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Abstract: This paper presents a methodology to minimize the airspace congestion of aircraft1

trajectories based on slot allocation techniques. The traffic assignment problem is modeled as a2

combinatorial optimization problem for which a selective simulated annealing has been developed.3

Based on theBased the congestion encountered by each aircraft in the airspace, this metaheuristic4

selects and changes the time of departure of the most critical flights in order to target the most5

relevant aircraft. The main objective of this approach is to minimize the aircraft speed vector6

disorder. The proposed algorithm was implemented and tested on simulated trajectories generated7

with real flight plans on a day of traffic over France airspace with 8800 flights.8

Keywords: Optimization; Trajectory; Large Scale; Metaheuristic; Airspace congestion9

1. Introduction10

Air traffic management (ATM) is a system that supportsassists and guides aircraft11

from a departure airport to a destination airport in order to ensure its safety while12

minimizing delays and airspace congestion. It manages the air traffic through the13

management of the three following complementary systems: airspace management14

(ASM), air traffic flow management (ATFM), and air traffic control (ATC). The ATC then15

controls the air traffic in real-time. It uses the flight plan information to predict the traffic16

situation, then issues necessary changes to the flight plan in order to ensure aircraft17

separation, and to maintain the order of air traffic flow, while satisfying as much as18

possible the pilot’s request. For this purpose, the airspace is partitioned into different19

sectors, each sector iseach of which is assigned to a group of controllers monitoring the20

air traffic. In order to prevent overloaded controllerthe controller from being overloaded,21

the number of aircraft allowed to enter a given sector at any given time is limited. When22

the number of aircraft reaches this limit, the corresponding sector is said to be congested.23

Generally, congestion in air traffic managementair transportation can be categorized24

into two groups according to the part of airspace it involves. Terminal congestion is the25

congestion that occurs around the terminal control area 1(TCA, or TMA outside the U.S.26

and Canada). En-route congestion is the congestion involved in the en-route section of27

the flight between TMAs. In the U.S., the congestion occurs more often in the terminal28

areas, whereas the en-route congestion is more critical in Europe due to the fragmented29

nature of its airspace where there are extra difficulties for coordinating the air traffic30

overacross the boundaries, in particular between two different countries. Air traffic31

regulations impose that aircraft must always be separated by some prescribed distance,32

noted Nv for the vertical separation and Nh for the horizontal separation. Current ATC33

1 A terminal control area (also known as a terminal maneuvering area) is controllingcontrolled airspace surrounding major airports, generally
designed as a cylindrical or upside-down wedding cake shape airspace of 30 to 50 miles radius and high of 10,000 feet.
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regulations require aircraft operating in the terminal maneuvering area (TMA) to be34

vertically separated by at least Nv = 1,000 feet and horizontally separated by a minimum35

of Nh = 3 nautical miles. In the en-route environment, for aircraft operating up to (and36

including) FL410 2, the horizontal minimum separation is increased to 5 nautical miles.37

Then,And for aircraft operating above FL410, the vertical separation is increased to 2,00038

feet.39

As the air traffic demand keeps on increasing, the airspace becomes more and more40

congested. Over past decades, several methods have been proposed to address the41

air traffic management problem aiming at balancing air traffic demand and airspace42

capacity and preventing airspace congestion. There are two frequently used air traffic43

decongestion strategies frequently used. The first one adapts the airspace capacity to44

the increased demand. The second air traffic decongestion strategy is to regulate the45

air traffic demand to the current capacity. This strategy focuses on decongesting the46

ATM system through several approaches, such as: allocating delays to each aircraft in47

, order to reduce congestion in sectors or at destination airports, re-routing flights, or48

changing flight levels in order to avoid congestion in sectors or airport TMAs, etc. More49

precisely, the strategic trajectory planning problem under consideration can be presented50

as follows:51

• We are given a set of flight plans for a given day associated with a nationwide scale52

or continent-scale air traffic.53

• For each flight, f , we suppose that a set of possible departure times is given.54

Based on those “alternate trajectories”, we propose to develop an optimization55

strategy in order to minimize the associated airspace congestion with a minimum56

deviation from the user preferences. To reach this goal AI decision support tool based57

on a metaheuristics algorithm has been proposed.58

Currently, congestion (complexity) of the traffic is measured only as an operational59

capacity: the maximum number of aircraft that ATC controllers are able to manage60

are willing to accept is definedfixed on a per sector basis and complexity is assessed61

by comparing the real number of aircraft with the sector capacity. It must be noted62

that under some circumstances controllers will accept aircraft beyond the capacity63

threshold while rejecting traffic at other times although the number of aircraft is well64

below the maximum capacity. This simple fact clearly shows that capacity as a rawcrude65

complexity metric is not enough to representby itself to fully account for the controller’s66

workload. In order to better quantify the complexity, geometric features of the traffic67

have to be included. As previously stated, depending on the traffic structure, ATC68

controllers will perceive situations differently, even if the number of aircraft present in69

the sector is the same. Furthermore, exogenous parameters like the workload history70

can be influential on the perceived complexity at a given time (a long period of heavy71

load will tend to reduce the efficiency of a controller). Some reviews of complexity in72

