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Abstract: Air traffic controllers have to make quick decisions to keep air traffic safe. Their behaviors
have a significant impact on the operation of the air traffic management (ATM) system. Automation
tools have enhanced the ATM system’s capability by reducing the controller’s task-load. Much
attention has been devoted to developing advanced automation in the last decade. However, less is
known about the impact of automation on the behaviors of air traffic controllers. Here, we empirically
tested the effects of three levels of automation—including manual, attention-guided, and automated—
as well as varying traffic levels on eye movements, situation awareness and mental workload. The
results showed that there are significant differences in the gaze and saccade behaviors between the
attention-guided group and automated group. Traffic affected eye movements under the manual
mode or under the attention-guided mode, but had no effect on eye movements under the automated
mode. The results also supported the use of automation for enhancing situation awareness while
reducing mental workload. Our work has potential implications for the design of automation and
operation procedures.

Keywords: air traffic controller; air transportation; human factors; automation; eye movements

1. Introduction
1.1. Background

To ensure the safety of air traffic, air traffic controllers (ATCOs) make traffic control
decisions promptly by integrating and analyzing the information acquired from radar
screens and other decision support tools (DSTs). Automation generally refers to machines,
equipment, or systems under few human interventions that can achieve predetermined
goals, such as detecting potential conflicts between aircraft, through data processing, anal-
ysis, and manipulation under preset procedures [1]. With the advancement of information
technology and data science, various types of automation tools have been applied in the air
traffic management (ATM) field. For example, AMAN (arrival manager) and DMAN (de-
parture manager) are two commonly used DSTs that provide optimized flight sequences to
approach controllers [2]. As a human-center complex system, ATCOs still play a vital role,
even though automation could change their role from managing air traffic to monitoring
and supervising system operations. The consequences of relying on automation tools in
ATM are twofold. On one hand, automation can alleviate ATCOs’ taskload by taking over
their routine tasks, and thus enhance the performance of the system. On the other hand,
potential conflicts could happen when automation fails to function as planned. For exam-
ple, the workload of ATCOs will suddenly increase when the radar control system is shut
down. They have to manage air traffic, using procedure control, under which the position
of the aircraft is estimated through ATCO’s mental calculation. Mid-air collisions may
happen. Another consequence could be complacency by air traffic control professionals [3].
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For example, a complacency effect was reported in [4] that the detection of a particular
conflict by the air traffic controllers under manual conditions was 15.56% higher than
under automation conditions when automation tools failed to detect the conflict. Ques-
tions that emerge from academia and the engineering field on the cost–benefit trade-off
between ATCOs and automation attracted much attention from psychologists and other
researchers. Understanding the effects of automation on ATCOs’ behavior is critical for
both engineering and academic fields, and most importantly, for aviation safety [5].

Although repetitive and non-critical tasks can be transferred to automation, ATCOs
have to maintain their current assessment of rapidly changed air traffic [6]. Their decisions
rely upon (i) the information acquired from various sources, and (ii) their mental model
of situation. In fact, situation awareness (SA) has been at the center of human factors
research in aviation for decades [7–9]. Despite studies being carried out to understand
how automation could affect ATCOs’ behavior, sound evidence for this subject is still
lacking. This study aimed to empirically test the effects of three levels of automation on
eye movements, workload, and situation awareness. In addition, we wished to explore
how traffic may affect ATCOs’ behavior under different levels of automation.

1.2. Related Work
1.2.1. Eye Movements

An enormous effort by cognitive psychologists and neuroscientists has been made to-
ward understanding ATCOs’ eye movements. These studies implicitly or explicitly assume
that eye movements, as an information-seeking behavior, is closely related to workload, con-
flict detection, and performance. Eye movements data were recorded and analyzed to identify
their relationships with workload. For example, Ahlstrom et al. studied the correlation
between eye movements and the ATCO workload. They investigated the relationship
between ATCO saccades, blink frequency, pupil diameter, and air traffic flow [10]. The re-
sults showed that the use of DSTs in supervision work can reduce the ATCO workload.
Tokuda studied the relationship between saccadic intrusion and workload [11]. It is found
that saccadic intrusion was closely connected to the workload. The correlation coefficient
between the workload and saccadic intrusion was up to 0.84. In another study, Stasi set up
three tasks with different levels of difficulty in a simplified control simulation experiment
to study the relationship between workload and saccade [12]. The results showed that
the increase in workload led to an increase in response time and decrease in peak saccade
speed. Muller et al. found that the value of pupil restlessness gradually increased when
the workload increased. However, the value of pupil restlessness cannot be used as a work-
load indicator when workload reaches a certain threshold [13]. Imants et al. studied the
relationship between eye movement indicators and task performance [14]. They found that
the saccade path, saccade time, and gaze duration of different ATCOs were significantly
different when performing surveillance, planning, and control tasks.

