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Abstract: This paper presents a methodology to minimize the airspace congestion of aircraft
trajectories based on slot allocation techniques. The traffic assignment problem is modeled as a
combinatorial optimization problem for which a selective simulated annealing has been developed.
Based on theBased-the congestion encountered by each aircraft in the airspace, this metaheuristic
selects and changes the time of departure of the most critical flights in order to target the most
relevant aircraft. The main objective of this approach is to minimize the aircraft speed vector
disorder. The proposed algorithm was implemented and tested on simulated trajectories generated
with real flight plans on a day of traffic over France airspace with 8800 flights.

Keywords: Optimization; Trajectory; Large Scale; Metaheuristic; Airspace congestion

1. Introduction

Air traffic management (ATM) is a system that supportsassists and guides aircraft
from a departure airport to a destination airport in order to ensure its safety while
minimizing delays and airspace congestion. It manages the air traffic through the
management of the three following complementary systems: airspace management
(ASM), air traffic flow management (ATFM), and air traffic control (ATC). The ATC then
controls the air traffic in real-time. It uses the flight plan information to predict the traffic
situation, then issues necessary changes to the flight plan in order to ensure aircraft
separation, and to maintain the order of air traffic flow, while satisfying as much as
possible the pilot’s request. For this purpose, the airspace is partitioned into different
sectors, each sector iseach-of-which-s assigned to a group of controllers monitoring the
air traffic. In order to prevent overloaded controllerthe-centrolerfrombeing-overloaded,
the number of aircraft allowed to enter a given sector at any given time is limited. When
the number of aircraft reaches this limit, the corresponding sector is said-te-be congested.
Generally, congestion in air traffic managementair-transportation can be categorized
into two groups according to the part of airspace it involves. Terminal congestion is the
congestion that occurs around the terminal control area !(TCA, or TMA outside the U.S.
and Canada). En-route congestion is the congestion involved in the en-route section of
the flight between TMAs. In the U.S., the congestion occurs more often in the terminal
areas, whereas the en-route congestion is more critical in Europe due to the fragmented
nature of its airspace where there are extra difficulties for coordinating the air traffic
overaeross the boundaries, in particular between two different countries. Air traffic
regulations impose that aircraft must always be separated by some prescribed distance,
noted N, for the vertical separation and Nj, for the horizontal separation. Current ATC

1

A terminal control area (also known as a terminal maneuvering area) is controllingeontreted airspace surrounding major airports, generally

designed as a cylindrical or upside-down wedding cake shape airspace of 30 to 50 miles radius and high of 10,000 feet.
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regulations require aircraft operating in the terminal maneuvering area (TMA) to be
vertically separated by at least N;, = 1,000 feet and horizontally separated by a minimum
of Nj, = 3 nautical miles. In the en-route environment, for aircraft operating up to (and
including) FL410 2, the horizontal minimum separation is increased to 5 nautical miles.
Then,Ané for aircraft operating above FL410, the vertical separation is increased to 2,000
feet.

As the air traffic demand keeps on increasing, the airspace becomes more and more
congested. Over past decades, several methods have been proposed to address the
air traffic management problem aiming at balancing air traffic demand and airspace
capacity and preventing airspace congestion. There are two frequently-tsed air traffic
decongestion strategies frequently used. The first one adapts the airspace capacity to
the increased demand. The second air traffic decongestion strategy is to regulate the
air traffic demand to the current capacity. This strategy focuses on decongesting the
ATM system through several approaches, such as: allocating delays to each aircraft in
7 order to reduce congestion in sectors or at destination airports, re-routing flights, or
changing flight levels in order to avoid congestion in sectors or airport TMAs, etc. More
precisely, the strategic trajectory planning problem under consideration can be presented
as follows:

*  We are given a set of flight plans for a given day associated with a nationwide scale
or continent-scale air traffic.
e  For each flight, f, we suppose that a set of possible departure times is given.

Based on those “alternate trajectories”, we propose to develop an optimization
strategy in order to minimize the associated airspace congestion with a minimum
deviation from the user preferences. To reach this goal Al decision support tool based
on a metaheuristics algorithm has been proposed.

