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Université de Toulouse
Toulouse, France

Nidhal C. Bouaynaya
Dept. of Electrical and Computer Engineering

Rowan University
New Jersey, USA

Abstract—The Extended ATC Planning (EAP) function aims
at bridging the gap between Air Traffic Flow & Capacity
Management (ATFCM) and Air Traffic Control (ATC) by
predicting air traffic congested areas tens of minutes before their
formation, and by suggesting real-time and fine-tuning measures
to alleviate airspace “complexity”. Current Air Traffic Flow
Prediction methods focus on crude aircraft count in a sector, and
hence are unable to distinguish between low and high complexity
situations for a similar aircraft count. Complexity indicators, on
the other hand, aggregate air traffic measurements and workload
to describe the perceived complexity. However, the evaluation
of workload is a long-debated issue and an inherently ill-posed
problem. In this work, we present an intrinsic complexity metric,
independent of any traffic control system, and address the
prediction task of the EAP function using a novel Encoder-
Decoder Long Short-Term Memory (LSTM) neural network.
The complexity is measured by the eigenvalues of a linear
dynamical system fitted to the aircraft’s speed vectors. The
Encoder-Decoder LSTM network uses a sequence of (discrete)
aircraft states to predict the complexity of the air traffic in all
areas of an airspace, in a time horizon of 40 minutes. Simulated
traffic corresponding to one day of traffic over the French
airspace is used to train and validate the model. Our experiments
show that the proposed model achieves a Mean Absolute Error
of 0.08 in predicting the normalized complexity value 40 minutes
in the future.

Keywords—Air traffic flow prediction; Complexity metrics;
Long short-term memory (LSTM) networks.

I. INTRODUCTION

A. Background and Motivation

With the continuous rise in air transportation demand (a
4.3% annual growth of the worldwide passenger demand
is expected until 2035 [1]), the capacity of the Air Traffic
Management (ATM) system is reaching its limits, leading to
increased flight delays (expected to achieve 8.5 minutes per
flight in 2035 with the current system [2]). The Covid-19
crisis has severely impacted the aviation industry, with a 90%
decline of RPK (Revenue Passenger Kilometer) in July 2020
with respect to the same period in 2019. However, the traffic
is expected to regain its growth rate once the crisis is over,
with the worst-case scenario predicting a return to normality
before 2025.

Congestion is defined as a situation where a set of trajecto-
ries strongly interact in a given area and time interval, leading
to potential conflicts and hence requiring high monitoring

from the controllers. Air traffic complexity is a measure of
the difficulty that a particular traffic situation will present
to air traffic control [3], and was shown to negatively affect
the controller’s decision-making ability and increase the error
rate [4]. To address this complexity and improve the service
provision to airspace users through reduced delays, better
punctuality, less ATFCM regulations, and enhanced safety,
the Extended ATC Planning (EAP) function was introduced
by SESAR JU as the Solution #118 [5]. The EAP function
relies on automation tools that enable early measures to
be taken by ATC before traffic enters overloaded sectors.
The implemented tools aim at bridging the gap between
Air Traffic Flow and Capacity Management (ATFCM) and
Air Traffic Control (ATC) by facilitating the communication
between the local flow management position (FMP) and the
controllers’ working positions, and providing information to
help taking actions at tactical time (less than one hour) such as
rerouting or sector configurations. The gap between ATFCM
and ATC can be described as follows: although ATFCM
measures have managed to balance the capacity with the
demand, high complexity areas may appear at the control
level. These “hot spots” or “traffic bursts” require an intense
surveillance from air traffic controllers in order to decide if
some trajectories should be modified to avoid any conflict.
Two problems must be addressed to reduce this increased
workload: 1) the prediction of hot spots tens of minutes
before their formation, and 2) the mitigation of the hot spots
by appropriate early actions. This paper focuses on the first
problem of the prediction of congested areas tens of minutes
ahead of formation.

B. Related Work

We can group the literature to tackle the general problem
of congestion prediction into three main approaches. The first
approach considers conflict detection tools in a time horizon
lower than thirty minutes [6], [7]. The second approach
focuses on predicting the air traffic flow [8], [9], [10], [11],
[12], [13]. The third approach computes various air traffic
complexity metrics [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [3], [24], [25].