ATC have been completed, mainly from the controller’s workload point of view [1,2],73

and have recognized that complexity is related to both the structure of the traffic and the74

geometry of the airspace. This tends to prove that controller’s workload has two facets:75

• An intrinsic complexity related to traffic structure.76

• A human factor aspect related to the controller itself.77

While most complexity metrics tend to capture those effects within a single aggregate78

indicator, the purpose of this work is to design a measure of intrinsic complexity only79

since it is the most relevant metric for a highly automated ATC system (no human80

factors).81

Section 2 of this paper will present the previous related works associated with82

this large-scale trajectory planning problem. Section 3 will develop the associated83

mathematical model in order to identify the decision variable, the objective function,84

2 Flight level (FL) is a pressure altitude, expressed in hundreds of feet, e.g. an altitude of 32,000 feet is referred to as FL320.
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and the associated constraint. Section 4 will present the resolution algorithm which has85

been developed to tackle such a problem. Section 5 will introduce the test cases which86

has been used for validating our approach. Finally, section 6 will conclude the paper.87

2. State of the Art88

This section describes, at first, the previous work related to large-scale airspace89

congestion mitigation. Secondly, the complexity metric is used to evaluate the controllers’90

workload to manage the aircraft in a given airspace.91

2.1. Previous related work92

In this section, the existing strategies in the literature are presented to address the93

large-scale airspace congestion mitigation. The first category is the trajectory deconflic-94

tion methods and the second one is the air traffic decongestion methods.95

2.1.1. Trajectory deconfliction strategies96

Instead of only consideringconsidering only the capacity constraints, several re-97

searches looked at deconfliction of aircraft trajectories. Different conflict detection and98

resolution are described in the literature. Conflict detection methods are categorized99

into three categories: nominal, worst-case, and probabilistic conflict detections. Nominal100

conflict means no error is considered in aircraft’s trajectories. Worst-case is the largest101

envelope in which the aircraft might be. Probabilistic conflict detection is an improve-102

ment of worst-case, by introducing a probability density function for aircraft’s position103

inside the worst-case envelope.104

Conflict resolution strategies are: 1-against-N, pair-wise, global. The first strategy105

addsadd aircraft to the airspace following a priority order, and solving conflicts with all106

aircraft in the airspace. The pair-wise strategy considersconsider each pair of aircraft and107

solvessolve the conflict with each other. Finally, the global deconfliction strategy solves108

all air traffic situations, whereas the previous strategies does not, but is computationally109

demanding.110

The main researches in the literature addressing trajectory deconfliction are pre-111

sented in the following paragraph. Genetic algorithms, that deconflict aircraft trajectories,112

are considered in [3]. However, for large-scale air traffic, the memory required is too high.113

In [4,5], air traffic is deconflicted with ground holding and flight level alternates. The114

conflicts are solved by allocating alternative flight levels, and then by ground holding115

aircraft. However, for large-scale air traffic, some conflicts remains. Trajectory deconflic-116

tion, with Light-Propagation Algorithm is described in [6,7]. The principle is to use the117

light-propagation model, with conflicts areas equivalent to high refractive-index areas.118

However, for large-scale air traffic, some conflicts are unsolved.119

In the free-flight concept of operation, the strategies are based on Trajectory Based120

Operations (TBOs). TBO is adapting the air traffic demand to the current air traffic121

capacity, with Trajectory Actions (TAs). Those TAs are changing the departure time,122

the flight level, or the route. To ensure the capacity is not exceeded, negotiated 4D123

trajectories are provided to each aircraft by influencing its TAs. In [8], time uncertainties124

has been also included in order to buildbuilt robust large scale trajectory planning125

planing. When trajectory planning is done at pre-tactical level, conflicts between aircraft126

are quite difficult to predict and congestion reduction objective is used instead of conflict127

mitigation.128

2.1.2. Air traffic decongestion strategies129

In this section, the existing strategies in the literature are presented, to address air130

traffic decongestion problem. Congestion is a situation where the number of aircraft in a131

given airspace exceeds the maximum number of aircraft allowed to enter the airspace.132

