0, σ ∗mdistance), where (x, y) are the coordinates of N

and (x′, y′) of N′. Here, the variances of the noise distributions affecting the

heading change point and the returning point are controlled by σ ∗moffset and

σ ∗ mdistance, where σ is the parameter governing the uncertainty level. This

uncertainty model implies that a less deviated and immediately implemented300

maneuver suffers less from the environmental uncertainties, while a maneuver

with large deviation and further in time suffers more.
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2.4. Scenarios representation

In RL, it is never too much to emphasize the importance of the environment’s

state representation, as any decision made by the agent is heavily influenced305

by the agent’s perceived state of its environment, and the state representation

determines how the agent apprehends the state. In the given problem, to ensure

that actions taken by the agent always modify the separation status of the

ownship, the scenarios representation must encapsulate the ownship’s current

separation status. Therefore, it is reasonable, and also important, to include310

the CPA closure vectors
−→
di in the state vector, because these vectors carry

the essential information on the separation statuses of the ownship with other

aircraft in the environment. With this in mind, we design the one-dimensional

state vector s to represent a scenario as follows.

• The first element is σ indicating the current environmental uncertainty315

level.

• Separation status between the ownship and aircraft i is encapsulated by

8 elements: sep(O, i) = [P(O,i), ‖
−→
di‖,

−→
di
‖
−→
di‖

, tCPA, (~u− ~v)].

– P(O,i): x- and y- positions of the ownship at CPA (2 elements)

– ‖
−→
di‖: CPA closure (1 element)320

–
−→
di
‖
−→
di‖

: x- and y- directions of the CPA closure vector (2 elements)

– tCPA: Time to CPA (1 element)

– (~u− ~v): Relative velocity between two aircraft (2 elements)

• Directional guidance vector (3 elements) vD = [
−−→
NOCPA, ‖

−−→
NOCPA‖]: This

vector is chosen to be
−−→
NOCPA, where N is the returning point and OCPA325

the location at CPA of the ownship against the intruder at the beginning.

We shall discuss them in the definition of reward function.

• Turning vector (the last 3 elements) vT = [
−−→
MN, ‖

−−→
MN‖]: This vector is

chosen to be
−−→
MN. It reflects the current travel from turning point M to

returning point N at each searching step.330
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Note that the total length of the state vector depends on the maximum number

of aircraft nmax being considered. The state vector is a fixed length vector in

the form: s = [σ, sep(O, 1) ..., sep(0, nmax), vD, vT ]. In scenarios with less

aircraft than nmax, the default values are used to fill in those missing elements

to maintain the fixed length vector.335

2.5. Maneuver reward

The reward mechanism is designed to give merit to any maneuver suggested

by the agent that successfully separates the aircraft and to punish one that

fails to improve the separation status. The environment evaluates the reward

based on the resultant state of the scenario upon implementation of the sug-340

gested maneuver: More positive rewards are given to maneuvers that improve

the separation status, while maneuvers that worsen the situation are punished

by negative rewards called penalties. Furthermore, for a valid maneuver that

successfully resolves the conflict, the quality of the maneuver is also evaluated,

such as deviation from the original trajectory and maneuverability of the reso-345

lution.

Let Rm(s′, a) being the reward function that takes an action a together with

its resultant state vector s′ as two input arguments and returns the reward

value. Also, we denote dmin = mini ‖
−→
di‖, (1 ≤ i < n), as the minimum value

among all the separation distances of the ownship against other aircraft. Then,350

the reward function is defined as

Rm(s′, a) =


e
dmin
dsep
−1 − 1, for dmin < dsep (1)

0, for a is an in valid maneuver (2)

(1− ∆D

∆Dmax
), otherwise (3)

where ∆D denotes the deviation of the maneuver from the original own-

ship’s trajectory, and ∆Dmax the maximum deviation that could occur. In the

definition of the reward function, Eq. 1 punishes invalid maneuvers that cause

dmin < dsep (negative reward) and therefore fail to separate the ownship from355
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other aircraft. On the other hand, Eq. 3 calculates the non-negative rewards

for valid maneuvers, which successfully separate the ownship and eliminate all

potential conflicts, by evaluating the deviations of the maneuvers from the own-

ship’s original trajectory. The values for the non-negative reward range linearly

from 0 to 1. Less deviated maneuvers receive higher rewards, on a score scale of360

maximum 1. However, since the value 1 implies no deviation from the original

trajectory, it does not resolve the primary conflict and must be penalized based

on our formulation. Thus, it is worth to note that the reward for the best action

in different conflict scenarios will vary and never achieve the maximum score 1.