There are few studies on the investigation of ATCOs’ eye movements in conflict
detection tasks [15,16]. Kang et al. investigated visual search strategies and conflict
detection strategies used by air traffic control experts [15]. Based on the collected data,
the saccade strategies were classified into five categories, while the strategies for managing
air traffic were classified into four groups. Marchitto et al. studied the impact of scene
complexity on the ATCO’s workload in conflict detection tasks [17]. Results suggested
that ATCOs tended to use more gaze and more saccades in the conflict scenes than in the
conflict-free scene.

In another line of research, research effort was devoted to the understanding of
relationships between eye movements and human performance. For instance, Mertens et al.
collected ATCOs’ eye movements data, including gaze, saccade, and blink, to investigate
how effectively display cues can reduce human errors [18]. It was found that the ATCOs’
attention was mainly concentrated in areas with dense traffic, especially those aircraft
which have just entered the sector. To improve ATCO’s performance, they suggested
that the latest aircraft entering the sector can be marked with color, flashing, or other
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prompts, to attract ATCOs’ visual attention. Meeuwen et al. studied the visual search
strategy and task performance of ATCOs of three levels of expertise: novice, intermediate,
and expert [19]. Performance results showed that experts used more efficient scan paths
and less mental effort to retrieve relevant information. Wang et al. studied the effect of
working experience on the ATCOs’ eye movement behaviors. The results showed that
working experience had a notable effect on eye-movement patterns. Both fixation and
saccades were found to be different between qualified ATCOs and novice [20].

The extensive discussions on the eye movements in air traffic management domain
demonstrated that ATCOs’ visual searching behaviors are closely related to their mental
workload, conflict detection strategies, and task performance. Notable differences on the
eye movements indicators can be found among ATCOs with levels of expertise, or working
experience. However, few works can be found in the literature that focus on the levels of
automation on ATCOs’ eye movements.

1.2.2. Classification of the Levels of Automation

Levels of automation (LOA) generally refers to the degree to which a task is automated.
The definition of LOA specifies the roles and responsibilities of human and machine in a
complex system. Sheridan et al. in [21] proposed the standards for classifying the levels of
system automation. They divided system automation into ten levels ranging from 1 to 10,
and described the main functions of the automation at each level accordingly. A higher
level indicates higher automation with less manual intervention. Fitts et al. proposed the
concept of the automation phase. They divided the automation phases into four sub-phases:
information filtering, information integration, decision making, and implementation [22].
Parasuraman et al. developed a model for selecting appropriate types and LOA for
a system [23]. Four types of functions in a system are proposed, namely information
acquisition, information analysis, decision and action selection, and action implementation.
Automation can be applied within each type from low level to high level. It is suggested
that the selection or design of automation level can be mainly based on human performance
consequences, automation reliability, and the costs of decision/action consequences.

In the field of autonomous driving, the National Highway Traffic Safety Administra-
tion (NHTSA) proposed a set of classification standards for self-driving cars with four LOA
in 2013. Later, the Society of Automotive Engineers (SAE) proposed a set of self-driving
car classification standards building up on the NHTSA’s standards. The SAE divides
autonomous driving into five levels: driving support, partial automation, conditional
automation, high degree of automation, and full automation [5].

1.2.3. Situation Awareness

Situation awareness (SA) is recognized as a critical foundation for humans making
correct decisions in a complex and dynamic environment. According to Endsley [24],
situation awareness is defined as ‘’the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning, and the projection of their status in
the near future‘’ . Wickens et al. [9] described situation awareness as follows: the operator
obtains relevant situational information from the system and environment, assesses the
overall situation based on his/her understanding and knowledge, and then adjusts the
methods of information acquisition and prejudges the future situation. Similarly, situation
awareness is referred to as a cognitive process in which operators observe, understand,
predict, and control the status and future trends of systems and environments [25]. Situation
awareness is also considered to be a comprehensive analysis and understanding of various
information in the task, as well as a cognitive process of predicting its trend [26]. Here, we
define situation awareness as a complete progress that the operator observes and obtains
relevant information from the system and environment, integrating this progress into a
complete representation, and then make future information acquisition plan in order to
predict the system’s state.
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Several pioneering studies on situation awareness in air traffic management can be
found in [27,28]. Reports suggested that ATCO relied on situation awareness to detect and
resolve conflicts. Meanwhile, the levels of situation awareness were positively correlated
with the ATCO performance. ATCOs tended to make more mistakes when they had lower
situation awareness [28].