Several researches have been done to minimize the air traffic congestion. TheirIts main133

goal is to manage the air traffic demand in function of airspace’s capacity. In this case,134
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action on aircraft are quite similar (flight level setting, delays, route assignment) but for135

airspace congestion mitigation purpose.136

Ground holding approaches is the simplest way to regulate air traffic demand137

in order to meet the airspace’s capacity. The method allocates a delay to the initially-138

planned flight departure time. This strategy transfer air delays to ground delays at the139

departure airport, because it is safer and less expensive. Ground holding strategy was140

first studied in [9].141

Many other extensions of this problem have been proposed in the literature ([10–142

17]).143

Air traffic flow management approaches consider departure and arrival time to144

regulate the air traffic demand. These approaches rely on branch-and-bound algo-145

rithms, mixed-integer programming solvers, genetic algorithms or other algorithms.146

on branch-and-bound algorithms, or mixed-integer programming solver, or genetic147

algorithm, or other algorithms. Some other efforts have investigated airspace congestion148

reduction by using distributed approaches ([18,19]).149

All the previous methods use some artificial trick in order to circumvent the un-150

derlying complexity (objective linearization, objective time-space objective separability,151

distributed algorithm approximation).152

The current approach addresses the full complexity of the airspace congestion153

mitigation by using a dedicated metaheuristic which is able to strongly reduce the154

overall congestion in the airspace.155

In this paper, in a first approach the proposed method is only changing the aircraft156

times of departure to reduce air traffic congestion. The congestion of the air traffic is157

measured with the speed covariance metric, described in the next section.158

3. Mathematical model159

As for any real optimization problem to be solved, the modeling step is critical160

and has to be done carefully. It exhibits the state space (the definition of the decision161

variables), the objective function, and the associated constraints. The decision variables162

and the given data define the objective and the constraints.Both of which must be163

defined in terms of the decision variables and the given data.164

3.1. Input data165

• F: set of flights, noted f ,166

• Γ: set of trajectories,167

• γ f ∈ Γ: trajectory corresponding to a flight f ∈ F,168

• dt+f : upper bound of departure time shift, ∀ f ∈ F,169

• dt−f : lower bound of departure time shift, ∀ f ∈ F,170

3.2. Decision variables171

During the scheduling process, each flight may be scheduled at a different time of172

departure. The decision variable dt f indicates the difference between the scheduled and173

requested departure times. All those decision variables are grouped into the state space174

X.175

3.3. Objective176

In order to evaluate a solution, the following complexity metric will be used. This177

metric is based on the aircraft speed vector disorderdesorder. The main objective is to178

reduce air traffic complexity.179

In control airspace, the higher the number of aircraft, the more the control workload180

increases. Hence, the controllers’ level of mental effort needed to manage those aircraft181

increases. A limit exists in terms of maximum number of aircraft that can be managed182

by the controllers.when the controllers can manage only so many aircraft. ThisThe183

threshold is very difficult to estimate as it depends on the geometry of the air traffic, the184
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distribution of aircraft inside the airspace, etc. A simple measurement of the number185

of aircraft is easy to evaluate but not representative enough to consider, because of186

disordered traffic. Disordered traffic is more demanding than ordered traffic forto the187

controller.188

Thus, a simple count of aircraft in a neighborhood is not enough. Therefore, traffic189

complexity metrics are developed. Traffic complexity is an intrinsic measurement of the190

complexity associated with a traffic situation. This measurement is only dependent on191

the geometry of the trajectories.192

This approach consists of evaluating the covariance of the speed vectors for each193

vector in a neighborhood and. As well as, evaluating the relative distance of each pair of194

points.195

Each curvilinear trajectory is sampled in time into a 4D trajectory. Considering a196

4D point of a 4D trajectory, a spatial neighborhood is considered, as shown in Figure 1.197

Airspace

Neighborhood

Figure 1. Spatial neighborhood of a 4D point in a curvilinear trajectory sampled in time.

Assuming there are N observations at a given time in a given neighborhood. Each198

observation is represented by a position measurement:199

~Xi =

 xi
yi
zi

 (1)

and a speed measurement:

~Vi =

 vxi
vyi
vzi

 (2)

The observations are shown on Figure 1 as the blue points and the speed vector200

associated, plus the reference point (red pointredpoint) and its speed vector.201

Therefore, the speed covariance is described in Equation (3):

Cov =
N

∑
i=1

(|vxi − vx|+ |vyi − vy|+ |vzi − vz|) (3)

with the mean values computed as follows:

vx =
N

∑
i=1

vxi
N

vy =
N

∑
i=1

vyi
N

vz =
N

∑
i=1

vzi
N

(4)
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Neighborhood

Figure 2. Spatial neighborhood of a 4D point.