Our definition for maneuver’s deviation as follow.365

∆D = w1 ∗ dist(M,OCPA) + w2 ∗ dist(N,OCPA), (4)

where dist() yields the distance between two points. Here, Eq. 3 and Eq. 4

imply that less deviated maneuvers shorten the distances MOCPA and NOCPA.

This reflects the design of the reward mechanism to maintain the positions of

the action points (M and N) within the neighborhood of the initial conflict

location, which could help preventing the maneuver from causing secondary370

conflicts with surrounding aircraft. This also justifies the inclusion of
−−→
NOCPA in

the state representation as mentioned in section 2.4. From empirical estimation

in our conflict scenarios, the value for ∆Dmax is approximately 100 NM.

3. The learning model of agent and Learning Mechanism

In our problem, the ultimate goal is to train the agent such that given a375

conflict scenario, it could resolve the conflict and earn a possibly highest re-

ward after a finite number of actions, as quickly as possible. Instead of using

classical optimization approaches, here, we adapt the Deep Deterministic Policy

Gradient (DDPG) [20] for our learning algorithm. The considered action has

three parameters (t1, α, t2) with different ranges and units that makes applying380

standard DDPG with 3-dimensional action challenging. In previous attempt in

[37], applying DDPG directly to this problem, after certain number of training

16



episodes, the learned agent becomes diverged and its performance drops signif-

icantly. From our investigation, one of the major reasons for that is the com-

plexity of the action space. In this study, we overcome this issue by proposing385

a modification in handling action space. The action is converted from (t1, α, t2)

into (t1, x, y) (where (x, y) is the coordinates of returning point N) and a 2-stage

learning strategy (separating t and (x,y) into two steps) is designed to improve

model performance. This approach is an learning framework which combining

searching optimal t1 while predicting the optimal returning point N(x, y) for390

each given value of t1. We adopt DDPG as the learning algorithm for predict-

ing optimal returning point N(x, y). For bench-marking, two DRL algorithms

are used (DDPG and SAC) with 3-dimentional action space (t,x,y). In this

section, we briefly describe our agent, show the characteristics of our 2-stage

strategy using DDPG algorithm (called DDPG-2S) that make it appropriate395

for training the agent, and discuss the training process.

3.1. Deep Deterministic Policy Gradient (DDPG)

DDPG [20] is a model-free off-policy actor-critic algorithm, combining DPG

[38] with DQN [15]. One of its main contributions is the introduction of a neural

network approximating the actor’s policy to deal with continuous action space.400

The DDPG algorithm consists of the actor network, and the critic network. In

which, the actor network, a = µ(s), is a mapping from a state s to an action a

and the critic network assesses the quality of the action a (taken by the actor

model) by calculating the action’s value Q(s, a), given a scenario s.

To improve the robustness of the algorithm, replay buffer and soft target405

update are employed. The replay buffer is used to store the past experiences for

batch training, and this could improve the independence of the samples used for

training the two networks. Soft target update is another technique that stabilizes

the learning (line 21 in Algorithm 1, where the update rate is controlled by τ).

Finally, DDPG algorithm allows us to conveniently control the exploration410

by introducing an exploratory noise policy µN = N + µ, where the exploratory

noise N is Ornstein-Uhlenbeck Noise (OU noise) [20]. Figure 6 shows examples
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of exploring search path during 10 steps with OU noise, governed by (µe, θe, σe).