There are four commonly used methods to assess situation awareness: subjective mea-
suring, physiological measurement, performance assessment, and memory probing [29]. Subjective
measuring will take place once the subject completes the tasks. The subject assesses his/her
SA by self-assessment. The Situation Awareness Rating Technique (SART), originally
developed for the assessment of pilot SA, is widely used in various fields. The participant
is required to rate each of the ten dimensions of SA based on performance and task. It
is a simplistic post-trial subjective rating technique. Physiological indicators have been
widely proposed to measure human workload. They are rarely used to assess situation
awareness. Vidulich [30] set up a flight experiment and collected the electroencephalog-
raphy (EEG) data of the subjects. They found that the activity of α-wave decreased, and
θ-wave increased when the subject was experiencing lower SA. Few studies have shown
that situation awareness can be inferred through EEG, event-related potential (ERP), heart
rate variability (HRB), and skin conduction level (SCL) [31,32]. A recent review on the
physiological measures of SA reports the general findings on the studies that investigated
the correlations between physiological measures and situation awareness [33]. It was found
that eye movements measures and EEG are commonly reported to have correlations with
SA. The other measures, for example cardiovascular indicators, generate mix results.

The performance assessment method is to assess the situation awareness based on
the performance of the subject during the experiment. The advantages of this method
are low cost, objective, less influenced by the exogenous factors, and no requirement
for additional space, while the disadvantage is that it may be influenced by the stress,
workload, and arouses of the subjects [32]. In a memory-probing method, the subject is
asked to report the memorized content of the experiment as well as its correctness and
completeness, which is used to assess the situation awareness.

1.3. Research Gap and Contributions

Taken together, findings in human factors studies in air traffic management reveal
the differences in eye movements, situation awareness, and mental workload among
ATCOs with different levels of expertise. Eye movements, mental workload, and situation
awareness are all related to the fundamentals of air traffic control, i.e., detecting and
resolving potential traffic conflict to provide a safe and orderly flow of aircraft traffic.
Both the Joint Planning and Development Office in the U.S. and EUROCONTROL in
Europe have initiated research projects to investigate how automation impacts human
roles in future air traffic management systems [34,35]. However, less work has been found
on the understanding of air traffic controller’s behaviors in detail under different levels
of automation.

In our contribution, we seized the ideas of data-driven science and set up a demon-
stration case to investigate the impact of automation on the controller’s eye movements,
situation awareness, and mental workload. Therefore, we introduce our experimental
setup in Section 2. A simplified air traffic control simulation tool is developed to be able
to simulate three levels of automation. Furthermore, we provide information about the
participants, the equipment, and the experimental design. In Section 3, we analyze the
results of the test performed with respect to eye movements, gaze duration, number of
fixations points, gaze and conditional entropy, saccade, situation awareness, and mental
workload. Discussions are provided in Section 4. Finally, the paper closes with conclusions
and suggestions for further research.
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2. Methods
2.1. Experiments
2.1.1. Simplified Air Traffic Control Simulation Tool

A simplified air traffic control simulation platform was developed using Python.
Three levels of automation can be simulated in this platform-manual, attention-guided,
and fully automated. Figure 1 shows the layout of the interface. The whole space is divided
into three parts. The left part is the main area showing the airspace structure and air traffic.
The information of each aircraft is displayed in the radar tag, including the call-sign, speed,
target flight altitude, and current flight altitude. Points 1 to 8 are the locations where the
aircraft appears and enters the airspace. The upper right serves as displaying the time
and score. A subject is able to see how long the simulation has been running. Based
on the purposes of the simulation, the subject may be scored automatically in real time.
For example, the score is based on how many aircraft have landed or taken off. The score
function was not used in this study. The lower right is the functional area showing a list of
aircraft with the speed and heading. During the simulation, the heading and the speed of
an aircraft can be adjusted either in the airspace display area or in the functional area.