Currently, congestion (complexity) of the traffic is measured only as an operational
capacity: the maximum number of aircraft that ATC controllers are able to manage
are-willing-to-aceept is definedfixed on a per sector basis and complexity is assessed
by comparing the real number of aircraft with the sector capacity. It must be noted
that under some circumstances controllers will accept aircraft beyond the capacity
threshold while rejecting traffic at other times although the number of aircraft is well
below the maximum capacity. This simple fact clearly shows that capacity as a rawerude
complexity metric is not enough to representby-itself-to-fully-aceountfor-the controller’s
workload. In order to better quantify the complexity, geometric features of the traffic
have to be included. As previously stated, depending on the traffic structure, ATC
controllers will perceive situations differently, even if the number of aircraft present in
the sector is the same. Furthermore, exogenous parameters like the workload history
can be influential on the perceived complexity at a given time (a long period of heavy
load will tend to reduce the efficiency of a controller). Some reviews of complexity in
ATC have been completed, mainly from the controller’s workload point of view [1,2],
and have recognized that complexity is related to both the structure of the traffic and the
geometry of the airspace. This tends to prove that controller’s workload has two facets:

*  Anintrinsic complexity related to traffic structure.
* A human factor aspect related to the controller itself.

While most complexity metrics tend to capture those effects within a single aggregate
indicator, the purpose of this work is to design a measure of intrinsic complexity only
since it is the most relevant metric for a highly automated ATC system (no human
factors).

Section 2 of this paper will present the previous related works associated with
this large-scale trajectory planning problem. Section 3 will develop the associated
mathematical model in order to identify the decision variable, the objective function,

2

Flight level (FL) is a pressure altitude, expressed in hundreds of feet, e.g. an altitude of 32,000 feet is referred to as FL320.
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and the associated constraint. Section 4 will present the resolution algorithm which has
been developed to tackle such a problem. Section 5 will introduce the test cases whieh
has-beent used for validating our approach. Finally, section 6 will conclude the paper.

2. State of the Art

This section describes, at first, the previous work related to large-scale airspace
congestion mitigation. Secondly, the complexity metric is used to evaluate the controllers’
workload to manage the aircraft in a given airspace.

2.1. Previous related work

In this section, the existing strategies in the literature are presented to address the
large-scale airspace congestion mitigation. The first category is the trajectory deconflic-
tion methods and the second one is the air traffic decongestion methods.

2.1.1. Trajectory deconfliction strategies

Instead of only consideringeensidering-only the capacity constraints, several re-
searches looked at deconfliction of aircraft trajectories. Different conflict detection and
resolution are described in the literature. Conflict detection methods are categorized
into three categories: nominal, worst-case, and probabilistic conflict detections. Nominal
conflict means no error is considered in aircraft’s trajectories. Worst-case is the largest
envelope in which the aircraft might be. Probabilistic conflict detection is an improve-
ment of worst-case, by introducing a probability density function for aircraft’s position
inside the worst-case envelope.

Conlflict resolution strategies are: 1-against-N, pair-wise, global. The first strategy
addsadé aircraft to the airspace following a priority order, and solving conflicts with all
aircraft in the airspace. The pair-wise strategy considerseensieer each pair of aircraft and
solvesselve the conflict with each other. Finally, the global deconfliction strategy solves
all air traffic situations, whereas the previous strategies does not, but is computationally
demanding.

The main researches in the literature addressing trajectory deconfliction are pre-
sented in the following paragraph. Genetic algorithms, that deconflict aircraft trajectories,
are considered in [3]. However, for large-scale air traffic, the memory required is too high.
In [4,5], air traffic is deconflicted with ground holding and flight level alternates. The
conflicts are solved by allocating alternative flight levels, and then by ground holding
aircraft. However, for large-scale air traffic, some conflicts remains. Trajectory deconflic-
tion, with Light-Propagation Algorithm is described in [6,7]. The principle is to use the
light-propagation model, with conflicts areas equivalent to high refractive-index areas.
However, for large-scale air traffic, some conflicts are unsolved.

In the free-flight concept of operation, the strategies are based on Trajectory Based
Operations (TBOs). TBO is adapting the air traffic demand to the current air traffic
capacity, with Trajectory Actions (TAs). Those TAs are changing the departure time,
the flight level, or the route. To ensure the capacity is not exceeded, negotiated 4D
trajectories are provided to each aircraft by influencing its TAs. In [8], time uncertainties
has been also included in order to buildbuilt robust large scale trajectory planning
planing. When trajectory planning is done at pre-tactical level, conflicts between aircraft
are quite difficult to predict and congestion reduction objective is used instead of conflict
mitigation.