The speed covariance does not differentiate the proximity of aircraft. Hence, the
evaluation of pair-wise distance enables it. It is computed as follows:

Prox =
N

∑
i=1

N

∑
j=i+1

∣∣∣1[−Nv ,Nv ](zi − zj) · 1[0,2Nh ]
(di,j) ·

(
2Nh − di,j

)∣∣∣ (5)

with, di,j =
√
(xi − xj)2 + (yi − yj)2, the distance in the horizontal plane between two202

points; 1X(x), the indicative function, that equals 1 if x is in the ensemble X and 0 else.203

The further the points are from themselves, the lower the evaluation has to be.204

Moreover, if the points are separated enough (di,j ≥ 2Nh), the evaluation has to be null,205

since it does not create any congestion. Hence, the relative distance to the horizontal206

norm separation is evaluated, as 1[−Nv ,Nv ](zi − zj) · 1[0,2Nh ]
(di,j) ·

(
2Nh − di,j

)
. The prox-207

imity evaluation is the sum of these relative distances for each pair of points in the208

neighborhood.209

Finally, the metric evaluation is the sum of the speed covariance and the proximity.210

It is computed for a reference point p, and its neighborhood. Thus, it is noted cp. Its211

complete formula is described in Equation (6):212

cp =
N

∑
i=1

(|vxi − vx|+ |vyi − vy|+ |vzi − vz|)

+
N

∑
i=1

N

∑
j=i+1

∣∣∣1[−Nv ,Nv](zi − zj) · 1[0,2Nh](di,j) ·
(
2Nh− di,j

)∣∣∣ (6)

The complexity evaluation y of the air traffic solution is the sum of all flights’213

complexity, see Equation (7):214

y = ∑
f∈F

y f (7)

The flight, f , is represented by its curvilinear trajectory. The trajectory, γ f , is215

sampled in time, with 4D points, p, represented in Figure 1. The congestion of the216

trajectory is the sum of complexity for each point in the curvilinear trajectory, see217

Equation (8):218

y f = ∑
p∈γ f

cp (8)

The point’s congestion, noted cp, is computed using the speed covariance metric,219

and the point’s neighborhood. The formula of cp computing is detailed in Equation (6).220

Besides the congestion, the algorithm must minimize the introduced delaysthe
introduced delays must be minimized to best suit the airlines’ requests. The evaluation



Version September 30, 2021 submitted to Journal Not Specified 7 of 16

of the total delays is the sum of all absolute gap between the requested and allocated
time of departure, see Equation (9):

∑
f∈F
|dt f | (9)

The objective function f (X), described hereafter:

f (X) = y + w1 ∑
f∈F
|dt f | = ∑

f∈F
∑

p∈γ f

cp + w1 ∑
f∈F
|dt f | (10)

with w1, the weight to balance the evaluations.221

3.4. Constraints222

The problem is subjected to some constraints. In fact, the time shift of the departure
time needs to be between the minimal and maximal bound of the time displacement for
each flight.

dt−f ≤ dt f ≤ dt+f ∀ f ∈ F (11)

The evaluation of the objective function involves a high computation time. More-223

over, the objective function may have multiple local optima. Therefore, the choice of224

a stochastic algorithm to optimize the air traffic congestion is more valued. Hence,225

the algorithm chosen is Simulated Annealing algorithm and isthe choice of a Simulated226

Annealing algorithm presented hereafter in Section 4.227

4. Simulated annealing228

4.1. Standard Simulated Annealing229

Simulated Annealing (SA) is one of the simplest and best-known metaheuristic230

methods for addressing the difficult black box global optimization problems (those whose231

objective function is not explicitly given and can only be evaluated via some costly232

computer simulation). Real-life applications massively use Simulated Annealing.It is233

massively used in real-life applications. The expression "simulated annealing" yields234

over one million hits when searching through the Google Scholar web search engine235

dedicated to the scholarly literature. In the early 1980s, three IBM researchers, Kirk-236

patrick, Gelatt, and Vecchi [20], introduced the concepts of annealing in combinatorial237

optimization. These concepts are based on a strong analogy with the physical annealing238

of materials. This process involves bringing a solid to a low energy state after raising its239

temperature. It can be summarized by the following two steps :240

• Bring the solid to a very high temperature until "melting" of the structure;241