3.2. The DDPG-2S for Conflict Resolution

When resolving a conflict, the agent could suggest a possible maneuver by415

computing the set of three parameters (t1, α, t2) that fully defines the maneuver,

as mentioned in section 2.2. We could see from Figure 3 that any value of

(t1, α, t2) is equivalent to a choice of (t, x, y), where t = t1 is the heading change

time, x and y are the coordinates of the returning point N, relatively to the

center of the interested area. Moreover, the possible valid choices of (x, y) highly420

depend on t; therefore, it is rational to treat the agent’s action as a two-stage

decision-making process. This approach, DDPG for 2-stage action (DDPG-

2S), is the combination of Q-learning and DDPG for learning process. In the

first stage, the agent determines the heading change time t that results in the

heading change point M. The decision of the heading change time t can be425

considered as one action and an expected value for each decision for the given

scenario must be estimated. In this study, we used DDPG to estimate that

value in the second stage. The second stage decides the coordinates (x, y) of

the returning point N, being aware of the updated aircraft’s locations at time

t. This treatment of the agent’s action is beneficial in two ways. First, as430

t and (x, y) are different in nature, the two-stage process allows us to handle

them independently. Second, such approach avoids the computing of the original

parameters (t1, α, t2) using the same model, which could be problematic because

they might be very different in scale. The detail description and explanation

are discussed below.435

Let’s denote s the conflict scenario, a the maneuvering action, and t the

time to implement the maneuver from the moment the conflict was presented

to the agent. Given the conflict scenario s, the total reward the agent earns for

performing an action (a, t) is R(s, a, t). Let Q(s, a, t) be the expected value of

the reward: Q(s, a, t) = E[R(s, a, t)]. Given scenario s and action time t, the440
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optimal action a∗ (performed at t) is defined as

a∗ = argmaxa E[R(s, a, t)]

= argmaxaQ(s, a, t).
(5)

Given the conflict scenario s, let V (s, t) be the value of taking the optimal

action: V (s, t) = maxaQ(s, a, t). The optimal time t∗ to maximize the value

V (s, t) is

t∗ = argmaxt V (s, t). (6)

Our ultimate goal is to maximize the expectation of the reward earned by445

the agent for resolving the conflict scenario s, or to find maxa,t E[R(s, a, t)]. We

decompose this optimization objective into two consecutive sub-objectives: (1)

find the optimal action a∗ and the respective value V (s, t) at all different times

t chosen from a pre-defined time grid of N values (t ∈ [T1..TN ]) (Equation 5);

and (2) select a value of t from [T1..TN ] that gives maximum value of V (s, t)450

(Equation 6). Here, the action a is the position of the returning point N as

described in section 2.2. We solve the former sub-objective (Equation 5) using

actor-critic reinforcement learning approach. In our conflict resolution problem,

the possible space for the returning point is very large and continuous; therefore

the employment of the Deep Deterministic Policy Gradient (DDPG) algorithm455

[20] as the actor-critic algorithm is justified.

The next important task is to mathematically define the intermediate action

of the agent. We define an intermediate action ai as a moving step (dxi, dyi),

and the agent performs a sequence of intermediate actions [a0, a1, ..., ak] ≡

[(dx0, dy0), (dx1, dy1), ..., (dxk, dyk)] in search of the optimal location (x, y) of460

the returning point N. Thus, the final action that constructs the ownship’s

maneuver is computed as

a = p0 +
∑

ai, (7)

where p0 is the initial position of the returning point N (i.e. the CPA location

of the ownship against the intruder), and ai is the i -th searching step. Here, we

impose dxi, dyi ≤ l to limit the distance that the agent is allowed to displace465
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the returning point in each searching step (see section 4 for the value of l). The

values of dxi, dyi and the total number of searching steps are controlled by the

learning algorithm, which is elaborated in section 3.3.

In our approach, ai is determined by the policy function π(si), in which

si was resulted from applying the previous action ai−1. Thus, the searching470

episode in RL algorithm generates the sequence: (s0, a0, r0) → (s1, a1, r1) →

... → (sD, aD, rD), and the episode terminates right after generating the last

data tuple (sD, aD, rD). The termination condition is D = Smax where Smax is

the maximum number of searching steps allowed in one episode, or rD ≥ Scrmin

where Scrmin is the minimum score that is acceptable as a valid resolution.475

Given a scenario s, let ri be the reward estimated after the agent performing

intermediate action ai at the i -th searching step, we have

ri = Rm(si, p0 +

i∑
k=0

ak). (8)

In this study, uncertainty is only effective at the final state when the episode

has terminated, in order to reduce the computational cost and increase the

applicable of this model. Therefore, after the searching stopped, the uncertainty480

N of the environment is applied on the final position of returning point N to

re-estimate the actual final reward.

rD = Rm(sD, p0 +

D∑
k=0

ak +N ) (9)

Our proposed 2-stage action DDPG-2S is described in Algorithm 1 below.