2.1.2. Air traffic decongestion strategies

In this section, the existing strategies in the literature are presented, to address air
traffic decongestion problem. Congestion is a situation where the number of aircraft in a
given airspace exceeds the maximum number of aircraft allowed to enter the airspace.
Several researches have been done to minimize the air traffic congestion. Theirlts main
goal is to manage the air traffic demand in function of airspace’s capacity. In this case,
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action on aircraft are quite similar (flight level setting, delays, route assignment) but for
airspace congestion mitigation purpose.

Ground holding approaches is the simplest way to regulate air traffic demand
in order to meet the airspace’s capacity. The method allocates a delay to the initially-
planned flight departure time. This strategy transfer air delays to ground delays at the
departure airport, because it is safer and less expensive. Ground holding strategy was
first studied in [9].

Many other extensions of this problem have been proposed in the literature ([10-
17]).

Air traffic flow management approaches consider departure and arrival time to
regulate the air traffic demand. These approaches rely on branch-and-bound algo-
rlthms, mixed- 1nteger programmmg solvers, genet1c algorlthms or other algorlthms

&}gef&hm—er—eﬂwr—algeﬂthms Some other efforts have 1nvest1gated a1rspace congeshon
reduction by using distributed approaches ([18,19]).

All the previous methods use some artificial trick in order to circumvent the un-
derlying complexity (objective linearization, objective time-space objective separability,
distributed algorithm approximation).

The current approach addresses the full complexity of the airspace congestion
mitigation by using a dedicated metaheuristic which is able to strongly reduce the
overall congestion in the airspace.

In this paper, in a first approach the proposed method is only changing the aircraft
times of departure to reduce air traffic congestion. The congestion of the air traffic is
measured with the speed covariance metric, described in the next section.

3. Mathematical model

As for any real optimization problem-te-be-selved, the modeling step is critical
and has to be done carefully. It exhibits the state space (the definition of the decision
variables), the objective function, and the associated constraints. The decision variables
and the given data define the objective and the constraints.Beth-ef-which-must-be

Lefined ¢ the decisi -~ | the siven data

3.1. Input data

e F:setof flights, noted f,

e I setof trajectories,

* 7 € I': trajectory corresponding to a flight f € F,
. dtj[: upper bound of departure time shift, Vf € F,

. dt}?: lower bound of departure time shift, Vf € F,

3.2. Decision variables

During the scheduling process, each flight may be scheduled at a different time of
departure. The decision variable dt indicates the difference between the scheduled and
requested departure times. All those decision variables are grouped into the state space
X.

3.3. Objective

In order to evaluate a solution, the following complexity metric will be used. This
metric is based on the aircraft speed vector disorderdesorder. The main objective is to
reduce air traffic complexity.

In control airspace, the higher the number of aircraft, the more the control workload
increases. Hence, the controllers’ level of mental effort needed to manage those aircraft
increases. A limit exists in terms of maximum number of aircraft that can be managed

by the controllers.when-the-controlers—can-manage-only-so-many—aireraft: ThisThe

threshold is very difficult to estimate as it depends on the geometry of the air traffic, the



Version September 30, 2021 submitted to Journal Not Specified 50f 16

199

200

distribution of aircraft inside the airspace, etc. A simple measurement of the number
of aircraft is easy to evaluate but not representative enough to consider;-beeatise-of
disordered traffic. Disordered traffic is more demanding than ordered traffic forte the
controller.

Thus, a simple count of aircraft in a neighborhood is not enough. Therefore, traffic
complexity metrics are developed. Traffic complexity is an intrinsic measurement of the
complexity associated with a traffic situation. This measurement is only dependent on
the geometry of the trajectories.

This approach consists of evaluating the covariance of the speed vectors for each
vector in a neighborhood and-—As-well-as; evaluating the relative distance of each pair of
points.

Each curvilinear trajectory is sampled in time into a 4D trajectory. Considering a
4D point of a 4D trajectory, a spatial neighborhood is considered, as shown in Figure 1.

Neighborhood o

Airspace
Figure 1. Spatial neighborhood of a 4D point in a curvilinear trajectory sampled in time.

Assuming there are N observations at a given time in a given neighborhood. Each
observation is represented by a position measurement:

Xi
Xi=| i 1)

and a speed measurement:

Vi=| oy )

The observations are shown on Figure 1 as the blue points and the speed vector
associated, plus the reference point (red pointredpeint) and its speed vector.
Therefore, the speed covariance is described in Equation (3):
N
Cov =} (|ox; — o%| + |vy; — 0y| + |0z; — 2]) ®
i=1

with the mean values computed as follows:

O
N Y=

0Z;

= @

@\
=
Mz

vYi
N

mZ
;
-

i=1
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220

N

Neighborhood

Figure 2. Spatial neighborhood of a 4D point.