In the first approach of short-term conflict detection meth-
ods [6], the Medium-Term Conflict Detection (MTCD) flight
data processing is perhaps the most popular system. MTCD is



designed to warn the controller of potential conflicts between
flights in a time horizon extending up to thirty minutes ahead.
The system integrates predictive tools that performs trajectory
prediction, conflict detection, trajectory update, and trajectory
edition using ”what-if” scenarios and tools [6]. The MTCD
applications, currently implemented in operational context,
e.g., the Eurocontrol MTCD project [7], are mainly based on
pairwise conflicts rather than on a global approach. Moreover,
for longer time horizons, the uncertainties on the trajectories
make it difficult to predict the exact trajectories that will be
involved in conflicts.

Air traffic flow prediction (ATFP) focuses on aggregate
models [8] rather than simulating the trajectories of individual
aircraft. Trajectory-based models result in a large number of
states, which are susceptible to error and difficult to design
and implement for air traffic flow management [10]. The
ATFP approach develops models of the behavior of air traffic
that can be used for the analysis of traffic flow management.
Several methods were considered, ranging from probabilistic
algorithms modeling the flow over a network [8], [9], [10]
to more recent machine learning algorithms [11], [12], [13].
In [8], a linear time variant traffic flow model was developed
based on historical data. The dimension of this model depends
only on the number of considered control volumes and not
on the number of individual aircraft. This model is able to
forecast the aircraft count at an Area Control Center level with
a time interval of ten minutes. Another flow-based model was
later developed in [9], called Link Transmission Model. In
this model, a flight path is defined as a sequence of directed
links passing through sectors. An aircraft is assumed to cross
each of the links within an estimated crossing time such that
the state of each link can be easily tracked. Aggregation
of links in each sector yields a traffic forecast for that
sector. This approach is extended in [10] where the authors
introduce a dynamic network of air traffic flow characterizing
both the static airspace topology and the dynamics of the
traffic flow. Historical data is used to estimate the travel time
corresponding to the weight of each edge of the network.
Then, a probabilistic prediction method is implemented for
the short-term prediction (fifteen minutes) of the air traffic
flow.

Recently, several machine learning models were proposed
for ATFP. In [11], the authors define a 3D grid over a given
airspace containing the number of flights in each cell. They
rely on neural network models that combine convolutional
operations to extract spatial features and recurrent operations
to extract time-dependent features. The 3D grids of the last ten
minutes are inputted into the model to predict the 3D grid of
the next timestep. A similar task is addressed in [12] using
several 3D convolutional neural networks to extract spatial
features for one timestep then recurrent layers to extract
temporal features. In [13], the authors used support vector
machines (SVM) and recurrent neural networks to predict the
hourly air flow in predefined routes from time information
(such as the time of the day, or the season and holiday
indexes). The main drawback of all the above-mentioned
ATFP methods is that they do not define any concept of
congestion since the predicted variable is the aircraft count

whether in a sector, a route, or crossing a predefined way-
point. Hence, these models are unable to discriminate low
complexity situations from high complexity situations for a
similar aircraft count.

To address this limitation, the third approach redefines
the forecast objective of the ATFP problem by considering
complexity metrics. Research focusing on defining and quan-
tifying air traffic complexity, and on analyzing its impact
on air traffic controller workload, was extensively conducted
during the last two decades [14], [15], [16], [17], [18],
[19], [20], [21]. Extensive reviews on this topic can be
found in [3] and [24]. The traditional measure of air traffic
complexity is the traffic density, defined as the number of
aircraft crossing a given sector in a given period [16]. The
traffic density is compared with the operational capacity,
which is the acceptable number of aircraft allowed to cross
the sector at the same time period. This crude metric does
not take into account the traffic structure and the geometry
of the airspace. Hence, a controller may continue to accept
traffic beyond the operational capacity, or refuse aircraft even
though the operational capacity has not been reached. The
Dynamic Density introduced in [14] aims at producing an
aggregate measure of complexity by combining complexity
factors, including static air traffic characteristics (such as
airway crossings) and dynamic air traffic characteristics (such
as the number of aircraft and the closing rates). A list of
these complexity factors can be found in [16]. The complexity
factors can be combined either linearly as in [15] or through
a neural network [17], [18]. Several versions of Dynamic
Density were advanced [19], [20]. For example, the interval
complexity introduced in [21] is a variant of Dynamic Density
where the chosen complexity factors are averaged over a time
window.