Figure 1. The layout of the simulation software’s interface. Aircraft are generated and displayed on
the left area, with specific information of each aircraft listed on the lower right area. The upper right
area serves for displaying the time and score.

The functional area was designed for other purposes that were not investigated in
this study. For example, it served as a list of “strips” that air traffic controllers have used
during procedure control. We can simulate the situation in which the radar system is out.
There is no aircraft showing in the airspace display area. However, aircraft information is
still available in the functional area.

The experiments were set up to capture the core skills required for a qualified ATCO.
Similar to real air traffic control, the participants had to monitor traffic and made control
decisions promptly in order to avoid conflict (see Figure 2). If the horizontal distance
between two aircraft is less than 10 km and the vertical distance is less than 300 m, then
there is a conflict. One can change the heading or the speed of the aircraft to avoid a
potential conflict. Additionally, a green circle represented as the danger zone was designed
in order to increase the complexity of the task. If an aircraft enters this zone, there is
a conflict.
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Figure 2. Airspace display area. Aircraft are generated randomly in green. When an aircraft is
clicked, it turns yellow and the projected trajectory shows up. The aircraft turns red if it is involved
in a conflict. The area covered by the green circle is the danger zone, where aircraft are not allowed
to enter.

2.1.2. Levels of Automation

In this work, we set up three levels of automation-manual, attention-guided, auto-
mated. A snapshot of the interface is shown in Figure 3. The differences between the three
modes are presented in Table 1. There was no decision support information provided in
the manual mode. The manual mode corresponds to the days of air traffic control when the
radar screen only provided traffic information. In the attention-guided mode, conflict de-
tection was automatically performed. If a potential conflict is detected, the relevant aircraft
will turn red. The computer makes continuous beeps to alert the participant. The conflict
has to be resolved manually through changing the aircraft’s heading or speed. Most of
air traffic control systems have the function of conflict detection. Visual and auditory aids
are provided to the controllers as well. While in the automated mode, the control task
was transferred to the system. Participants had to monitor the traffic and system. Conflict
detection was available, but the system resolved the conflict automatically. However, the
participants had to maintain situation awareness in the case that the conflict resolution func-
tion did not work. We set a very small probability (≤0.01%) that the system downgraded
to attention-guided mode. Participants had to resolve conflicts manually when necessary.

Table 1. Comparison of three modes.

Manual Attention-Guided Automated

Provide conflict detection No Yes Yes
Provide conflict warnings No Yes Yes
Provide danger zone intrusion alerts No Yes Yes
System automatically solve conflicts No No Yes
ATCO’s main duties Control Control Monitor
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Figure 3. Human–computer interaction interface. A group of aircraft are generated and displayed on the left area,
with specific information of each aircraft listed on the lower right area. The upper right area serves for displaying time
and scores.

2.1.3. Levels of Traffic

According to Durand [36], it is difficult to solve the problem of a cluster of conflicting
aircraft. Even if we can model the trajectory minimization by a convex function, the search
space in the horizontal space is divided into so many components that would require

a local search for a solution. For a conflict involving n aircraft, there may be 2
n(n−1)

2

different components in the free trajectory space. It is suggested that any method requiring
exploring every connected component is NP-difficult [37]. Moreover, the number of
potential solutions in the solution space grows exponentially. For n = 3 aircraft, there
are 8 potential options; for n = 6, the number of potential solutions goes up to 32,768.
Therefore, we set up three levels of traffic under each automation mode, which consists of
3, 6, and 8 aircraft, respectively.

2.1.4. Participants

A critical step in the design of research that involves human subjects is the determi-
nation of the sample size. An undersized sample would introduce fewer non-sampling
errors and could not produce useful results, thus resulting in a waste of resources. On the
other hand, an oversized sample may lead to unnecessary costs and may expose subjects
to harmful intervention [38]. The number of subjects in the studies of air traffic controller’s
behaviors varies depending on the research purposes. For example, the numbers of partici-
pants involved in the eye movements research are typically around 10 or 20 (e.g., 6 subjects
in [10], 11 in [16], 17 in [39], 19 in [40], 25 in [15,20]). Based on these previous studies,
we chose our simple size within the range of [10, 20]. We recruited 8 college students
through announcements in a mandatory course for senior students majoring in air traffic
control. Additionally, six air traffic controllers from the East China Air Traffic Management
Bureau were also invited to participate in this study. Participants were paid based on their
performance. Every time the participant failed to resolve a conflict, he or she would lose
one point (for example, 1 pt ≈ USD 1). In this way, we hoped participants could take this
simulation seriously. The information of all the subjects is shown in Table 2.
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Table 2. Information of the participants.