The speed covariance does not differentiate the proximity of aircraft. Hence, the
evaluation of pair-wise distance enables it. It is computed as follows:

N N
Prox = Z Z ’1[_Nv,Nv] (Zi — Z]) . 1[0,2Nh] (dl,]) . (2Nh — dz,])’ (5)
i=1j=i+1

with, d;; = x; — x;)2 + (y; — y;)?, the distance in the horizontal plane between two
J j Yi—Yj p

points; 1x(x), the indicative function, that equals 1 if x is in the ensemble X and 0 else.

The further the points are from themselves, the lower the evaluation has to be.
Moreover, if the points are separated enough (d; ; > 2Nh), the evaluation has to be null,
since it does not create any congestion. Hence, the relative distance to the horizontal
norm separation is evaluated, as 1|_y, n,|(zi — 2j) - 1jg2n,) (di) - (2Ni — d; ;). The prox-
imity evaluation is the sum of these relative distances for each pair of points in the
neighborhood.

Finally, the metric evaluation is the sum of the speed covariance and the proximity.
It is computed for a reference point p, and its neighborhood. Thus, it is noted cj. Its
complete formula is described in Equation (6):

N
cp = Y _(lox; — 0%| + |vy; — Ty| + |vz; — 72])

i=1

N N
+ 3 L v 2) - Lo (i) - (2NB = d )|
i=1j=it1

(6)

The complexity evaluation y of the air traffic solution is the sum of all flights’
complexity, see Equation (7):

y=Y ¥ )
feF
The flight, f, is represented by its curvilinear trajectory. The trajectory, ¢, is
sampled in time, with 4D points, p, represented in Figure 1. The congestion of the
trajectory is the sum of complexity for each point in the curvilinear trajectory, see
Equation (8):

yp= ) ¢ (®)
PEYf
The point’s congestion, noted ¢, is computed using the speed covariance metric,
and the point’s neighborhood. The formula of ¢, computing is detailed in Equation (6).
Besides the congestion, the algorithm must minimize the introduced delaysthe

introduced-delays-mustbe minimized to best suit the airlines’ requests. The evaluation
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221

222

of the total delays is the sum of all absolute gap between the requested and allocated
time of departure, see Equation (9):

Yty )

f€eF

The objective function f(X), described hereafter:

f(X) =y+w Z ‘dtf| = Z Z Cp + w1 Z |dtf| (10)

feF fEF pevf feF
with wy, the weight to balance the evaluations.

3.4. Constraints

The problem is subjected to some constraints. In fact, the time shift of the departure
time needs to be between the minimal and maximal bound of the time displacement for
each flight.

dty <dtp < dtf+ VfeF (11)

The evaluation of the objective function involves a high computation time. More-
over, the objective function may have multiple local optima. Therefore, the choice of
a stochastic algorithm to optimize the air traffic congestion is more valued. Hence,
the algorithm chosen is Simulated Annealing algorithm and isthe-ehoice-of-a-Simulated

Annealing-algorithm presented hereafter in Section 4.

4. Simulated annealing
4.1. Standard Simulated Annealing

Simulated Annealing (SA) is one of the simplest and best-known metaheuristic
methods for addressing the difficult black box global optimization problems (those whose
objective function is not explicitly given and can only be evaluated via some costly
computer simulation). Real-life applications massively use Simulated Annealing. ttis
massively-used-inreal-life-applications: The expression "simulated annealing" yields
over one million hits when searching through the Google Scholar web search engine
dedicated to the scholarly literature. In the early 1980s, three IBM researchers, Kirk-
patrick, Gelatt, and Vecchi [20], introduced the concepts of annealing in combinatorial
optimization. These concepts are based on a strong analogy with the physical annealing
of materials. This process involves bringing a solid to a low energy state after raising its
temperature. It can be summarized by the following two steps:

¢  Bring the solid to a very high temperature until "melting" of the structure;
*  Cooling the solid according to a very particular temperature decreasing scheme in
order to reach a solid-state of minimum energy.