As elaborated in [3], these complexity indicators aggre-
gate air traffic measurements and workload to describe the
perceived complexity. However, the evaluation of workload
is a long-debated issue and an inherently ill-posed problem.
The difficulty of obtaining reliable and objective workload
measures is the main motivation for investigating complex-
ity metrics that are independent of the ATC workload. To
address this issue, another approach has been developed
in the literature: the intrinsic complexity metrics approach
[22], [23]. In [24], a difference is made between the control
workload and the traffic complexity. The control workload
measures the difficulty for the traffic control system (human
or not) to remedy a situation, whereas the traffic complexity
is an intrinsic measurement of the complexity of the air
traffic, independently of any traffic control system. In other
words, intrinsic complexity metrics aim at modelling the level
of disorder and the organization structure of the air traffic
distribution, irrespective of its effect on the ATC workload. In
[22], the authors interpolate a velocity vector field satisfying
certain constraints, e.g., the field shall be equal to the velocity
of an aircraft if an aircraft is present at this point, the field
shall be flyable by an aircraft. The problem is modeled as
a mixed integer linear program. The complexity is measured
as the number of constraints that must be relaxed to obtain
a feasible problem. In our previous work [23], we defined



Figure 1: Eigenvalues loci of the dynamical system matrix A for 4 typical
situations: parallel, convergent, divergent, and round about trajectories.
Observe that the real part of the eigenvalues are negative if and only if
the trajectories are convergent.

Figure 2: The neighborhood of a reference aircraft
to compute the complexity metric. This neighbor-
hood is defined as a 24.8 NM × 24.8 NM box
and ±30 FL altitude, centered on the reference
aircraft. Trajectories can be augmented to account
for the uncertainties along the curvilinear abscissa
(dotted points).

an intrinsic complexity metric using linear and nonlinear dy-
namical system models. The air traffic situation is modeled by
an evolution equation (the aircraft trajectories being integral
lines of the dynamical system). The complexity is measured
by the Lyapunov exponents of the dynamical system. The
Lyapunov exponents capture the sensitivity of the dynamical
system to initial conditions: if a small variation in the current
air traffic situation leads to a very different dynamical system,
the complexity of the situation is considered to be high.

This paper uses state-of-the-art machine learning tech-
niques to integrate ATFP with the intrinsic complexity metric
developed in [23]. The main objective of this work is to
provide congestion predictions in an extended time horizon,
between forty to sixty minutes. Due to the uncertainties
related to such time scales, we will directly predict congested
areas rather than address the classical problem of trajectory
prediction or conflict detection and resolution. In contrast
to classic ATFP approaches that predict the aircraft count,
we introduce a set of aircraft states (e.g., latitude, longitude,
altitude, ground speed, heading, and climb rate) and use
a Long Short-Term Memory (LSTM) network to predict
congestion. We use an Encoder-Decoder framework where the
input is the state of the aircraft and the output is the spatio-
temporal complexity map measuring the spatial complexity
at every time instant.

The remainder of the paper is organized as follows. Section
II surveys the mathematically-grounded intrinsic complexity
metric considered in this paper. Section III introduces the
machine learning model, namely the encoder-decoder LSTM
architecture. In Section IV, the data and the pre-processing
techniques that were performed to build the training dataset
are presented. Implementation details are also discussed for
reproducibility of the results. The Python code is made

available in GitHub1. Section V elaborates on the results
of the model. Considering only the areas with a nonzero
complexity value, the best model achieves a Mean Absolute
Error of 8% in predicting the complexity value forty minutes
in the future. Finally, Section VI summarizes the paper and
suggests several improvements to system deployment as well
as new applications that could benefit from this work.

II. COMPLEXITY METRIC

We first introduce the mathematical notations used in the
paper.

A. Mathematical Notation

Scalars are represented by lower-case letters, e.g., x, xi,
yij . Vectors are represented by bold lower-case letters, e.g.,
x, b. All vectors are column vector. Matrices are represented
by bold upper-case letters, e.g., A, W. ‖·‖F is the Frobenius
norm. Re is the real part function. λ(A) is the spectrum of
the matrix A. The concatenation of two vectors x and y into
a single column vector is denoted by [xT ,yT ]T where T is
the transpose operator. σ is the logistic activation function
σ : x 7→ 1

1+exp(−x) .

B. Complexity Metric based on Linear Dynamical System

In this work, the intrinsic complexity metric is based on a
linear dynamical system model that was recently introduced
in [25]. This metric computes a measure of complexity in the
neighborhood of an aircraft at a given time (see Figure 2). A
filter is applied to consider only the flights that may interact
with the reference aircraft. For example, an aircraft that is
vertically separated with the reference aircraft by 1000 ft (in
RVSM) will not interact with the reference aircraft, and, thus,
should not be considered in the metric computation. After this

1https://github.com/lshigarrier/PFE



Figure 3: Basic RNN layer (left) and the same layer unrolled through
time (right). Σ represents linear mapping and φ represents the
activation function. Figure 4: A Long Short-Term Memory (LSTM) layer. The

current input xt is combined with the previous hidden
state ht−1 to compute the three gates used to update the
cell state ct−1 and compute a new hidden state ht.

filtering, the selected aircraft positions are extended by adding
p forward positions and p backward positions as depicted on
Figure 2 with p = 2. The aim of this extension is to take into
account uncertainties on the true aircraft’s positions.

