Julien Lavandier 
  
Arianit Islami 
  
Daniel Delahaye 
email: delahaye@recherche.enac.fr
  
Supatcha Chaimatanan 
email: supatcha@gistda.or.th
  
Amir Abecassis 
  
Selective Simulated Annealing for Large Scale Airspace Congestion Mitigation

Keywords: Optimization, Trajectory, Large Scale, Metaheuristic, Airspace congestion 9

This paper presents a methodology to minimize the airspace congestion of aircraft 1 trajectories based on slot allocation techniques. The traffic assignment problem is modeled as a 2 combinatorial optimization problem for which a selective simulated annealing has been developed. 3 Based on theBased the congestion encountered by each aircraft in the airspace, this metaheuristic 4 selects and changes the time of departure of the most critical flights in order to target the most 5 relevant aircraft. The main objective of this approach is to minimize the aircraft speed vector 6 disorder. The proposed algorithm was implemented and tested on simulated trajectories generated 7 with real flight plans on a day of traffic over France airspace with 8800 flights.

Introduction 10

Air traffic management (ATM) is a system that supportsassists and guides aircraft 11 from a departure airport to a destination airport in order to ensure its safety while 12 minimizing delays and airspace congestion. It manages the air traffic through the 13 management of the three following complementary systems: airspace management 14 (ASM), air traffic flow management (ATFM), and air traffic control (ATC). The ATC then 15 controls the air traffic in real-time. It uses the flight plan information to predict the traffic 16 situation, then issues necessary changes to the flight plan in order to ensure aircraft 17 separation, and to maintain the order of air traffic flow, while satisfying as much as 18 possible the pilot's request. For this purpose, the airspace is partitioned into different 19 sectors, each sector iseach of which is assigned to a group of controllers monitoring the 20 air traffic. In order to prevent overloaded controllerthe controller from being overloaded, 21 the number of aircraft allowed to enter a given sector at any given time is limited. When 22 the number of aircraft reaches this limit, the corresponding sector is said to be congested. [START_REF] Chaimatanan | A hybrid metaheuristic optimizationalgorithm for strategic planning of 4d aircraft trajectories at the continental scale[END_REF] Generally, congestion in air traffic managementair transportation can be categorized 24 into two groups according to the part of airspace it involves. Terminal congestion is the 25 congestion that occurs around the terminal control area 1 (TCA, or TMA outside the U.S. 26 and Canada). En-route congestion is the congestion involved in the en-route section of 27 the flight between TMAs. In the U.S., the congestion occurs more often in the terminal 28 areas, whereas the en-route congestion is more critical in Europe due to the fragmented 29 nature of its airspace where there are extra difficulties for coordinating the air traffic 30 overacross the boundaries, in particular between two different countries. Air traffic 31 regulations impose that aircraft must always be separated by some prescribed distance, 32 noted N v for the vertical separation and N h for the horizontal separation. Current ATC

•

We are given a set of flight plans for a given day associated with a nationwide scale 52 or continent-scale air traffic.

53

• For each flight, f , we suppose that a set of possible departure times is given.

54

Based on those "alternate trajectories", we propose to develop an optimization reduction by using distributed approaches ( [START_REF] Alam | A Distributed Air Traffic Flow Management Model for European Functional Airspace Blocks[END_REF][START_REF] Juntama | A Distributed Metaheuristic Approach for Complexity Reduction in Air Traffic for Strategic 4D Trajectory Optimization[END_REF]).

149

All the previous methods use some artificial trick in order to circumvent the un-150 derlying complexity (objective linearization, objective time-space objective separability, 151 distributed algorithm approximation).

152

The current approach addresses the full complexity of the airspace congestion 153 mitigation by using a dedicated metaheuristic which is able to strongly reduce the 154 overall congestion in the airspace.

155

In this paper, in a first approach the proposed method is only changing the aircraft In order to evaluate a solution, the following complexity metric will be used. This Assuming there are N observations at a given time in a given neighborhood. Each 198 observation is represented by a position measurement:

199 X i =   x i y i z i   (1) 
and a speed measurement:

V i =   vx i vy i vz i   (2) 
The observations are shown on Figure 1 as the blue points and the speed vector 200 associated, plus the reference point (red pointredpoint) and its speed vector.