In the liquid phase, the particles are distributed randomly. It is shown that the
minimum energy state is reached provided that the initial temperature is sufficiently
high and the cooling time is sufficiently long. If this is not the case, the solid will be
found in a metastable state with non-minimal energy. This state;this is referred to as
hardening, which consists ofin the sudden cooling of a solid.

In 1953, three American researchers (Metropolis, Rosenbluth, and Teller [21]) devel-
oped an algorithm to simulate physical annealing. They aimed to reproduce faithfully
the evolution of the physical structure of a material undergoing annealing. This algo-
rithm is based on Monte Carlo techniques, which generate-which-consist-of generating
a sequence of states of the solid in the following way.

Starting from an initial state i of energy E;, a new state j of energy E; is generated
by modifying the position of one particle.
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Figure 3. When the temperature is high, the material is in a liquid state (left). For a hardening
process, the material reaches a solid-state with non-minimal energy (metastable state; top right).
In this case, the structure of the atoms has no symmetry. During a slow annealing process, the
material also reachesreaches-alse a solid-state but for which atoms are organized with symmetry
(crystal; bottom right).

If the energy difference, E; — E;, is positive (the new state features lower energy),
the state j becomes the new current state. If the energy difference is less than or equal to
zero, then the probability that the state j becomes the current state is given by:

. Ei —Ej
Pr{Current state = j} = exp< / >
ky.T
where T represents the temperature of the solid and kg is the Boltzmann constant
(kg = 1.38 x 10723 joule/Kelvin).

The acceptance criterion of the new state is called the Metropolis criterion. If the
cooling is carried out sufficiently slowly, the solid reaches a state of equilibrium at
each given temperature T. In the Metropolis algorithm, this equilibrium is achieved by
generating a large number of transitions at each temperature. The thermal equilibrium
is characterized by the Boltzmann statistical distribution. This distribution gives the
probability that the solid is in the state i of energy E; at the temperature T:

,(i)
e \RT

PriX =il =
r{ i} Z()

where X is a random variable associated with the current state of the solid, Z(T) is the

distribution function of X at temperature T. This allows the normalization:

(%)
Z(T)y =) e \""/.

jes
Theln-the-SA-algorithm;—the Metropolis algorithm is applied to generate a sequence
of solutions in the state space S in the SA algorithm. To do this, an analogy is made
between a multi-particle system and our optimization problem by using the following
equivalences:

*  The state-space points represent the possible states of the solid;
®  The function to be minimized represents the energy of the solid.

A control parameter ¢, acting as a temperature, is then introduced. This parameter is
homogeneous to the criterion that is optimized.

It is also assumed that the user provides for each point of the state space, a neigh-
borhood, and a mechanism for generating a solution in this neighborhood. We then
define the acceptance principle:
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Definition 1. Let (S, f) be an instantiation of a combinatorial minimization problem, and i, j
two points of the state space. The acceptance criterion for accepting solution j from the current
solution i is given by the following probability:

if £(G) < f()

1
Pr{ accept j} = { M) else.

exp (

By analogy, the principle of generation of a neighbor corresponds to the perturbation
mechanism of the Metropolis algorithm, and the principle of acceptance represents the
Metropolis criterion.

The principle of SA can be summarized as follows:

Simulated annealing
1. Initialization i := ig, k := 0, ¢ = ¢, Ly := Lo);

Repeat
3. Forl=0toL;do

*  Generate a solution j from the neighborhood S; of the current solution i;
If f(j) < f(i) theni := j (j becomes the current solution);

N

f@=£()
e Else, j becomes the current solution with probability e< ‘k ) ;
4. k:=k+1;
5.  Compute(Ly, cy);

6. Untilc, ~0

One of the main features of simulated annealing is its ability to accept transitions
that degrade the objective function.

4.2. Evaluation-based simulation

Theln-many-optimization-applications;the objective function is evaluated in many

optimization applications thanks to a computer simulation process that requires a sim-
ulation environment. In such a case, the optimization algorithm controls the vector of
decision variables, X, which are used by the simulation process in order to compute the
performance (quality), y, of such decisions, as shown in Figure 4.