Let nac be the number of aircraft samples retained for the
computation of the metric. Consider the matrices P and V,
which denote, respectively, the positions and velocities of the
nac aircraft, i.e.,

P =

x1 x2 . . . xnac
y1 y2 . . . ynac
z1 z2 . . . znac

 ;V =

vx1
vx2

. . . vxnac
vy1 vy2 . . . vynac
vz1 vz2 . . . vznac

 ,
where xi, yi, zi are the coordinates and vxi , vyi , vzi the speed
components of the ith sample. A linear dynamical system ẋ =
Ax + b is fitted to the positions P and speeds V of these
aircraft, such that V ' AP + b (here, b, representing the
mean of the speed vector field, is broadcast to be added to the
matrix AP). The matrix A and the vector b are computed
as the solutions of the Least Mean Squares problem

min
A,b
‖V − (AP + b)‖2F . (1)

The complexity metric, c(A), is then defined as the absolute
sum of the negative real part of the eigenvalues of the matrix
A

c(A) =
∑

Re(λ(A))<0

|Re(λ(A))|. (2)

Recall that the evolution equation of a linear dynamical
system has the form P(t) ∼ exp(At). By diagonalising
the matrix A, we can see that the asymptotic behaviour
of the system depends uniquely on the eigenvalues of A.
Positive real parts of the eigenvalues correspond to diverging
behaviour along the associated eigendirections while negative
real parts correspond to convergence to a critical point (Figure
1). The imaginary parts correspond to rotation behaviour.
Hence, our metric c(A) measures the strength of the con-
verging or shrinking behaviour of the dynamical system.
Since our system is the closest linear dynamical system
fitting the current positions and velocities of the aircraft, a
strong converging behaviour corresponds to rapidly converg-
ing trajectories, which we associate with high complexity.

This metric can be computationally efficient using known
techniques from Numerical Linear Algebra (NLA) [26] and
Randomized NLA (RandNLA) [27].

III. ENCODER-DECODER LONG SHORT-TERM MEMORY
NETWORK

In this Section, we present the sequential machine learning
models that will process the series of aircraft state vectors.
Sequence models are first introduced, then integrated into
an encoder-decoder network architecture. Finally, a one-
dimensional convolutional layer used in the initial processing
of aircraft state vectors is described.

A. Sequential Models

Recurrent Neural Networks (RNN) are a class of neural
networks designed to process sequential data such as text
streams, audio clips, and time-series data [28], [29], [30].
In these recurrent models, network weights are shared across
time, building an internal memory that can capture sequential
knowledge. RNNs have been extensively used in Natural
Language Processing, including automatic translation [28]
and speech-to-text [29].

In a basic RNN layer (see Figure 3), the recurrent cell
receives the input xt as well as its own output from the
previous time step yt−1. The output yt is computed as

yt = φ(W · [xTt ,yTt−1]T + w0), (3)

where W is the weights matrix, w0 is the bias vector and φ
is an activation function e.g., tanh or ReLU. Observe that the
output yt depends not only on the current input xt but also on
the entire sequence of previous inputs x0, . . . ,xt−1 using the
same number of learnable parameters regardless of the length
of the input sequence. However, the basic RNN layer has
difficulty learning long-term dependencies when the length
of the sequence is large. This problem has been referred to
as the vanishing gradient problem [31]. To solve it, several
architectures of RNN layers with long-term memory have
been introduced such as Long Short-Term Memory (LSTM)
[32] and Gated Recurrent Unit (GRU) [33] networks.