201

Therefore, the speed covariance is described in Equation ( 3):

Cov = N ∑ i=1 (|vx i -vx| + |vy i -vy| + |vz i -vz|) (3) 
with the mean values computed as follows: The speed covariance does not differentiate the proximity of aircraft. Hence, the evaluation of pair-wise distance enables it. It is computed as follows:

vx = N ∑ i=1 vx i N vy = N ∑ i=1 vy i N vz = N ∑ i=1 vz i N (4) 
Prox = N ∑ i=1 N ∑ j=i+1 1 [-N v ,N v ] (z i -z j ) • 1 [0,2N h ] (d i,j ) • 2N h -d i,j (5) 
with, d i,j = (x ix j ) 2 + (y iy j ) 2 , the distance in the horizontal plane between two 202 points; 1 X (x), the indicative function, that equals 1 if x is in the ensemble X and 0 else.

203

The further the points are from themselves, the lower the evaluation has to be.

204

Moreover, if the points are separated enough (d i,j ≥ 2Nh), the evaluation has to be null, 205 since it does not create any congestion. Hence, the relative distance to the horizontal

206 norm separation is evaluated, as 1 [-N v ,N v ] (z i -z j ) • 1 [0,2N h ] (d i,j ) • 2N h -d i,j . The prox- 207
imity evaluation is the sum of these relative distances for each pair of points in the 208 neighborhood.

209

Finally, the metric evaluation is the sum of the speed covariance and the proximity.

210

It is computed for a reference point p, and its neighborhood. Thus, it is noted c p . Its 211 complete formula is described in Equation ( 6):

212 c p = N ∑ i=1 (|vx i -vx| + |vy i -vy| + |vz i -vz|) + N ∑ i=1 N ∑ j=i+1 1 [-N v ,Nv] (z i -z j ) • 1 [0,2Nh] (d i,j ) • 2Nh -d i,j (6) 
The complexity evaluation y of the air traffic solution is the sum of all flights' 213 complexity, see Equation [START_REF] Dougui | A light-propagation model for aircraft trajectory planning[END_REF]:

214 y = ∑ f ∈F y f (7) 
The flight, f , is represented by its curvilinear trajectory. The trajectory, γ f , is 218

y f = ∑ p∈γ f c p (8) 
The point's congestion, noted c p , is computed using the speed covariance metric,

219

and the point's neighborhood. The formula of c p computing is detailed in Equation [START_REF] Dougui | A new method for generating optimal conflict free 4D trajectory[END_REF].

220

Besides the congestion, the algorithm must minimize the introduced delaysthe introduced delays must be minimized to best suit the airlines' requests. The evaluation of the total delays is the sum of all absolute gap between the requested and allocated time of departure, see Equation ( 9):

∑ f ∈F |dt f | (9) 
The objective function f (X), described hereafter:

f (X) = y + w 1 ∑ f ∈F |dt f | = ∑ f ∈F ∑ p∈γ f c p + w 1 ∑ f ∈F |dt f | (10) 
with w 1 , the weight to balance the evaluations. The problem is subjected to some constraints. In fact, the time shift of the departure time needs to be between the minimal and maximal bound of the time displacement for each flight.

dt - f ≤ dt f ≤ dt + f ∀ f ∈ F (11) 
The evaluation of the objective function involves a high computation time. More- The acceptance criterion of the new state is called the Metropolis criterion. If the cooling is carried out sufficiently slowly, the solid reaches a state of equilibrium at each given temperature T. In the Metropolis algorithm, this equilibrium is achieved by generating a large number of transitions at each temperature. The thermal equilibrium is characterized by the Boltzmann statistical distribution. This distribution gives the probability that the solid is in the state i of energy E i at the temperature T:

Pr{X = i} = 1 Z(T) e - E i k b T
where X is a random variable associated with the current state of the solid, Z(T) is the 261 distribution function of X at temperature T. This allows the normalization:

262 Z(T) = ∑ j∈S e - E j k b T .
TheIn the SA algorithm, the Metropolis algorithm is applied to generate a sequence 263 of solutions in the state space S in the SA algorithm. To do this, an analogy is made 264 between a multi-particle system and our optimization problem by using the following • The function to be minimized represents the energy of the solid.

268

A control parameter c, acting as a temperature, is then introduced. This parameter is 269 homogeneous to the criterion that is optimized.