Data

|

Simulation
Environment

Optimization

Figure 4. Objective-function evaluation based on a simulation process

In this situation, population-based algorithms may not be adapted to address such
problems, mainly when the simulation environment requires a considerablehttge amount
of memory space, as it is-as-s often the case in nowadays real-life complex systems. InAs
a-matter-of fact, in the case of a population-based approach, the simulation environment
has to be duplicated for each individual of the population of solutions, which may
require an excessive amount of memory. In order to avoid this drawback, one may
think about having only one simulation environment thatwhieh could be used each
time a point in the population has to be evaluated as follows. In order to evaluate one
population, one first considers the first individual. Then, the simulation environment is
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initiated, and the simulation associated with the first individual is run. The associated
performance is then transferred to the optimization algorithm. After that, the second
individual is evaluated, but the algorithm must first clear the simulation environmentthe
simulation-environmentmustbefirsteleared from the events of the first simulation. The
simulation is then run for the second individual, and up tose-en-until the last individual
of the population is evaluated. In this case, the memory space is not an issue anymore
Still 7but the evaluation time may be excessive and the overall process too slow because
-due-to-thefaet-that the simulation environment is reset at each evaluation.

Aln-the-standard-simulated-annealing-algorithm;a copy of a state-space point is
requested in the standard simulated annealing algorithm for each proposed transition.
Alnfaet-a point Xj is generated from the current point X; through a copy in the memory
of the computer. In the case of state spaces of large dimensions, the simple process
of implementing such a copy may be 1r1eff1c1ent and drastlcally reduce the 51mulated
annealing performancemay y .
In such a case, it is much more efficient to consider a come back operator, which cancels
the effect of a generation. Let G be the generation operator which transforms a point
from X; to )_ij:

G
Xi — X]
the comeback operator is the inverse, G~1, of the generation operator.
Usually, such a generation modifies only one component of the current solution.

In this case, the vector X; can be modified without being duplicated. According to the
value obtained when evaluating this new point, two options may be considered:

1.  the new solution is accepted and, in this case, only the current objective-function
value is updated.

2. else, the comeback operator G~ ! is applied to the current position in the state space
in order to come back to the previous solution before the generation, again without
any duplication in the memory.

This process is summarized in Figure 5.

Figure 5. Optimization of the generation process. In this figure, the state space is built with a
vector of decision for which the generation process consists inef changing only one decision (d;) in
the current solution. If this generation, is not accepted, this component of the solution recovers its
former value. The only information to be stored is the integer i and the real number d;.

The come back operator has to be used carefully because it can easily generate
undesired distortions in the way the algorithm searches the state-space. For example,
supposeif some secondary evaluation variables are used and modified for computing
the overall evaluation. In that case,; such variables must also recover their initial value,
and the come back operator must therefore ensure the coherence of the state space.
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4.3. Selective Simulated Annealing (SSA)

When a decision is put or removed from the simulation environment, one must
compute the effect on the objective function y. Several situations may happen depending
on the structure of the objective function. The easiest case is when it is possible to
efficiently computecompute-easily the impact of a single decision change on the objective
function. The notion is closely related to the separability property of the objective
function. If we consider that the current objective function is noted y,;; associated to the
current decision vector X,;; and suppose that a decision change is proposed for decision
i (dfww) inducing a new state vector )_fngzu. One must determine if the impact on the
objective function may be computed without evaluating all the decisions indecision-on
the simulation environment. For some problems, such re-evaluation is limited to some
decision variables. It-and-it is quite easy to compute the impact on the objective function
by using a limited differential objective gap (Ai ) without re-evaluating all the decisions.
So, when a solution is removed from the sunulatlon environment, one can compute

the impact of the objective function easilyeasily-the-impact-of the-objective funetion by

using the following equation :

. ) it
Ynew = Yold — Alymmm + Aypu

where v, is the new objective function after inserting the selected decision in the
simulation environment, A" is the impact on the objective function when the former

decision ! biq is removed from the simulation environment and A, 7 s the impact on the
objective function when the new decision d’,,,, is inserted in the 51mulat10n environment.

When such a differential evaluation of the objective function is not possible at the
microscopic decision level, one must recompute all the decision variable evaluations in
order to determine y¢,. For some cases,preblems such as re-evaluation may request
quite a lot of computation. In order to avoid this issue, we propose an alternative
approximation of the standard simulated annealing call “Selective Simulated Annealing”.
This approximation starts to evaluate all the decisions d; and associates a cost to each of
them y;. For our problem, such evaluation will be given by summatingthe summation
of the congestion along the arc length of the associated trajectory -y;(t). We then have
have-then a vector of decisions with their associated “costs” as shown in 6.

dy|dy|dy|dy q dy

Y1 |Y2|Y3|¥Ya Yi YN

Figure 6. Vector of evaluated decision.