Long Short-Term Memory networks (Figure 4) were first
introduced in [32], and then improved over the years [34],



[35]. LSTMs detect long-term dependencies by using three
gates that control the gradient propagation in the recurrent
network’s memory, i.e., the forget gate ft, the input gate it,
and the output gate ot. In contrast to the basic RNN layer,
the LSTM has two state vectors denoted ht (the hidden state)
and ct (the cell state), which can be seen, respectively, as
the short-term state and the long-term state. The LSTM’s
governing equations are given by

(input gate) it = σ(Wi · [xTt ,hTt−1]T + wi),
(4)

(forget gate) ft = σ(Wf · [xTt ,hTt−1]T + wf ),
(5)

(output gate) ot = σ(Wo · [xTt ,hTt−1]T + wo),
(6)

(candidate cell state) c̃t = tanh(Wc · [xTt ,hTt−1]T + wc),
(7)

(new cell state) ct = ft × ct−1 + it × c̃t, (8)
(new hidden state) ht = ot × tanh(ct), (9)

where Wi, wi, Wf , wf , Wo, wo, Wc, and wc are the
learnable weights and biases of the LSTM network. The
current input xt and the previous hidden state ht−1 are used
to compute the controllers of three gates: the input gate
controller it, the forget gate controller ft and the output
gate controller ot (Eqs. (4-6)). These gate controllers are
simply computed by a linear mapping followed by a logistic
activation. In parallel, a candidate cell state c̃t is computed
using the current input and the previous hidden state (Eq.
7). Eq. 7 can be seen as the LSTM equivalent of the basic
RNN layer. In Eq. 8, the current cell state ct is then updated
by adding the previous cell state ct−1 (filtered by the forget
gate) and the candidate cell state c̃t (filtered by the input
gate). The hidden state ht is finally computed by activating
the cell state ct with the tanh function (or another activation
function, such as ReLU), which is then passed though the
output gate (Eq. 9). With the input gate it, the LSTM is able
to store information in the cell state ct, to extract it with the
output gate ot and to discard it with the forget gate ft.

B. Encoder-Decoder LSTMs

The first introduction of an encoder-decoder model was
provided for an automatic translation task [28]. This model
has also been applied to various tasks, such as speech recog-
nition [36] and video captioning [37]. The Encoder-Decoder
LSTM is a recurrent neural network designed to address
sequence-to-sequence problems. Sequence-to-sequence pre-
diction problems are challenging because the number of items
in the input and output sequences can vary. The Encoder-
Decoder architecture is comprised of two models: one for
encoding the input sequence into a fixed-length vector, and
a second for decoding the fixed-length vector and outputting
the predicted sequence. The innovation of this architecture is
the use of a fixed-sized internal representation in the heart of
the model, which may be referred to as sequence embedding.
Both the encoder and decoder models are defined as recurrent
neural networks, i.e., LSTMs.

The input of the decoder consists of two elements: the out-
put of the encoder and the previously predicted (i.e., decoded)
output sequence term. During training, the previously decoded
sequence is provided as the ground-truth sequence at the pre-
vious timestep. During inference, the true output sequence is
obviously not known. Hence the input of the decoder network
has to be redefined. A simple method consists in recursively
using the prediction of the last timestep as the input for the
next one. However, this method may result in accumulation
of prediction errors and lead to poor performance, especially
if the output sequence is long enough. A solution to this
issue is to change the task of the decoder network such
that the network does not predict an element of the output
sequence at each timestep, but rather a distribution over the
possible outputs. Then, using a beam search algorithm [38],
it is possible to maintain, at each timestep, a small number
of possible output sequences using the partial probability of
each sequence as the metric. At the last timestep, the model
outputs the sequence with the highest probability.

This framework is more suited for classification tasks
where the output distribution is discrete and finite. Even if
it is possible to choose a family of continuous distributions
to represent the set of possible output distributions of the
decoder network for regression, a simpler approach has been
retained here. The objective of the model is to find the
output sequence Y that maximizes the conditional probability
P (Y|X) given the input sequence X. More formally, we are
solving the following optimization problem:

arg max
Y

P (Y|X) = arg max
Y

∏
t

P (yt|y1, . . . ,yt−1,X).

The network directly outputs a prediction yτ =
arg maxyτ P (yτ |y1, . . . ,yτ−1,X) for the τ th element
of the output sequence. Hence, at time step τ , the
current estimation of the probability of the partial
sequence y1, . . . ,yτ−1 is

∏τ
t maxyt P (yt|y1, . . . ,yt−1,X).

This greedy approach can be seen as approximating
maxY P (Y|X) = maxY

∏
t P (yt|y1, . . . ,yt−1,X)

by
∏
t maxyt P (yt|y1, . . . ,yt−1,X). This approach is

equivalent to the beam search algorithm with a beam width
of 1.