270

It is also assumed that the user provides for each point of the state space, a neigh-271 borhood, and a mechanism for generating a solution in this neighborhood. We then 272 define the acceptance principle : Definition 1. Let (S, f ) be an instantiation of a combinatorial minimization problem, and i, j two points of the state space. The acceptance criterion for accepting solution j from the current solution i is given by the following probability :

Pr{ accept j} = 1 if f (j) < f (i) exp f (i)-f (j) c else.
By analogy, the principle of generation of a neighbor corresponds to the perturbation 274 mechanism of the Metropolis algorithm, and the principle of acceptance represents the 275 Metropolis criterion.

276

The principle of SA can be summarized as follows:

277 Simulated annealing 1.

Initialization i := i start , k := 0, c k = c 0 , L k := L 0 ); 2. Repeat 3.
For l = 0 to L k do • Generate a solution j from the neighborhood S i of the current solution i; • If f (j) < f (i) then i := j (j becomes the current solution);

• Else, j becomes the current solution with probability e

f (i)-f (j) c k ; 4. k := k + 1; 5.
Compute(L k , c k ); 6.

Until c k 0

One of the main features of simulated annealing is its ability to accept transitions 278 that degrade the objective function. performance is then transferred to the optimization algorithm. After that, the second 296 individual is evaluated, but the algorithm must first clear the simulation environmentthe 297 simulation environment must be first cleared from the events of the first simulation. The 298 simulation is then run for the second individual, and up toso on until the last individual 299 of the population is evaluated. In this case, the memory space is not an issue anymore 300 .Still,, but the evaluation time may be excessive and the overall process too slow because 301 , due to the fact that the simulation environment is reset at each evaluation.

302

AIn the standard simulated annealing algorithm, a copy of a state-space point is requested in the standard simulated annealing algorithm for each proposed transition. AIn fact, a point X j is generated from the current point X i through a copy in the memory of the computer. In the case of state spaces of large dimensions, the simple process of implementing such a copy may be inefficient and drastically reduce the simulated annealing performancemay reduce drastically the performance of simulated annealing. In such a case, it is much more efficient to consider a come back operator, which cancels the effect of a generation. Let G be the generation operator which transforms a point from X i to X j : G X i → X j the comeback operator is the inverse, G -1 , of the generation operator.

303

Usually, such a generation modifies only one component of the current solution.

304

In this case, the vector X i can be modified without being duplicated. According to the 305 value obtained when evaluating this new point, two options may be considered:

306 1.
the new solution is accepted and, in this case, only the current objective-function 307 value is updated.

308 2.
else, the comeback operator G -1 is applied to the current position in the state space 309 in order to come back to the previous solution before the generation, again without 310 any duplication in the memory.

311

This process is summarized in Figure 5. . Optimization of the generation process. In this figure, the state space is built with a vector of decision for which the generation process consists inof changing only one decision (d i ) in the current solution. If this generation, is not accepted, this component of the solution recovers its former value. The only information to be stored is the integer i and the real number d i .

The come back operator has to be used carefully because it can easily generate 313 undesired distortions in the way the algorithm searches the state-space. For example, 314 supposeif some secondary evaluation variables are used and modified for computing 315 the overall evaluation. In that case,, such variables must also recover their initial value, 316 and the come back operator must therefore ensure the coherence of the state space.

For the cooling process, the algorithm first identifies the worst decision in terms 356 of cost. Based on this "max" cost, a threshold is established in order to determine the 357 decision that will undergo a neighborhood operator (see Figure 7). In this example ten decisions are considered and theirfor which the costs are illustrated by the vertical bars for which the highest cost is 6.5. The threshold is then given by 6.5 × 0.8 = 5.2. The decision with a cost higher than 5.2 are then selected to undergo the neighboring operator.

This process focuses mainly on decisions with worse costs. But as previously 359 mentioned, decision changes may impact others' decisions, which which in our case are 360 not easy to identify (no explicitclear decision dependencies in the objective function). It 361 means that a reduction of cost on a decision may increase the cost ofinduce an increase 362 of cost on another decision. Still, but in our case, it is difficult to identify which decision The state-space coding used for our problem is quite simple and easy to manipulate.