The summation of individual costs gives the overall evaluationthe overallevaluation
s oiven byt . Cindividual :

i=N

y=2yi

The heating process consists of applying individual decision changes and individual
cost evaluations in order to compute yfld and y}““ Vi = 1..N. If y*“ is lower than y?ld
the microscopic transition is considered as accepted and if not, it could be accepted
based on the Metropolis criterion. The following equation can summarize thisThis-ean

1 ired ] hefoll . . :
1 if ynew < yold

Priaccepti) = 1 op (172" o

z .

where c is the overall temperature. Such temperature is then increased until the accep-
tance rate reaches ~ 80%.
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For the cooling process, the algorithm first identifies the worst decision in terms
of cost. Based on this “max” cost, a threshold is established in order to determine the
decision that will undergo a neighborhood operator (see Figure 7).

Threshold

Decision Costs

T |
12 3@ s 67 8000

Decision Numbers

Figure 7. In this example ten decisions are considered and theirfor-whieh-the costs are illustrated
by the vertical bars for which the highest cost is 6.5. The threshold is then given by 6.5 x 0.8 = 5.2.
The decision with a cost higher than 5.2 are then selected to undergo the neighboring operator.

This process focuses mainly on decisions with worse costs. But as previously
mentioned, decision changes may impact others’ decisions, which-which-in-eur-case are
not easy to identify (no explicitelear decision dependencies in the objective function). It
means that a reduction of cost on a decision may increase the cost ofinduee-an-inerease
ofeost-ont another decision. Still,-but in our case, it is difficult to identify which decision
will be impacted by the change of the former decision. In order to ensure coherence
of the overall objective function, a completefull evaluation of the decision vector is
regularly computed. As we will see in the result, this approximation really improves the
computation performance without sacrificing the quality of the final solution.

4.4. Implementation SSA to our problem
4.4.1. Coding of the solution

The state-space coding used for our problem is quite simple and easy to manipulate.
As illustrated in Figure 6, our state space is coded by the mean of a decision vector. Each
dimension of such a vector represents a decision that can be applied to an aircraft, in our
case, a time shift. Such a time shift is coded by an integer (positive or negative) which
corresponds to the amount of time (in time slots) the aircraft is shifted when it enters the
airspace. This time shift can be absorbed before take-off or onboard in some previous
neighboring airspace. Each decision also containseentains-alse a field representing the

aircraft trajectory’s associated performancethatrepresents-the-associated-performance
of-the-aireraft-trajectory in the airspace (v).

4.4.2. Neighboring Operator

TheFor-agiven-transition;the decision that undergoes a neighboring operator for
a given transition; is selected thanks to the cost threshold comparison. Suppoself the

current decision has an individual cost higher than the computed cost threshold ( 80 %
of the max cost). In that case, then it is changed by randomly modifying the time shift
associated with such a decision considering the aircraft’s feasible time shift range (see
Figure 8).

4.4.3. Objective Function Computation

In order to evaluate the objective function, we rely on a grid-based airspace def-
inition which is implemented in a so-called hash table as presented in [22,23]. First,
the airspace is discretized using a 4D grid (3D space + time), as illustrated in Figure
9. The size of each cell in the x,y,z, and t direction is defined by the neighborhood
area, which has to be checked (in space and time dimension around a given aircraft
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dtf_ dt;

| |le] | [ @ |
-3 0 +2

Figure 8. Time shift operator. The new time shift for the flight f is randomly selected in a time
domain defined by two bound. A negative bound : dtj? and a positive bound : dt;{. In this
example, the former time shift was -3 (blue dot) and the new generated time shift is +2 (green dot).

i at a given time t). All trajectories are first inserted in such a 4D cube with, for each
trajectory sample, its associated grid cell coordinates : (I, Iy, I, It). To compute the
complexity associated with a given trajectory sample for which we know the associated
grid coordinate, the neighboring cells in all dimensions are checked in order to establish
the list of neighboring aircraft around the considered aircraft. Based on their associated
positions and speed vectors, one can compute the speed vector disorder metric associ-
ated with the considered trajectory sample called c; representingwhichrepresents the
complexity metric associated with the trajectory sample number k of the considered
aircraft. The process is repeated for all the trajectory samples constituting the considered
aircraft trajectorytrajectory-of the considered-aireraftin-order to compute the complexity
cost (y;) of aircraft i. This computation is then iterated for all aircraft involved in the
simulation.