Participant ID Age Working Years

ATCOs

1 27 4

2 25 2

3 25 2

4 26 3

5 28 5

6 37 9

Students

7 19 -

8 20 -

9 20 -

10 21 -

11 22 -

12 21 -

13 20 -

14 20 -

2.1.5. Equipment

The faceLAB5.0 by Seeing Machines was used to collect eye movements data. The
Biofeedback Xpert biofeedback instrument BFB2000 was used to collect heart rate, skin
electricity, skin temperature, and myoelectricity data. After each experiment, the participant
was required to fill two forms, the 3D-SART situation awareness scale form, and the NASA-
TLX workload scale form(see Section 2.4 for further details).

2.1.6. Design

Two factors served as independent variables in this work: levels of automation and
levels of traffic. Nine scenarios were prepared, using a 3 × 3 fully crossed, within the
subjects design. Each participant started with the first set of scenarios under manual mode,
followed by the second set of scenarios under attention-guided mode, then the third set
of scenarios under automated mode. In each set of scenarios, traffic was prepared in
the order of 3 aircraft, 6 aircraft, 8 aircraft. There was a five minute break between the
scenarios, providing enough time for the participant to finish the 3D-SART and NASA-TLX
forms. The design of our experiments aimed to take participants progressively further
“in-of-the-loop”.

Specifically, the experiments were carried out as follows:
Step 1: The participant was asked about his/her physiological conditions before

simulation started. The content, operation, and purpose of the simulation was introduced;
Step 2: The participant sat in front of the screen, and adjusted the seat to his/her own

comfort;
Step 3: Eye tracking and BFB2000 devices were calibrated before starting the experi-

ment;
Step 4: The subject was required to be familiar with the simulation tool.
Step 5: The simulation began. Eye movements data, heart rate variability (HRB),

and skin conduction level (SCL), and EEG data were recorded;
Step 6: The simulation was stopped. The participant completed the NASA-TLX form

and 3D-SART form.
Figure 4 shows a participant during a simulation exercise. The presented study

only focuses on the eye movements and subjective measurements, while the EEG and
cardiovascular data are reported in a separated study.
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2.2. Eye Movement Metrics

Following the work in [41], here, we focused on two types of eye movements: gaze
and saccade. The gaze duration, fixation points, gaze entropy, and conditional entropy were
computed and analyzed to study the gaze behavior. The saccade duration and the average
saccade were studied to understand the saccade behavior. Detailed definitions were given
in Table 3.

Figure 4. Data collecting during an experiment.

Table 3. Eye movements metrics.

Eye Movements Indicators Definition General Meaning

Gaze

Gaze dura-
tion

Total duration of gaze during the
experiment.

A longer duration indi-
cates that something has
happened that is not what
the participant excepted.

Number
of fixation
points

Total number of fixations in the
experiment.

More fixation points indi-
cate lower searching effi-
ciency.

Gaze en-
tropy

The value of the entropy rate of
the gaze area in the experiment.

Higher gaze entropy indi-
cates a wider range and
more chaotic distribution
of gaze.

Conditional
entropy

The entropy rate of the gaze area
with the transition relationship
matrix given.

Higher conditional en-
tropy indicates that the
shift between fixations is
more irregular.

Saccade

Saccade du-
ration

Duration from the end of the last
gaze to the start of the next gaze
in the experiment.

Larger saccade duration
indicates lower searching
efficiency.

Average sac-
cade

The ratio of saccade amplitude
to the saccade duration.

Larger average saccade in-
dicates a more efficient
searching.