C. One-dimensional (1-D) Convolutional Layer

The first layers of the encoder network are defined as 1-D
convolutional layers to process the input sequence of aircraft
states. A 1-D convolutional layer is composed of f different
filters. A filter contains a kernel of learnable parameters with
dimension d×m, where m is the dimension of the input se-
quence, and d, the width of the kernel, is a hyperparameter of
the convolutional layer. Each filter aggregates a subsequence
of the input sequence of length d such that each element of
the output sequence of the layer contains information from
several successive timesteps. More precisely, we have:

yij = φ(

d∑
k=−d

∑
l

wjklxi+k,l),

where yij is the jth vector element of the ith sequence term
outputted by the 1-D convolutional layer, and xkl is the lth



Figure 5: Simulated trajectories of the dataset plotted in the horizontal plane.

vector element of the kth sequence term of the input; wjkl is
the kth weight of the kernel of the jth filter associated with
the lth dimension of the input sequence, and φ is an activation
function. If i+ k is lower than zero or greater than the input
sequence’s length, then xi+k,l = 0, for all l.

The convolution operation is performed only along the
time dimension of the input sequence; this is why this
convolutional layer is referred to as “one-dimensional”. With
the 1-D convolutional layers, we expect the encoder network
to identify dependencies in a very short time window, such
that the LSTM layers could process an intermediate sequence
in which each timestep contain dynamical information from
the previous and following timesteps. This may facilitate
the computation of the embedding for the whole sequence.
Without this convolutional layers, the LSTM layers would
process one timestep after the other without any information
from the next timesteps.

IV. METHODOLOGY AND EXPERIMENTS

We now elaborate on the implementation details of our
model, starting with the description of the dataset and the
construction of the training set. Then, we provide the architec-
ture details of the encoder-decoder model for reproducibility
of our results.

A. Data acquisition and preprocessing

In order to test the capacity of the model to predict the
complexity of the traffic, we use a dataset of simulated
trajectories. In our simulation, no deconflicting actions were
applied, such that each flight follows its flight plan without
interacting with the other flights. Hence, we obtain the true
complexity before mitigation, as opposed with historical data
where the controllers have already applied measures to lower

the complexity. The dataset represents a regular day of traffic
over the French airspace. A trajectory is defined as a sequence
of aircraft states. Each aircraft state consists of the following
8 elements.

State = [timestamp, aircraft ID, latitude, longitude, altitude,
ground speed, heading, rate of climb].

The trajectories are created by inputting flight plans to a simu-
lator, where the flight plans consist of a sequence of waypoints
and a cruise flight level. The atmosphere is assumed to be in
ISA conditions with no wind. The final dataset, plotted in
Figure 5, is composed of 8, 011 simulated trajectories spread
along 3, 025 timesteps (1 timestep corresponds to 15 seconds).
A complexity value is then computed for each aircraft at each
timestep as described in Section II.

The objective of our supervised learning model is a
sequence-to-sequence regression task. To achieve this, a train-
ing set must be built using pairs of training inputs/outputs,
composed of sequences of aircraft states paired with se-
quences of complexity values over the entire airspace. To
build the training outputs, we defined, for each time step t, a
n×n matrix Ht that will be referred as a complexity matrix.
This matrix is superimposed over the airspace, such that each
element of the matrix covers a small rectangle area whose
dimensions depend on the airspace size and on the parameter
n. To avoid a too high output dimension, we do not consider
the altitude axis. Hence, each area covers all flight levels and
is only defined by the latitude and longitude of its center
point. Then, for a given area, the corresponding element
of the matrix takes the maximum value of the complexity
metric of the aircraft inside this area at timestep t. The
complexity values are then scaled by a logarithmic function
x 7→ log(1+x/Th), where Th is a fixed threshold, to obtain a



Figure 6: Encoder-decoder LSTM model for complexity prediction. The encoder network (left) uses a sequence of aircraft
states xt0 , · · · ,xt0+tin−1 to compute an encoding sequence. The decoder network (right) uses the encoding sequence and the
complexity matrix outputted at the last timestep Ĥt−1 to compute a prediction.

Figure 7: Depiction of the entire framework. The dataset is composed of trajectories where xit is the state vector of the ith

trajectory at time t. The complexity values are computed as described in Section II. The dataset, composed of the aircraft
states and the complexity matrices, is divided into training and validation sets. The encoder-decoder LSTM model is trained
(validated) with the training (validation) sets.

more uniform distribution. The Ht matrices are then flattened
as n2 vectors to be considered by the machine learning model.