X X X X time

ty ty t, ... t,

Figure 9. 4D-Grid coding of the airspace. 4D-Grid coding of the airspace. This structure strongly
speeds up the neighborhood search for a given aircraft.

5. Results
5.1. Benchmark dataPata-benchmark

The data set corresponds to air traffic over French airspace during a full day July,
16, 2019). It consists of 8,800 flights thatwhich have been simulated 3 based on actualreat
flight plans over Frenchfreneh airspace. Figure 10 illustrates the initial given trajectories.
The trajectories are represented by a curvilinear curve, sampled in time every 15 s.
Therefore, a trajectory is a list of 4D points positionedpesitiennied in space (latitude,
longitude, altitude) and time step. TheFer-each-point-the velocity and heading are
known for each point because it is needed to find the air traffic congestion. With the
sampling time of 15 s, the total number of 4D points in the airspace is over 7,500,000.
The congestion has to be computed for each point of the airspace. Thus, the objective
function has a high computation time.

On Figure 10 the trajectories are colorized according to theirinfunetion-ofits initial
complexity (speed covariance metric described in the mathematical model section).
Trajectories with the lowest complexity are shown in blue, whereas the highest are
drawn in red, based on a logarithmic scale.

3

ENAC BADA arithmeticaritmetie simulator.
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Figure 10. Full All-day air traffic over the French airspace, colorized according to theirinfunetion
ofits initial complexity. The trajectories with the lowest complexity are shown in blue, whereas
the highest are drawn in red.

5.2. Benchmark results

The proposed strategic 4D trajectory planning methodology is implemented in the
programming language Java on a computer with the following configuration:

. CPU: Intel Xeon Gold 6230 at 2.10 Ghz
e RAM:1TB

The algorithm is tested on the data explained in Section 5.1. As shown in Figure 10, the
complexity is high and has to be reduced with the proposed algorithm. The initial worst
worse congestion of the data set is 1,500,000.

After running the algorithm, for about two hours, the worst flight of the data

set has a congestion value ofworse-congestion-of-the-datasetis 120,000, see detailed

results in Table 1. Moreover, on Figure 11, there are fewer trajectories that are red and

more trajectories that are bluethe-trajectories-are-less-blue-and-purple-and-more-yellow

and-green. This means the trajectories are less complex. Hence, the air traffic is less
congested.

Number | Initial worst | Final worst | Computation
of flights worse worse time
congestion congestion
Time 8800 1500000 120000 7700 (2h)
shifting

Table 1: Results of the algorithm.

On Figure 12 the complexity of each trajectory is represented in a bar chart. A
logarithmic scale groups the complexity of each trajectory to compare the benefits of
optimization easily. The complexity is computed after optimization using only time shift
of the departure time. The number of trajectories with high complexity is reduced.

The two hours computation which hashave been used for such complexity reduction
may be reduced for further experiments. AfterAs-a-matter-offact-after 45 minutes, the
objective function doesele not evolve anymore, and we could consider that the algorithm
has reached the “optimum”. We will address this point in further researchsemefurther
researches-inorder to adjust the right amount of computation for a given problem size.
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Figure 11. Full All-day air traffic over the French airspace, colorized according to theirinfunetion
ofits complexity, after optimization of the trajectories to minimize the congestion using time shift
of departure time. The trajectories with the lowest complexity are shown in blue, whereas the
highest are drawn in red.

nnnnn

Figure 12. Comparison of the complexity of each trajectory before and after using only departure
time shifting.

6. Conclusion

This paper introduced the work done on the large-scale trajectory planning. In
the-eontext-of free-flight, the trajectory deconfliction algorithms have to be updated to
enable large-scale air traffic. Controllers are increasing their workload with free-flight
since aircraft do not always follow patterns. Thus, the airspace has a limited capacity
that directly impactsimpaets-ireetly the flight by changing its departure time. On the
other hand, airlines wish to have efficient flights with few departure time changes due to
the congested airspace. WeTo-solve-those-isstes;we have developed a decision support
tool towhieh-ean help the strategic planning of free-flights in given airspace to solve
those issues.

After reviewing the concepts and previous works related to our subject, we based
our study on a mathematical modeling of the problem followed by an optimization
algorithm in order to reduce air traffic congestion. TheUsing-the selective simulated
annealing algorithm for optimizing flightflights decisions appeared to be a good choice
given its efficiency and adaptability properties.

A first trial of our solution on real traffic data over French airspace displayed a
good congestion reduction and an acceptable time shift of flights” departure time.
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