• Cooling the solid according to a very particular temperature decreasing scheme in242

order to reach a solid-state of minimum energy.243

In the liquid phase, the particles are distributed randomly. It is shown that the244

minimum energy state is reached provided that the initial temperature is sufficiently245

high and the cooling time is sufficiently long. If this is not the case, the solid will be246

found in a metastable state with non-minimal energy. This state; this is referred to as247

hardening, which consists ofin the sudden cooling of a solid.248

In 1953, three American researchers (Metropolis, Rosenbluth, and Teller [21]) devel-249

oped an algorithm to simulate physical annealing. They aimed to reproduce faithfully250

the evolution of the physical structure of a material undergoing annealing. This algo-251

rithm is based on Monte Carlo techniques, which generate which consist of generating252

a sequence of states of the solid in the following way.253

Starting from an initial state i of energy Ei, a new state j of energy Ej is generated254

by modifying the position of one particle.255
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Figure 3. When the temperature is high, the material is in a liquid state (left). For a hardening
process, the material reaches a solid-state with non-minimal energy (metastable state; top right).
In this case, the structure of the atoms has no symmetry. During a slow annealing process, the
material also reachesreaches also a solid-state but for which atoms are organized with symmetry
(crystal; bottom right).

If the energy difference, Ei − Ej, is positive (the new state features lower energy),256

the state j becomes the new current state. If the energy difference is less than or equal to257

zero, then the probability that the state j becomes the current state is given by:258

Pr{Current state = j} = exp
(Ei − Ej

kb.T

)
where T represents the temperature of the solid and kB is the Boltzmann constant259

(kB = 1.38× 10−23 joule/Kelvin).260

The acceptance criterion of the new state is called the Metropolis criterion. If the
cooling is carried out sufficiently slowly, the solid reaches a state of equilibrium at
each given temperature T. In the Metropolis algorithm, this equilibrium is achieved by
generating a large number of transitions at each temperature. The thermal equilibrium
is characterized by the Boltzmann statistical distribution. This distribution gives the
probability that the solid is in the state i of energy Ei at the temperature T:

Pr{X = i} = 1
Z(T)

e
−
(

Ei
kbT

)

where X is a random variable associated with the current state of the solid, Z(T) is the261

distribution function of X at temperature T. This allows the normalization:262

Z(T) = ∑
j∈S

e
−
(

Ej
kbT

)
.

TheIn the SA algorithm, the Metropolis algorithm is applied to generate a sequence263

of solutions in the state space S in the SA algorithm. To do this, an analogy is made264

between a multi-particle system and our optimization problem by using the following265

equivalences:266

• The state-space points represent the possible states of the solid;267

• The function to be minimized represents the energy of the solid.268

A control parameter c, acting as a temperature, is then introduced. This parameter is269

homogeneous to the criterion that is optimized.270

It is also assumed that the user provides for each point of the state space, a neigh-271

borhood, and a mechanism for generating a solution in this neighborhood. We then272

define the acceptance principle :273
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Definition 1. Let (S, f ) be an instantiation of a combinatorial minimization problem, and i, j
two points of the state space. The acceptance criterion for accepting solution j from the current
solution i is given by the following probability :

Pr{ accept j} =
{

1 if f (j) < f (i)
exp

(
f (i)− f (j)

c

)
else.

By analogy, the principle of generation of a neighbor corresponds to the perturbation274

mechanism of the Metropolis algorithm, and the principle of acceptance represents the275

Metropolis criterion.276

The principle of SA can be summarized as follows:277

Simulated annealing

1. Initialization i := istart, k := 0, ck = c0, Lk := L0);
2. Repeat
3. For l = 0 to Lk do

• Generate a solution j from the neighborhood Si of the current solution i;
• If f (j) < f (i) then i := j (j becomes the current solution);

• Else, j becomes the current solution with probability e
(

f (i)− f (j)
ck

)
;

4. k := k + 1;
5. Compute(Lk, ck);
6. Until ck ' 0

One of the main features of simulated annealing is its ability to accept transitions278

that degrade the objective function.279

4.2. Evaluation-based simulation280

TheIn many optimization applications, the objective function is evaluated in many281

optimization applications thanks to a computer simulation process that requires a sim-282

ulation environment. In such a case, the optimization algorithm controls the vector of283

decision variables, X, which are used by the simulation process in order to compute the284

performance (quality), y, of such decisions, as shown in Figure 4.285

Optimization

Environment  

Simulation

Data

yX

Figure 4. Objective-function evaluation based on a simulation process

In this situation, population-based algorithms may not be adapted to address such286

problems, mainly when the simulation environment requires a considerablehuge amount287

of memory space, as it is as is often the case in nowadays real-life complex systems. InAs288