370

As illustrated in Figure 6, our state space is coded by the mean of a decision vector. Each 371 dimension of such a vector represents a decision that can be applied to an aircraft, in our In order to evaluate the objective function, we rely on a grid-based airspace def-387 inition which is implemented in a so-called hash table as presented in [START_REF] Chaimatanan | Strategic deconfliction of aircraft trajectories[END_REF][START_REF] Chaimatanan | A hybrid metaheuristic optimizationalgorithm for strategic planning of 4d aircraft trajectories at the continental scale[END_REF]. First,

388
the airspace is discretized using a 4D grid (3D space + time), as illustrated in Figure 389 9. The size of each cell in the x,y,z, and t direction is defined by the neighborhood The congestion has to be computed for each point of the airspace. Thus, the objective 

Results

Benchmark results

420

The proposed strategic 4D trajectory planning methodology is implemented in the 421 programming language Java on a computer with the following configuration: 

55

  strategy in order to minimize the associated airspace congestion with a minimum 56 deviation from the user preferences. To reach this goal AI decision support tool based 57 on a metaheuristics algorithm has been proposed.58Currently, congestion (complexity) of the traffic is measured only as an operational 59 capacity: the maximum number of aircraft that ATC controllers are able to manage 60 are willing to accept is definedfixed on a per sector basis and complexity is assessed 61 by comparing the real number of aircraft with the sector capacity. It must be noted 62 that under some circumstances controllers will accept aircraft beyond the capacity 63 threshold while rejecting traffic at other times although the number of aircraft is well 64 below the maximum capacity. This simple fact clearly shows that capacity as a rawcrude 65 complexity metric is not enough to representby itself to fully account for the controller's 66 workload. In order to better quantify the complexity, geometric features of the traffic 67 have to be included. As previously stated, depending on the traffic structure, ATC 68 controllers will perceive situations differently, even if the number of aircraft present in 69 the sector is the same. Furthermore, exogenous parameters like the workload history 70 can be influential on the perceived complexity at a given time (a long period of heavy 71 load will tend to reduce the efficiency of a controller). Some reviews of complexity in 72 ATC have been completed, mainly from the controller's workload point of view[START_REF] Hilburn | Cognitive complexity and air traffic control: A literature review[END_REF][START_REF] Mogford | Thecomplexity construct in air traffic control : A review and synthesis ofthe literature[END_REF], 73 and have recognized that complexity is related to both the structure of the traffic and the 74 geometry of the airspace. This tends to prove that controller's workload has two facets: 75•An intrinsic complexity related to traffic structure.

156

  times of departure to reduce air traffic congestion. The congestion of the air traffic is 157 measured with the speed covariance metric, described in the next section.

158 3 .

 3 Mathematical model 159As for any real optimization problem to be solved, the modeling step is critical 160 and has to be done carefully. It exhibits the state space (the definition of the decision 161 variables), the objective function, and the associated constraints. The decision variables 162 and the given data define the objective and the constraints.Both of which must be 163 defined in terms of the decision variables and the given data.

164 3 . 1 .

 31 Input data 165 • F: set of flights, noted f , 166 • Γ: set of trajectories, 167 • γ f ∈ Γ: trajectory corresponding to a flight f ∈ F, 168 • dt + f : upper bound of departure time shift, ∀ f ∈ F, 169 • dt - f : lower bound of departure time shift, ∀ f ∈ F, 170 3.2. Decision variables 171 During the scheduling process, each flight may be scheduled at a different time of 172 departure. The decision variable dt f indicates the difference between the scheduled and 173 requested departure times. All those decision variables are grouped into the state space

177Figure 1 .

 1 Figure 1. Spatial neighborhood of a 4D point in a curvilinear trajectory sampled in time.

Neighborhood

  

Figure 2 .

 2 Figure 2. Spatial neighborhood of a 4D point.

215

  sampled in time, with 4D points, p, represented in Figure 1. The congestion of the 216 trajectory is the sum of complexity for each point in the curvilinear trajectory, see 217 Equation (8):

  space points represent the possible states of the solid;

  267

279 4 . 2 .Figure 4 .

 424 Figure 4. Objective-function evaluation based on a simulation process In this situation, population-based algorithms may not be adapted to address such

Figure 5

 5 Figure 5. Optimization of the generation process. In this figure, the state space is built with a vector of decision for which the generation process consists inof changing only one decision (d i ) in the current solution. If this generation, is not accepted, this component of the solution recovers its former value. The only information to be stored is the integer i and the real number d i .

Figure 7 .