3.3. Learning mechanism

The interaction between the agent and the learning environment is the core485

mechanism for training and testing for RL as in Figure 5. The episode is de-

signed as a searching process to locate an “acceptable resolution” (examples

can be observed in Figure 7). At each step, the agent predicts the best in-

termediate action (dx, dy) to modify the current returning point and send it

to environment. The learning environment updates the current maneuver by490
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Figure 5: The proposed framework for learning conflict resolution. A conflict scenario s′ from

learning environment is shifted with heading change time t to obtain a conflict scenario s.

Then it is used to create a feature vector for the agent. The agent includes an actor network

(3 fully connected layers) and an critic network (3 fully connected layers). The red nodes are

input nodes and blue ones are the output of each network. The action network is trained

using policy gradient technique.

(x′, y′) = (x + dx, y + dy), evaluates it and sends feedback back to agent. The

process is repeated until an “acceptable resolution” or the maximum number

of searching steps has been reached. An acceptable resolution is defined as a

resolution which gains a reward greater than the minimum reward threshold

Scrmin. After each of intermediate steps, the agent is punished by a penalty495

(i.e. subtract its reward by 0.1), and this is to ensure that the agent tries to

reach the terminal state as quickly as possible in order to avoid such repeated

penalty.

The training process is illustrated in Figure 8. The main purposes of training

phase include generating learning samples to input to replay buffer, training500

actor and critic target networks using DDPG algorithm. In the interaction
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Figure 6: Visualization of exploratory search path with Ornstein-Uhlenbeck noise (OUNoise)

given a constant search path (10 steps with constant step-size is 5 NM). The red line shows

the expected searching path without noise, while all dots with color gradient (the number of

searching steps) show 200 search paths with OUNoise.

between the agent and the environment, a set of data samples is generated and

stored in the buffer. For each training iteration, a batch of sample is sampled

from the buffer and used as the input to train our model, called batch training.

The step by step algorithm for training is as follows.505

1. Given the conflict scenario s′.

2. The scenario s′ is shifted with random time duration t0 to obtain shifted

conflict scenario s0.

3. Feature extraction algorithm is applied on Shifted conflict scenario si (i is

initialized by 0 for each new scenario) to obtain state vector which is the510

input for DDPG algorithm.

4. Given the state vector, current exploration actor policy (current actor

model µ(si|θπ) plus exploration noise Ni) provides a candidate action

ai ≡ (dxi, dyi).
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Algorithm 1: DDPG-2S Algorithm for 2-stages action

1: Randomly initialize weight θQ for Critic Net Q(s, a|θQ)

2: Randomly initialize weight θµ for Actor Net µ(s|θµ)

3: Initialize target networks Q′ and µ′ by θQ
′
← θQ, θµ

′
← θµ.

4: Initialize replay buffer R

5: for episode = 1, M do

6: Initialize a random process N for action exploration.

7: Receive scenario s′ from Environment

8: Computing new scenario s1 by shifting all flights in s′ a duration

heading change time t0 = random(T1, TN )

9: for t = 1, Max steps do

10: Select action at = µ(st|θµ) +Nt according to current policy.

11: Execute action at, observe reward rt, new state si+1, status dt

12: Store transition (st, at, rt, st+1, dt) in R

13: if dt = True then

14: Break

15: end if

16: end for

17: Sample a minibatch of K transitions (si, ai, ri, si+1, di) from R

18: Compute expected output:

yi =

r(i) if di = 1

r(i) + γ ∗Q′(si+1, µ
′(si+1|θµ

′
)|θQ

′
) if di = 0

19: Update critic by minimizing the loss:

L =
1

K

∑
i

(yi −Q(si, ai|θQ))
2

20: Update actor policy using sampled policy gradient:

∇θµ (J) ≈
1

K

∑
i

∇µQ(si, µ(si)|θQ)∇θµµ(si|θµ)

21: Update the target networks:

θ
Q′
← τθ

Q
+ (1− τ)θ

Q′

θ
µ′ ← τθ

µ
+ (1− τ)θ

µ′

22: end for

5. The action is sent to learning environment to compute the reward ri.515

If the episode termination condition is reached, the uncertainty model

adds random noise to the final action and re-computes the reward rD.