a matter of fact, in the case of a population-based approach, the simulation environment289

has to be duplicated for each individual of the population of solutions, which may290

require an excessive amount of memory. In order to avoid this drawback, one may291

think about having only one simulation environment thatwhich could be used each292

time a point in the population has to be evaluated as follows. In order to evaluate one293

population, one first considers the first individual. Then, the simulation environment is294
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initiated, and the simulation associated with the first individual is run. The associated295

performance is then transferred to the optimization algorithm. After that, the second296

individual is evaluated, but the algorithm must first clear the simulation environmentthe297

simulation environment must be first cleared from the events of the first simulation. The298

simulation is then run for the second individual, and up toso on until the last individual299

of the population is evaluated. In this case, the memory space is not an issue anymore300

.Still,, but the evaluation time may be excessive and the overall process too slow because301

, due to the fact that the simulation environment is reset at each evaluation.302

AIn the standard simulated annealing algorithm, a copy of a state-space point is
requested in the standard simulated annealing algorithm for each proposed transition.
AIn fact, a point ~Xj is generated from the current point ~Xi through a copy in the memory
of the computer. In the case of state spaces of large dimensions, the simple process
of implementing such a copy may be inefficient and drastically reduce the simulated
annealing performancemay reduce drastically the performance of simulated annealing.
In such a case, it is much more efficient to consider a come back operator, which cancels
the effect of a generation. Let G be the generation operator which transforms a point
from ~Xi to ~Xj:

G
~Xi → ~Xj

the comeback operator is the inverse, G−1, of the generation operator.303

Usually, such a generation modifies only one component of the current solution.304

In this case, the vector ~Xi can be modified without being duplicated. According to the305

value obtained when evaluating this new point, two options may be considered:306

1. the new solution is accepted and, in this case, only the current objective-function307

value is updated.308

2. else, the comeback operator G−1 is applied to the current position in the state space309

in order to come back to the previous solution before the generation, again without310

any duplication in the memory.311

This process is summarized in Figure 5.312

d 2 d 3 d 41 d i d Nd

GENERATION

d 2 d 3 d 41 d i d Nd

COME BACK

d 2 d 3 d 41 d d Nd j
~ 
di 

Figure 5. Optimization of the generation process. In this figure, the state space is built with a
vector of decision for which the generation process consists inof changing only one decision (di) in
the current solution. If this generation, is not accepted, this component of the solution recovers its
former value. The only information to be stored is the integer i and the real number di.

The come back operator has to be used carefully because it can easily generate313

undesired distortions in the way the algorithm searches the state-space. For example,314

supposeif some secondary evaluation variables are used and modified for computing315

the overall evaluation. In that case,, such variables must also recover their initial value,316

and the come back operator must therefore ensure the coherence of the state space.317
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4.3. Selective Simulated Annealing (SSA)318

When a decision is put or removed from the simulation environment, one must319

compute the effect on the objective function y. Several situations may happen depending320

on the structure of the objective function. The easiest case is when it is possible to321

efficiently computecompute easily the impact of a single decision change on the objective322

function. The notion is closely related to the separability property of the objective323

function. If we consider that the current objective function is noted yold associated to the324

current decision vector ~Xold and suppose that a decision change is proposed for decision325

i (di
new) inducing a new state vector ~Xnew. One must determine if the impact on the326

objective function may be computed without evaluating all the decisions indecision on327

the simulation environment. For some problems, such re-evaluation is limited to some328

decision variables. It and it is quite easy to compute the impact on the objective function329

by using a limited differential objective gap (∆i
y) without re-evaluating all the decisions.330

So, when a solution is removed from the simulation environment, one can compute331

the impact of the objective function easilyeasily the impact of the objective function by332

using the following equation :333

ynew = yold − ∆iremove
y + ∆

iput
y

where ynew is the new objective function after inserting the selected decision in the334

simulation environment, ∆iremove
y is the impact on the objective function when the former335

decision di
old is removed from the simulation environment and ∆

iput
y is the impact on the336

objective function when the new decision di
new is inserted in the simulation environment.337

When such a differential evaluation of the objective function is not possible at the338

microscopic decision level, one must recompute all the decision variable evaluations in339

order to determine ynew. For some cases,, problems such as re-evaluation may request340

quite a lot of computation. In order to avoid this issue, we propose an alternative341

approximation of the standard simulated annealing call “Selective Simulated Annealing”.342

This approximation starts to evaluate all the decisions di and associates a cost to each of343

them yi. For our problem, such evaluation will be given by summatingthe summation344

of the congestion along the arc length of the associated trajectory γi(t). We then have345

have then a vector of decisions with their associated “costs” as shown in 6.346

2 3 41 i N

d 2 d 3 d 41 d i d Nd

y y y y y y

Figure 6. Vector of evaluated decision.