 7 Figure 7.In this example ten decisions are considered and theirfor which the costs are illustrated by the vertical bars for which the highest cost is 6.5. The threshold is then given by 6.5 × 0.8 = 5.2. The decision with a cost higher than 5.2 are then selected to undergo the neighboring operator.

363

  will be impacted by the change of the former decision. In order to ensure coherence 364 of the overall objective function, a completefull evaluation of the decision vector is 365 regularly computed. As we will see in the result, this approximation really improves the 366 computation performance without sacrificing the quality of the final solution.

367 4 . 4 . 4 . 4 . 1 .

 44441 Implementation SSA to our problem 368 Coding of the solution 369

  372case, a time shift. Such a time shift is coded by an integer (positive or negative) which 373 corresponds to the amount of time (in time slots) the aircraft is shifted when it enters the 374 airspace. This time shift can be absorbed before take-off or onboard in some previous 375 neighboring airspace. Each decision also containscontains also a field representing the 376 aircraft trajectory's associated performancethat represents the associated performance 377 of the aircraft trajectory in the airspace (y).

Figure 8

 8 Figure 8).

385 4 . 4 . 3 .

 443 Objective Function Computation386

Figure 8 .

 8 Figure 8. Time shift operator. The new time shift for the flight f is randomly selected in a time domain defined by two bound. A negative bound : dt -f and a positive bound : dt + f . In this example, the former time shift was -3 (blue dot) and the new generated time shift is +2 (green dot).

i 403 Figure 9 .

 4039 Figure 9. 4D-Grid coding of the airspace. 4D-Grid coding of the airspace. This structure strongly speeds up the neighborhood search for a given aircraft.

404 5 . 1 .

 51 Benchmark dataData benchmark 405 The data set corresponds to air traffic over French airspace during a full day July, 406 16, 2019). It consists of 8,800 flights thatwhich have been simulated 3 based on actualreal 407 flight plans over Frenchfrench airspace. Figure 10 illustrates the initial given trajectories. 408 The trajectories are represented by a curvilinear curve, sampled in time every 15 s. 409 Therefore, a trajectory is a list of 4D points positionedpositionned in space (latitude, 410 longitude, altitude) and time step. TheFor each point, the velocity and heading are 411 known for each point because it is needed to find the air traffic congestion. With the 412 sampling time of 15 s, the total number of 4D points in the airspace is over 7,500,000.

  413

414

  function has a high computation time.415On Figure10the trajectories are colorized according to theirin function of its initial 416 complexity (speed covariance metric described in the mathematical model section).

417

  Trajectories with the lowest complexity are shown in blue, whereas the highest are 418 drawn in red, based on a logarithmic scale.

419 3 ENAC

 3 BADA arithmeticaritmetic simulator.

Figure 10 .

 10 Figure 10. Full All-day air traffic over the French airspace, colorized according to theirin function of its initial complexity. The trajectories with the lowest complexity are shown in blue, whereas the highest are drawn in red.

424Table 1 :

 1 The algorithm is tested on the data explained in Section 5.1. As shown in Figure10, the 425 complexity is high and has to be reduced with the proposed algorithm. The initial worst 426 worse congestion of the data set is 1,500,000.427After running the algorithm, for about two hours, the worst flight of the data 428 set has a congestion value ofworse congestion of the data set is 120,000, see detailed 429 results in Table1. Moreover, on Figure11, there are fewer trajectories that are red and 430 more trajectories that are bluethe trajectories are less blue and purple and more yellow 431 and green. This means the trajectories are less complex. Hence, the air traffic is less Results of the algorithm.On Figure12the complexity of each trajectory is represented in a bar chart. A 434 logarithmic scale groups the complexity of each trajectory to compare the benefits of 435 optimization easily. The complexity is computed after optimization using only time shift 436 of the departure time. The number of trajectories with high complexity is reduced.437The two hours computation which hashave been used for such complexity reduction 438 may be reduced for further experiments. AfterAs a matter of fact, after 45 minutes, the 439 objective function doesdo not evolve anymore, and we could consider that the algorithm 440 has reached the "optimum". We will address this point in further researchsome further 441 researches in order to adjust the right amount of computation for a given problem size.

Figure 11 .

 11 Figure 11. Full All-day air traffic over the French airspace, colorized according to theirin function of its complexity, after optimization of the trajectories to minimize the congestion using time shift of departure time. The trajectories with the lowest complexity are shown in blue, whereas the highest are drawn in red.