Otherwise, the environment returns the intermediate constant reward ri =

−0.1 and updates the resultant scenario si+1 after applying action to
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Figure 7: Examples of a searching steps to suggest resolution. From left-to-right, the same

conflict with 4 levels of traffic density (2, 6, 10, 14 aircraft) are presented. The red line is the

intruder, the blue one is the ownship after maneuvered and green ones are the surrounding

aircraft. Yellow lines are the searching paths of the agent while the stars show the position at

each searching step.

Figure 8: Training process diagram. The data generated during the interaction between the

agent and the learning environment is stored in the replay buffer (S : state, A: action, R:

reward, S’: new state, D: Final step). A batch samples are sampled from buffer for training

the agent (ANN-AN: actor network, ANN-CN: Critic Network).
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modify the current maneuver.520

6. The sample tuples (si, ai, ri, si+1) is stored in replay buffer for later use

in training model.

7. When the replay buffer has stored sufficient samples (≥ minimum start

size), a batch of samples is sampled randomly from replay buffer for train-

ing.525

8. The critic model is updated by minimizing the defined loss function (line

19 in 1).

9. The policy gradient is computed from the gradient of critic model and

applied to update actor model at each step.

10. Finally, the target networks are updated by soft update mechanism.530

11. If end of episode is reached, the searching is terminated and the process

starts over from step 1. Otherwise, increase i by 1 and return to step 4.

Figure 9: Testing Flowchart. Given the conflict scenario S, the actor network will predict the

action A to resolve the conflict. The expected score Q is estimated by critic network while

the real reward R can be obtained after applying the resolutio.

The testing phase or predicting phase is relatively simple since we only need

to obtained the final recommended maneuver for a given conflict scenario (Figure

9). Only actor model is needed for this task. However, reward R and expected535

score Q are also computed for assessing the quality of suggested action. In

practical use, the experiences generated in this phase can also be stored in

replay buffer for tuning the model via batch training. This setting can help the

model tuning to be faster and keep the model up-to-date with new incoming
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data. The step-by-step for maneuver prediction is described as follows.540

1. Given unseen scenario s′ (i.e. from learning environment):

2. The heading change time t is looped over the range [T1..TN ] with the

increment ∆t seconds. The conflict scenario s′ is shifted with each given

heading change time t to obtain shifted conflict scenario s.

3. Feature extraction algorithm is applied on shifted conflict scenario si to545

obtain state vector which is the input for actor model.

4. Given state vector, actor model suggests action ai ≡ (dxi, dyi).

5. The action is sent to the environment. If end of episode is reached, go to

next step, else compute next state si+1, i = i+ 1 and return to step 3.

6. Given state vector and ”optimal” action, critic target model will provide550

the Q-value V (s, t) = maxaQ(s, a, t).

7. Finally, after checking with all values of heading change time t, t∗ =

arg maxt V (s, t) , the “optimal” maneuver for given conflict scenario s′ is

obtained (t∗, a∗)

Detail for training and testing processes are also described in Algorithm 1555

and Figure 5.

4. Experiment Configuration

4.1. Parameters for conflict scenarios

In our experiments, conflict scenarios are randomly generated in an inter-

ested area of radius r = 50 nm. For the initial conflict, d1(CPA) < dsep where560

dsep = 5 nm, and 240 ≤ tCPA ≤ 480 seconds, given that the common speed of

aircraft vc = 400 knots (nm/hr). This configuration implies that the potential

loss of separation between two aircraft is foreseen 4-8 minutes. We consider the

maximum number of aircraft in the airspace nmax = 30; therefore, the state vec-

tor has fixed size of 239 (see section 2.4 for state representation). This value (30565

aircraft) is also used in other conflict resolution like [28] for a given airspace with

simple airway network. Different from traditional scenario where 30 aircraft will
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follow predefined airways and flight levels, in our generated scenarios, aircraft

don’t follow any routes and all of them travel at the same flight level. Therefore,

in this setting, nmax = 30 can be considered as a high density traffic. In the event570

the number of aircraft is less than nmax, the elements representing the absent

aircraft are replaced by that of the intruder. During maneuvers implementation,

we consider four levels of environmental uncertainty, σ = {0, 2%, 5%, 10%}.