The summation of individual costs gives the overall evaluationThe overall evaluation347

is given by the summation of individual costs :348

y =
i=N

∑
i=1

yi

The heating process consists of applying individual decision changes and individual349

cost evaluations in order to compute yold
i and ynew

i ∀i = 1..N. If ynew
i is lower than yold

i350

the microscopic transition is considered as accepted and if not, it could be accepted351

based on the Metropolis criterion. The following equation can summarize thisThis can352

be summarized by the following equation :353

Pr{ accept j} =

 1 if ynew
i < yold

i

exp
(

ynew
i −yold

i
c

)
else.

where c is the overall temperature. Such temperature is then increased until the accep-354

tance rate reaches ' 80%.355
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For the cooling process, the algorithm first identifies the worst decision in terms356

of cost. Based on this “max” cost, a threshold is established in order to determine the357

decision that will undergo a neighborhood operator (see Figure 7).358

1 12 3 4 5 6 7 8 9 0
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4

5

7

6

Threshold

Figure 7. In this example ten decisions are considered and theirfor which the costs are illustrated
by the vertical bars for which the highest cost is 6.5. The threshold is then given by 6.5× 0.8 = 5.2.
The decision with a cost higher than 5.2 are then selected to undergo the neighboring operator.

This process focuses mainly on decisions with worse costs. But as previously359

mentioned, decision changes may impact others’ decisions, which which in our case are360

not easy to identify (no explicitclear decision dependencies in the objective function). It361

means that a reduction of cost on a decision may increase the cost ofinduce an increase362

of cost on another decision. Still, but in our case, it is difficult to identify which decision363

will be impacted by the change of the former decision. In order to ensure coherence364

of the overall objective function, a completefull evaluation of the decision vector is365

regularly computed. As we will see in the result, this approximation really improves the366

computation performance without sacrificing the quality of the final solution.367

4.4. Implementation SSA to our problem368

4.4.1. Coding of the solution369

The state-space coding used for our problem is quite simple and easy to manipulate.370

As illustrated in Figure 6, our state space is coded by the mean of a decision vector. Each371

dimension of such a vector represents a decision that can be applied to an aircraft, in our372

case, a time shift. Such a time shift is coded by an integer (positive or negative) which373

corresponds to the amount of time (in time slots) the aircraft is shifted when it enters the374

airspace. This time shift can be absorbed before take-off or onboard in some previous375

neighboring airspace. Each decision also containscontains also a field representing the376

aircraft trajectory’s associated performancethat represents the associated performance377

of the aircraft trajectory in the airspace (y).378

4.4.2. Neighboring Operator379

TheFor a given transition, the decision that undergoes a neighboring operator for380

a given transition, is selected thanks to the cost threshold comparison. SupposeIf the381

current decision has an individual cost higher than the computed cost threshold ( 80 %382

of the max cost). In that case, then it is changed by randomly modifying the time shift383

associated with such a decision considering the aircraft’s feasible time shift range (see384

Figure 8).385

4.4.3. Objective Function Computation386

In order to evaluate the objective function, we rely on a grid-based airspace def-387

inition which is implemented in a so-called hash table as presented in [22,23]. First,388

the airspace is discretized using a 4D grid (3D space + time), as illustrated in Figure389

9. The size of each cell in the x,y,z, and t direction is defined by the neighborhood390

area, which has to be checked (in space and time dimension around a given aircraft391
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dt
f

−
dt

f

+

0 +2−3

Figure 8. Time shift operator. The new time shift for the flight f is randomly selected in a time
domain defined by two bound. A negative bound : dt−f and a positive bound : dt+f . In this
example, the former time shift was -3 (blue dot) and the new generated time shift is +2 (green dot).

i at a given time t). All trajectories are first inserted in such a 4D cube with, for each392

trajectory sample, its associated grid cell coordinates : (Ix, Iy, Iz, It). To compute the393

complexity associated with a given trajectory sample for which we know the associated394

grid coordinate, the neighboring cells in all dimensions are checked in order to establish395

the list of neighboring aircraft around the considered aircraft. Based on their associated396

positions and speed vectors, one can compute the speed vector disorder metric associ-397

ated with the considered trajectory sample called ck representingwhich represents the398

complexity metric associated with the trajectory sample number k of the considered399

aircraft. The process is repeated for all the trajectory samples constituting the considered400

aircraft trajectorytrajectory of the considered aircraft in order to compute the complexity401

cost (yi) of aircraft i. This computation is then iterated for all aircraft involved in the402

simulation.403

Figure 9. 4D-Grid coding of the airspace. 4D-Grid coding of the airspace. This structure strongly
speeds up the neighborhood search for a given aircraft.