At a given time t, the input vector xt is built by concate-
nating all the aircraft states currently in the airspace, ordered
by increasing longitude (and by increasing latitude if the
longitude is the same). This means that a given flight will not
occupy the same position in xt for every t. However, a given
position in xt will be occupied by aircraft flying at roughly
the same geographical coordinates such that the positional
information is preserved in the structure of the inputs. To
get a fixed-size input vector, the dimension of xt is set to
the maximum number of simultaneous aircraft states in the
dataset multiplied by 8 (the length of an aircraft state). If the
number of states is lower than the maximum, the remaining
elements of xt are padded with zeros.

We can know describe the training set as pairs
of input sequences Xt0 and output sequences Yt0

where Xt0 =
[
xt0 · · · xt0+tin−1

]
and Yt0 =[

Ht0+tin · · · Ht0+tin+tpred−1

]
, where tin is the length

of the input sequence, while tpred is the time horizon of the
prediction (length of the output sequence). In the following,
the dataset will be randomly divided between training exam-
ples (90% of the dataset) and validation examples (10% of
the dataset).

B. Architecture of the model

The proposed encoder-decoder LSTM model predicts a
sequence of complexity matrices using a sequence of con-
catenated aircraft states as input (see Figure 6). Let us first
consider the encoder network. The input sequence is fed
to one or several 1-D convolutional layers. The output of
the 1-D convolutional layers is fed to several LSTM layers.
The hidden state of the last LSTM layer is the encoding
sequence, which is the only encoder information that will
be passed to the decoder network. The decoder network is
composed of several LSTM layers (the hidden states of these
layers are initialized with the encoding sequence) followed



Figure 8: A heatmap of the complexity matrices of one sequence of trajectories from the training set. The longitude is represented
horizontally and the latitude vertically. True values after 40 minutes (left) and predicted values (right).

Figure 9: A heatmap of the complexity matrices of one sequence of trajectories from the validation set. The longitude is
represented horizontally and the latitude vertically. True values after 40 minutes (left) and predicted values (right)

by several dense layers, which output a vector of dimension
n2 corresponding to the matrix of complexity values.

Another characteristic of the proposed model is that the
decoder network is implementing a technique called “teacher
forcing”. This means that, during training, the decoder net-
work takes as an additional input the true output sequence, but
shifted by one timestep. In other words, the decoder network
also receives as input the output it should have predicted at the
previous timestep. During the inference process, the decoder
network simply considers the prediction it has made at the
previous timestep.

Several variations of the dataset and the network are tested
in this work. First, we consider the dataset where the com-
plexity matrices Ht are smoothed using a Gaussian kernel.
Gaussian smoothing was performed using a 3×3 approximate
Gaussian kernel 1
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[
1 2 1
2 4 2
1 2 1

]
to smooth the values of the

complexity metric across the airspace. Smoothed data is then
used to train the model. We then investigated the effect of the
length of aircraft trajectory in the computation of the linear
dynamical system metric. Specifically, we added p points
corresponding to future positions and p points corresponding
to past position of each aircraft. This experiment aims at

modelling the uncertainty of the aircraft’s positions along
the curvilinear abscissa. In particular, we studied whether the
choice of the parameter p affects the performances of the
model. The entire framework is summarized in Figure 7.

The hyperparameters of the implemented model are as
follows. The convolutional layer has a kernel of width d = 3
and f = 512 filters. The encoder’s LSTM layer has a hidden
dimension of 128. The number of time steps for the encoder
network is fixed at tin = 160. Since one time step is 5
seconds, this corresponds to 40 minutes, i.e., the model has
access to the last 40 minutes of traffic to compute its predic-
tion. The decoder’s LSTM layer has a hidden dimension of
128 and is followed by one dense layer with output dimension
10, 000 (since the complexity matrix is a 100 × 100). The
dataset (input and output) is linearly normalized between 0
and 1. We use the ReLU activation function for the last dense
layer. The sequence predicted by the decoder network is set
to tpred = 160, which corresponds to the next 40 minutes
of complexity values. During end-to-end model training, we
used the Adam optimizer [39] with a learning rate ε = 10−3,
and hyperparameters ρ1 = 0.9, and ρ2 = 0.999. The loss



function is the Mean Squared Error defined as

MSE(Ĥ,H) =
1

n2

n2∑
i=1

(ĥi − hi)2. (10)

The mini-batch size is set to 128 and the model is trained over
100 epochs. The 8, 011 simulated trajectories of our dataset
are spread across 3, 025 time steps. Since our model requires
pairs of sequences of respective lengths tin and tpred, we
built 3, 025 − tin − tpred = 2, 705 sequences. Among these
2, 705 sequences, 2, 434 were part of the training set, and 271
were used to validate the model.