Studies [39, 40] on conflict detection and resolution have mentioned time-

to-CPA tCPA and relative conflict angle φ (see Figure 2 for the definition of575

conflict angle) as important parameters. In this study, the values of those two

parameters directly affect the boundary of our action space. In particular,

tCPA of conflict scenario constraints the possible range for selecting the heading

change time t, while conflict angle φ implies the type of conflicts. We classify

the generated conflicts into 24 groups, consisting of 4 groups of values of the580

time-to-CPA (tCPA ∈ [(240s, 300s], (300s, 360s], (360s, 420s], (420s, 480s]]) and

6 groups of different conflict angles (|φ| ∈ [(0°, 30°], (30°, 60°], (60°, 90°], (90°,

120°], (120°, 150°], (150°, 180°]]). This classification allows us to assess the

model’s performance in different classes of initial conflicts

4.2. Parameters for the agent585

Parameters used for training the agent are shown in Table 1. The values

of these parameters are chosen after performing a grid-search technique. For

example, γ ([0,1]) is the discount factor to weight the importance for future

rewards. If γ ← 0, the agent will focus only on immediate rewards. On the

other extreme, γ ← 1, the future rewards have greater weight in the model.590

In our case, final step of episode is the required maneuvers which is the main

source of reward, thus in this study γ ← 0.99.

4.3. Definition of Successful Resolution

Our definition for successful resolution is not only a resolution which success-

fully resolve a conflict without causing secondary conflict (feasible resolution),595

but also ”high quality” or high reward. From our defined reward function, a
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Table 1: The set of parameters and their values for the proposed agent.

Parameter Meaning Value

lractor Control learning rate of actor model 10−4

lrcritic Control learning rate of critic model 10−3

batch size Size of training batch 64

γ Discount factor for future rewards 0.99

τ Control rate of updating target 10−3

networks for both models

µe, θe, σe Parameter set for exploration noise 0, 0.1, 2

Scrmin minimum acceptable reward 0.7

Smax Maximum number of searching steps 10

l Upper bound of agent’s searching step 5NM

∆t Time step for heading change time 30 seconds

maneuver with positive reward is equivalent to a feasible resolution and the

higher the reward is , the smaller the deviation is. In this study, the thresh-

old = 0.7 is set as minimum reward for a successful resolution. This threshold

implies that the tolerant of maneuver’s deviation is 30% of the maximum de-600

viation (approximately 30NM). Based on this definition, we define the success

rate as the percentage of conflict scenarios with successful resolutions over total

evaluated conflict scenarios.

4.4. Benchmark

First of all, an meta-heuristic algorithm (Tabu-Search), inspired by [13], is605

developed. This algorithm can achieve the optimal resolution but have high

computational cost and require certain ”knowledge” of environment’s uncer-

tainty for working. Thus, we use it to filtering ”infeasible” conflict scenario. We

are working with high-density traffic and unstructured airspace, there are cases

where there aren’t any feasible or good lateral resolution for ownship to resolve610

potential conflicts. By using the optimal algorithm to filter out such scenarios
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(”infeasible”), the performance of our model can be accessed more accurately.

The list of conflict scenarios whose best rewards are greater than the thresh-

old 0.7) is selected as evaluating sets. As a result, 1500 conflict scenarios are

selected after this step.615

Then, two RL algorithms (DDPG and SAC) are developed as conflict reso-

lution model for comparison with our proposal approach. The implementation

borrows codes from stable-baselines [41]. Noting that DDPG-2S and DDPG

share architecture and hyper-parameters.

5. Results and Discussion620

During the training process, the model’s performance is assessed by the

average reward (maximum score = 1). Figure 10 shows the smoothed curve

of the three models’ convergence after 300,000 iterations. In which, all models

are converged (e.g., 0.85 for DDPG-2S, 0.8 for DDPG and 0.78 for SAC) after

150,000 iterations. In the training phase, it takes approximately 0.06 second for625

one iteration to finish (i.e., 5 hours for 300,000 iterations). In the testing phase,

the agent takes approximately 0.02 second to a suggested resolution for one

conflict scenario. The experimental computation was performed by a desktop

PC with an Intel Xeon W-2123 CPU @ 3.60GHz, 16 gigabytes of system memory.