5. Results404

5.1. Benchmark dataData benchmark405

The data set corresponds to air traffic over French airspace during a full day July,406

16, 2019). It consists of 8,800 flights thatwhich have been simulated 3 based on actualreal407

flight plans over Frenchfrench airspace. Figure 10 illustrates the initial given trajectories.408

The trajectories are represented by a curvilinear curve, sampled in time every 15 s.409

Therefore, a trajectory is a list of 4D points positionedpositionned in space (latitude,410

longitude, altitude) and time step. TheFor each point, the velocity and heading are411

known for each point because it is needed to find the air traffic congestion. With the412

sampling time of 15 s, the total number of 4D points in the airspace is over 7,500,000.413

The congestion has to be computed for each point of the airspace. Thus, the objective414

function has a high computation time.415

On Figure 10 the trajectories are colorized according to theirin function of its initial416

complexity (speed covariance metric described in the mathematical model section).417

Trajectories with the lowest complexity are shown in blue, whereas the highest are418

drawn in red, based on a logarithmic scale.419

3 ENAC BADA arithmeticaritmetic simulator.
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Figure 10. Full All-day air traffic over the French airspace, colorized according to theirin function
of its initial complexity. The trajectories with the lowest complexity are shown in blue, whereas
the highest are drawn in red.

5.2. Benchmark results420

The proposed strategic 4D trajectory planning methodology is implemented in the421

programming language Java on a computer with the following configuration:422

• CPU: Intel Xeon Gold 6230 at 2.10 Ghz423

• RAM: 1 TB424

The algorithm is tested on the data explained in Section 5.1. As shown in Figure 10, the425

complexity is high and has to be reduced with the proposed algorithm. The initial worst426

worse congestion of the data set is 1,500,000.427

After running the algorithm, for about two hours, the worst flight of the data428

set has a congestion value ofworse congestion of the data set is 120,000, see detailed429

results in Table 1. Moreover, on Figure 11, there are fewer trajectories that are red and430

more trajectories that are bluethe trajectories are less blue and purple and more yellow431

and green. This means the trajectories are less complex. Hence, the air traffic is less432

congested.433

Number
of flights

Initial worst
worse

congestion

Final worst
worse

congestion

Computation
time

Time
shifting

8800 1500000 120000 7700 (2h)

Table 1: Results of the algorithm.

On Figure 12 the complexity of each trajectory is represented in a bar chart. A434

logarithmic scale groups the complexity of each trajectory to compare the benefits of435

optimization easily. The complexity is computed after optimization using only time shift436

of the departure time. The number of trajectories with high complexity is reduced.437

The two hours computation which hashave been used for such complexity reduction438

may be reduced for further experiments. AfterAs a matter of fact, after 45 minutes, the439

objective function doesdo not evolve anymore, and we could consider that the algorithm440

has reached the “optimum”. We will address this point in further researchsome further441

researches in order to adjust the right amount of computation for a given problem size.442
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Figure 11. Full All-day air traffic over the French airspace, colorized according to theirin function
of its complexity, after optimization of the trajectories to minimize the congestion using time shift
of departure time. The trajectories with the lowest complexity are shown in blue, whereas the
highest are drawn in red.

Figure 12. Comparison of the complexity of each trajectory before and after using only departure
time shifting.

6. Conclusion443

This paper introduced the work done on the large-scale trajectory planning. In444

the context of free-flight, the trajectory deconfliction algorithms have to be updated to445

enable large-scale air traffic. Controllers are increasing their workload with free-flight446

since aircraft do not always follow patterns. Thus, the airspace has a limited capacity447

that directly impactsimpacts directly the flight by changing its departure time. On the448

other hand, airlines wish to have efficient flights with few departure time changes due to449

the congested airspace. WeTo solve those issues, we have developed a decision support450

tool towhich can help the strategic planning of free-flights in given airspace to solve451

those issues.452

After reviewing the concepts and previous works related to our subject, we based453

our study on a mathematical modeling of the problem followed by an optimization454

algorithm in order to reduce air traffic congestion. TheUsing the selective simulated455

annealing algorithm for optimizing flightflights decisions appeared to be a good choice456

given its efficiency and adaptability properties.457

A first trial of our solution on real traffic data over French airspace displayed a458

good congestion reduction and an acceptable time shift of flights’ departure time.459
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