2.3. Gaze Entropy and Conditional Entropy
2.3.1. Gaze Entropy

The concept of entropy originally originated from thermodynamics and was later
introduced into the field of information by Shannon to describe the degree of information



Aerospace 2021, 8, 260 10 of 21

confusion [42]. A general formula to calculate entropy for discrete spaces is given as
follows:

H(x) = −
n

∑
i=1

(pi) · log2(pi) (1)

where pi is the probability that the collected gaze data falls on position i. Given its definition,
H(x) is greater than 0. Gaze entropy (GE) measures the distribution of a subject’s gaze
points and gaze duration. A larger value of H(x) indicates that (i) the gaze range is
wider, and (ii) the gaze distribution is more chaotic. It suggests that the subject’s attention
is distributed into a larger space. Studies on gaze entropy can be found in health care,
psychology, transportation, and the human–computer interaction. For example, some
scholars found that doctor’s gaze entropy was higher in emergency situation; in contrast,
Diaz-Piedra et al. [43] found that pilots’ gaze entropy was lower in emergency missions.
The contradictory behavior of gaze entropy between the doctors and the pilots could be
explained by the fact that fighter pilots have specified procedures in emergency situations,
while medical conditions are unpredictable and complicated, and thus, the doctor’s gaze
entropy is higher in emergency situations.

2.3.2. Conditional Entropy

Although entropy indicates the uncertainty of a given random variable, most processes
in nature are not completely random or fully predictable. The previous output of a given
system may affect the selection of the next input, meaning that the next input depends on
the previous output. The statistical characteristics of these processes can be approximated
by the Markov matrix of order 1 to n [42]. The zero-order or stationary distribution
represents the overall probability that each state is occupied, and the transition distribution
represents the rate of changing from one state to another. The conditional gaze entropy
(CGE) is given by the following:

HCGE(x) = −
n

∑
i=1

pi

n

∑
j=1

p(i, j) log2 p(i, j) (2)

in which HCGE is the uncertainty of the prior state of the known x. pi represents the
steady-state distribution, and p(i, j) represents the probability of shifting from the fixation
point i to the fixation point j. Higher conditional entropy indicates a more disordered
gaze behavior. The difference between gaze entropy and conditional entropy is that the
gaze entropy calculates the distribution of the overall fixation in an experiment, while
the conditional entropy examines the relationship between the previous fixation and the
next fixation.

2.4. 3D-SART and NASA-TLX
2.4.1. 3D-SART

The 3D-SART scale is widely applied to measure situation awareness. The original ten
dimensions of SART measures are grouped into three dimensions: attention resource demand,
attention resource supply, and understanding of the current situation [44]. Table 4 provides the
descriptions of the three dimensions.

The following equation is then used to evaluate SA:

SAS = Ud − (De − Su) (3)

where SAS is the score of situation awareness; Ud is the understanding of the current
situation; De is the score of the attentional demand; and Su is the score of the attention
resource supply. A higher score indicates higher SA.

In our study, we used 3D-SART rather than the 10D-SART on the basis of the following
considerations. First, the 3D-SART was easier to implement, and it can capture the same
information that 10D-SART captures [45]. Second, subjects can quickly fill the 3D-SART
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forms after simulation. Thus, using 3D-SART minimized the interruptions on the subjects,
especially when they had to finish multiple rounds of simulations in our study.

Table 4. 3D-SART scale dimension description.

Dimension Description

Attentional demand (De) The likeliness that changes happen to the ATCO’s
working scenes (Instability of situation); The num-
ber of elements to be paid attention to in the task
(Variability of situation); The complexity of the task
situation (Complexity of situation).

Attentional supply (Su) The level of arousal of ATCOs at work (Arousal); The
ability to complete other tasks in addition to related
tasks (Spare mental capacity); The level of concentra-
tion (Concentration); The ability to well distribute
attention (Division of attention).

Understanding of the current sit-
uation (Ud)

How much the ATCO accepts or understands the
information at work (Information quantity); The ease
or complexity of obtaining information (Information
quality); The familiarity with the task at hand (Famil-
iarity).

2.4.2. NASA-TLX

The NASA-TLX scale was proposed by Hart et al. of the National Aeronautics and
Space Administration (NASA) to assess the ATCO workload [46]. It provides an overall
score of workload based on weighting the assessments of six sub-dimensions. See Table 5
for detailed descriptions of each dimension.

Table 5. Dimensions of the NASA-TLX scale.

Dimension Description

Mental needs The mental needs of ATCOs when observing, think-
ing, and making decisions at work.

Physical demand The energy ATCOs need at work.

Time requirement Time and time pressure required for ATCOs to work.

Effort level Efforts made by ATCOs to achieve a level of compe-
tence as they complete their tasks.

Performance level Satisfaction of the ATCO with his task.

Frustration Whether the ATCOs feel relaxed or stressed during
the task.