Figure 11 provides a closer look to the performance of the agent after conver-630

gence, indicated by the average reward and the success rate (defined in Section

4.3). To compare our proposed agent with baseline algorithms, the agent is

evaluated over the set of 1500 conflict scenarios which are selected in Section

4.4. From Figure 11, we observe relations between the agent’s performance

indicators (i.e. score and success rate) and the number of aircraft involved.635

Increasing the number of aircraft cause the performance to drop, and the en-

vironmental uncertainty even worsens this drop. Our model achieves a stable

performance with high success rate and reward under the variation of number

of aircraft (from 2 to 30) with low uncertainty (σ ∈ (0%, 2%)). It implies that

the changing in the number of aircraft or the growing state-space isn’t degraded640
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Figure 10: Illustration of the convergence of three models (DDPG-2S, DDPG and SAC) in

term of average reward (Maximum = 1) during 300,000 iterations.

Figure 11: Average reward and success rate achieved by the agent after convergence. The

performance of different traffic densities are reported (from 2 to 30 aircraft)

the model performance. When the uncertainty increases (σ ∈ (5%, 10%)), its

impact on the performance becomes significantly. Besides, the results show an

strong affect of increasing traffic up to 10 aircraft on the performance. From 10

to 30, the decreases in performance are insignificant comparing to lower traffic

with the same uncertainty condition. Under low uncertainty (σ ≤ 2%) with any645

traffic density, the model consistently achieves success rate ≥ 95 and average

reward ≥ 87.6. Even with medium uncertainty (σ = 5%) the success rate is

still greater than 87%. In the worst case, our model still achieves success rate
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≈ 75% with the average reward ≈ 68.6.

Figure 12: Comparison of average rewards between the baseline model and the proposed

DDPG-2S. From left-to-right, four figures demonstrate models’ performance under four dif-

ferent levels of uncertainty while the axis is the number of aircraft in a conflict scenario.

Figure 12 shows the experiment results of the baselines and proposed DDPG-650

2S model with some interesting observations. We can observe the drops in av-

erage rewards for high density traffic but it is insignificant when comparing to

the impact of uncertainty level. Besides the direct affect of the success rate, the

larger maneuver’s magnitude is another reason for the drops. Because when the

uncertainty increases, the maneuver must be larger to create more safety buffer.655

Besides, the high-density traffic scenarios are challenging due to multiple po-

tential secondary conflicts. Combination of High-density traffic and uncertainty

significantly increases the problem’s complexity , reducing the success rate (Fig-

ure 13), as the result, the significant drops in reward can be observed. In term

of individual performance, DDPG-2S outperforms both DDPG and SAC for all660
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Figure 13: Comparison of success rates between the baseline model and the proposed DDPG-

2S. Four figures demonstrate models’ performance under four different levels of uncertainty

while the axis is the number of flights in a conflict scenario

conditions. Performances of DDPG-2S and DDPG are similar with the differ-

ence within [0.05, 0.1]. Moreover, by contrasting both Figure 12 and Figure

13, the proposed model always achieves better average reward than DDPG and

SAC, even for similar success rates. It implies that our model can find bet-

ter solutions comparing to baseline algorithms. Even though SAC has shown665

better performance than DDPG in literature for high-dimensional tasks, with

3-dimensional maneuver and well-defined environment, the DDPG has shown

a better result than SAC both in reward and robustness under various high-

density traffic, uncertainty conditions.

The comparison on success rates is illustrated in Figure 13. The patterns,670

observed in this figure, are similar to ones from Figure 12. They all emphasizes

the vulnerable of all models under high uncertainty. DDPG-2S still shows more
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Figure 14: Examples of predicted resolutions in scenarios with different number of flights. The

red lines are the intruder, the blue ones are the ownship after maneuvered and green ones are

the surrounding aircraft. Two orange dots highlight the position of the heading change point

and the returning point, and the color gradient shows the reward for each potential returning

point.

robust performance comparing to the other two algorithms. Under medium

uncertainty, DDPG-2S can maintain the success rate ≥ 87%.

To better understand the impact of traffic density to the difficulty of con-675

flict resolution, some examples of conflict scenario under different traffic density

are illustrated and discussed. Figure 14 presents the maneuvers suggested by

the agent for resolving a conflict at different numbers of surrounding aircraft.