V. RESULTS AND DISCUSSION

Figure 8 shows the true and predicted complexity matrices,
as heat maps, for a sequence from the training set. The
horizontal axis corresponds to the longitude and the vertical
axis is the latitude. The color indicates the complexity value
associated to each area of the airspace. The complexity values
have been rescaled to their original distribution. We can
visually check that the model is able to predict the future
complexity of the airspace, 40 minutes ahead of time, with
a reasonable accuracy. Figure 9 shows the true and predicted
complexity heat maps for a validation sequence, i.e., that the
network did not encounter during training. It can be seen
that the model is less accurate with validation examples.
This may be due to overfitting, although the validation loss
curve seems to converge to the same value as the training
loss. Several regularization methods were tested, including
L2 regularization, dropout, and Batch Normalization, but they
significantly decreased the overall performance. The small
size of the dataset (2,705 sequences) may explain why the
model struggles to generalize, as well as the absence of the
vertical information in the target output.

To quantify the performance of the model, we used the
absolute error between the predicted density and the true
density over the validation set. Given that the validation
set contains 271 examples, each example containing 10, 000
density values, we obtain a total of 2, 710, 000 values of
absolute errors, among which 182, 982 errors are nonzero
(which is expected since the airspace is mostly empty). After
removing the points with zero error, we plot the histogram of
the non-zero absolute errors for three variants of the model,
along with the corresponding Mean Absolute Error (MAE).
Figures 10a and 10b show the histograms for the model with
p = 10 (the same model used earlier in this Section) and
p = 2, respectively. Figure 10c shows the distribution of
the non-zero errors when the output matrices are smoothed
with a Gaussian kernel. Comparing the two variants of the
linear dynamical system metric (with p = 2 or p = 10),
the two distributions feature two modes other than zero.
The distributions have a decreasing overall trend but with
a certain number of errors around or above 1. However,
with p = 2, the errors are spread across a smaller range
and the MAE is smaller. There is also a smaller number
of non-zero errors overall. This result is coherent with the
literature findings that smaller sequences are somewhat easier
to predict that longer ones, notably due to known gradient

vanishing or exploding issues. When the complexity measures
are smoothed, the MAE is five times smaller than non-
smoothed output, reaching a value of 0.08. The total number
of non-zero errors is higher, which is due to the fact that there
are more non-empty areas among the smoothed outputs. The
prediction task with a smoothed dataset seems to be easier
for the encoder-decoder LSTM model.

VI. CONCLUSION

In this paper, we tackled the problem of predicting air traf-
fic congested areas. This objective was achieved by combining
Air Traffic Flow Prediction methods with a more rigorous
definition of the congestion relying on an intrinsic complexity
metric based on a linear dynamical system. The proposed
model is an Encoder-Decoder LSTM network that uses a
sequence of (discrete) aircraft states to predict the complexity
of the air traffic in all areas of an airspace, in a time horizon of
40 minutes. The model achieves better performance when the
output of the dataset is Gaussian smoothed prior to training,
achieving a Mean Absolute Error of 0.08 on the validation
set.

The impact of this work is significant. The Encoder-
Decoder LSTM model can provide information to the Flow
Management Position operator about the upcoming hot spots.
Then, the FMP operator can decide to regulate flights involved
in the hot spots or modify the configuration of the control
room in order to avoid the formation of the predicted hot
spots. The model can also be fed as an input to a mitigation
system, which would suggest actions on trajectories (e.g.,
changing heading, speed, or altitude) to prevent the formation
of congested areas. The ultimate goal is to bridge the gap
between the Flow Management Position’s strategic planning
and the controller’s tactical monitoring as part of the Extended
ATC Planning concept. This work is an important step to-
wards suggesting upstream strategies to remove the hot spots
that are too local and unpredictable at the strategic time frame,
but still generate complex situations at the tactical level.

Future research directions include the quantification of the
uncertainty in the predictions. The air transportation system
is a highly dynamic system with inherent uncertainty and
stochasticity. In order to be accepted in an operational context,
the model should be able to detect if its predictions are no
longer reliable and inform the FMP operator. The model
should also be further refined and tested with larger datasets
as well as using historical data. Moreover, the model can be
improved by incorporating weather information such as wind
and temperature which constitute the main causes of trajectory
prediction uncertainties. Another possible approach consists
in predicting the probability of formation of hot spots above
pre-determined waypoints rather than predicting the precise
locations of these hot spots.
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