Figure 12 .

 12 Figure 12. Comparison of the complexity of each trajectory before and after using only departure time shifting.

457A

  first trial of our solution on real traffic data over French airspace displayed a 458 good congestion reduction and an acceptable time shift of flights' departure time.

  When the temperature is high, the material is in a liquid state (left). For a hardening process, the material reaches a solid-state with non-minimal energy (metastable state; top right). In this case, the structure of the atoms has no symmetry. During a slow annealing process, the material also reachesreaches also a solid-state but for which atoms are organized with symmetry (crystal; bottom right).
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	247	found in a metastable state with non-minimal energy. This state; this is referred to as
	248	hardening, which consists ofin the sudden cooling of a solid.
	249	In 1953, three American researchers (Metropolis, Rosenbluth, and Teller [21]) devel-
	250	oped an algorithm to simulate physical annealing. They aimed to reproduce faithfully
	251	the evolution of the physical structure of a material undergoing annealing. This algo-
		rithm is based on Monte Carlo techniques, which generate which consist of generating

223

over, the objective function may have multiple local optima. Therefore, the choice of 224 a stochastic algorithm to optimize the air traffic congestion is more valued. Hence, 225 the algorithm chosen is Simulated Annealing algorithm and isthe choice of a Simulated 226 Annealing algorithm presented hereafter in Section 4.

227 4. Simulated annealing 228 4.1. Standard Simulated Annealing 229 Simulated Annealing (SA) is one of the simplest and best-known metaheuristic 230 methods for addressing the difficult black box global optimization problems (those whose 231 objective function is not explicitly given and can only be evaluated via some costly 232 computer simulation). Real-life applications massively use Simulated Annealing.It is 233 massively used in real-life applications. The expression "simulated annealing" yields 234 over one million hits when searching through the Google Scholar web search engine 235 dedicated to the scholarly literature. In the early 1980s, three IBM researchers, Kirk-236 patrick, Gelatt, and Vecchi [20], introduced the concepts of annealing in combinatorial 237 optimization. These concepts are based on a strong analogy with the physical annealing 238 of materials. This process involves bringing a solid to a low energy state after raising its 239 temperature. It can be summarized by the following two steps : 240

•

Bring the solid to a very high temperature until "melting" of the structure; 241 • Cooling the solid according to a very particular temperature decreasing scheme in 242 order to reach a solid-state of minimum energy. 243 In the liquid phase, the particles are distributed randomly. It is shown that the 244 minimum energy state is reached provided that the initial temperature is sufficiently 245 high and the cooling time is sufficiently long. If this is not the case, the solid will be 252 a sequence of states of the solid in the following way. 253 Starting from an initial state i of energy E i , a new state j of energy E j is generated 254 by modifying the position of one particle. If the energy difference, E i -E j , is positive (the new state features lower energy), 256 the state j becomes the new current state. If the energy difference is less than or equal to 257 zero, then the probability that the state j becomes the current state is given by: 258 Pr{Current state = j} = exp E i -E j k b .T where T represents the temperature of the solid and k B is the Boltzmann constant 259 (k B = 1.38 × 10 -23 joule/Kelvin).

A terminal control area (also known as a terminal maneuvering area) is controllingcontrolled airspace surrounding major airports, generally designed as a cylindrical or upside-down wedding cake shape airspace of 30 to 50 miles radius and high of 10,000 feet. Version September 30,

submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

Flight level (FL) is a pressure altitude, expressed in hundreds of feet, e.g. an altitude of

32,000 feet is referred to as FL320.

When such a differential evaluation of the objective function is not possible at the 338 microscopic decision level, one must recompute all the decision variable evaluations in 339 order to determine y new . For some cases,, problems such as re-evaluation may request 340 quite a lot of computation. In order to avoid this issue, we propose an alternative 341 approximation of the standard simulated annealing call "Selective Simulated Annealing".

342

This approximation starts to evaluate all the decisions d i and associates a cost to each of 343 them y i . For our problem, such evaluation will be given by summatingthe summation 344 of the congestion along the arc length of the associated trajectory γ i (t). We then have 345 have then a vector of decisions with their associated "costs" as shown in 6. where c is the overall temperature. Such temperature is then increased until the accep-354 tance rate reaches 80%.