The blue regions in the backgrounds represent the feasible regions of the ma-

neuvers’ returning points N (at pre-determined heading change points M). As680

the number of aircraft increases, the feasible region becomes more irregular

and smaller region. That change may lead to a drop in model’s performance

(Figure 11), especially under high uncertainty, because strong environmental

disturbance highly shifts the model’s suggested returning point from a feasible

region to a impractical location. Figure 14 also illustrates an example of the685

learned strategy to resolve conflict scenario. Depending on the situation, the

agent can suggests a left turn or a right turn for the heading change at M.

As shown in Figure 15, the proposed maneuvers have a quite range of turning

angles from −60° to 60° with the balance in number of left turnings and right

turnings. Another interesting observation is two peaks in the histogram around690

−15° and 15°. It reflects the strategy of the model that prefers small turning

angles to maximize resolution’s reward.
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Figure 15: Distribution of proposed turning angles from our model in 1000 scenario.

6. Conclusion

In this work, we have formulated the problem of conflict resolution in the

presence of surrounding traffic and uncertainty as a reinforcement learning prob-695

lem. Important components of the reinforcement learning algorithm for conflict

resolution, such as learning environment, scenario representation, reward func-

tion, and learning models, have been discussed in detail. We have also laid out

the evaluation of model’s performance, which could be considered as a frame-

work for the assessment of reinforcement learning method applied to conflict700

resolution problem. In which, the impacts of different levels of the environmen-

tal uncertainty σ and traffic density n on the model’s performance are investi-

gated and discussed. The environment uncertainty is the most important factor

which affect the model’s performance. Moreover, as observed in the result, the

combination of high-density traffic and high uncertainty will be the challenge705

for any learning models.

An extension of DDPG, named DDPG-2S, is proposed to handle 2-stage ma-
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neuvers under incomplete knowledge about environment. Our proposed algo-

rithm has shown robust performance under high-density traffic and uncertainty

condition. It outperforms both baseline algorithms (DDPG and SAC) in both710

achieved reward and success rate. Although the high uncertainty have strong

impact in model’s performance, DDPG-2S still obtains high success rate and av-

erage rewards. The trained model has high performance under low uncertainty

level (success rate ≥ 95% ) and medium uncertainty level (success rate ≥ 87%)

with high traffic density. In the worst case, our model still achieves success rate715

≈ 75% with the average reward ≈ 68.6.

To utilize the power of RL algorithm and improve its applicability, the pro-

posed model might be developed as an advisory tool for ATCOs by recommend-

ing possible resolution for the detected conflict scenario. For this purpose, the

proposed model is designed to be suitable for working in operational environ-720

ment side-by-side with ATCOs. The success rate of the model could be further

improved during the interaction between the agent and the controllers. In par-

ticular, feedback from the controller, i.e. accepting or rejecting agent’s resolu-

tions, could be collected to train the agent in order to enhance its experience.

However, for this purpose, a scenario transformation or mapping algorithm is725

needed to convert real conflict scenario to our abstracted ones. It is not a dif-

ficult task since our extracted features for the conflict scenario are generic for

any conflict scenario, and will be addressed in our future work. In the event

that the number of aircraft within the scenario is greater than nmax, the first

nmax aircraft with smallest CPA closures could be selected as the input for the730

model.

Since the whole framework for training and testing agent is discussed in de-

tail, this work can be easily adapted to different configurations and applications.

One of possible configurations is considering different uncertainty settings, such

as uncertainty in positions and speeds of aircraft or different uncertainty distri-735

butions. It is also possible to consider different models for trajectory prediction

and probabilistic conflict detection in our framework. Another interesting adap-

tation is re-designing reward function for reflecting ATCOs’ preferences. The
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objective function could dynamically evolve to reflect the controllers’ prefer-

ence when the agent is exposed to new feedback data provided by ATCOs. In740

addition, our models could be applied for training novice controllers, in which

the agent can reproduce and recommend resolutions for trainee controllers to

observe and learn.

Possible future considerations to improve the system include but not limited

to (1) the enhancement of the scenarios state representation to help the agent to745

better “perceive” its learning environment and (2) the extension of the current

work to multi-agent system for cooperative conflict resolutions.
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