2.5. Statistical Analysis

To test whether there existed significant differences among different groups, we used
the analysis of variance (ANOVA). The Levene test was first performed to determine
whether the original data variance meets the homogeneity of variance requirements [47].
Then, the homogeneity of variance test (F-test) was carried out to determine whether
there existed statistical significant differences in eye movements, situation awareness,
and workload. To examine the relationships between eye movements indicators and levels
of traffic, linear regression models were developed with traffic as the independent variable.
The R2, also known as the coefficient of determination, was calculated for each regression
model. R2 is the percentage of the dependent variable variation that a linear model explains.
Usually, the larger the R2, the better the regression model fits our observations.
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3. Results

We found that the Levene test values of all experimental data were greater than 0.05,
which means that all the data met the homogeneity test condition. Significance levels were
further divided into three groups, p < 0.1 (∗), p < 0.05 (∗∗), and p < 0.01 (∗ ∗ ∗). Overall,
we found that there was no significant differences in eye movements, situation awareness
and workload between manual mode group and attention-guided group. In contrast, there
were significant differences between the attention-guided group and automated group.
Table 6 presents test results on eye movements of the two groups.

3.1. Impact of Automation on Eye Movements
3.1.1. Gaze Behavior

It can be seen from Table 6 that there were significant differences in the gaze duration
between the group of attention-guided mode and the group of automated mode in all three
traffic scenarios (three aircraft (F = 36.198, p = 0.000), six aircraft (F = 54.778, p = 0.000),
and eight aircraft (F = 12.301, p = 0.002)). The average gaze duration increased when the
number of aircraft increased (see Figure 5a). In the manual mode and attention-guided
mode, the gaze duration increased almost linearly with traffic (see Table 7; R2 = 0.516 for
the manual mode, and R2 = 0.725 for the attention-guided mode). In contrast, it seems
that gaze duration did not change in the automated mode when traffic varied (R2 = 0.035).

(a) (b)

(c) (d)

Figure 5. Statistical results on gaze behaviors. (a) Gaze duration, (b) number of fixation points,
(c) gaze entropy, (d) conditional entropy.
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Table 6. Significant analysis of participants’ eye movements under the attention-guided mode and under the automated mode.

No. of Aircraft
(AC)

Eye Movement Indicators Attention-Guided (Mean ± Standard
Deviation)

Automated (Mean ± Standard Devia-
tion)

F P

3

Gaze duration(ms) 152.071 (12.778) 236.855 (51.155) 36.198 0.000 (***)

Number of fixation points 608.5 (126.245) 950.714 (227.228) 24.264 0.000 (***)

Gaze entropy 7.300 (0.345) 7.496 (0.348) 2.224 0.148 (–)

Conditional entropy 1.493 (0.111) 1.914 (0.179) 55.851 0.000 (***)

Saccade duration(ms) 36.855 (13.304) 84.340 (51.490) 11.162 0.003 (***)

Average saccade(m/s) 0.960 (0.176) 0.684 (0.227) 12.948 0.001 (***)

6

Gaze duration(ms) 196.141 (18.790) 254.184 (22.534) 54.788 0.000 (***)

Number of fixation points 823.357 (183.698) 1020.071 (256.260) 5.449 0.028 (**)

Gaze entropy 7.581 (0.291) 7.528 (0.355) 0.183 0.673 (–)

Conditional entropy 1.679 (0.162) 1.963 (0.176) 19.761 0.000 (***)

Saccade duration(ms) 46.300 (13.460) 68.419 (24.689) 8.662 0.007 (**)

Average saccade(m/s) 1.017 (0.180) 0.799 (0.169) 10.905 0.003 (***)

8

Gaze duration(ms) 220.386 (21.358) 251.582 (25.523) 12.301 0.002 (***)

Number of fixation points 911.357 (180.299) 987.000 (225.191) 0.963 0.336 (–)

Gaze entropy 7.633 (0.257) 7.486 (0.311) 1.872 0.183 (–)

Conditional entropy 1.788 (0.208) 1.971 (0.197) 5.793 0.024 (**)

Saccade duration(ms) 55.599 (17.775) 70.345 (25.806) 3.100 0.090 (*)

Average saccade(m/s) 0.936 (0.223) 0.761 (0.226) 4.268 0.077 (*)

Significant level: p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***).
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Figure 5b shows the average number of fixation points of all the participants under
different automation levels and traffic scenarios. Figure 6a,b are the spatial distributions
of fixation points of a same participant under the attention-guided mode and under
the automated mode, both with three aircraft. Blue dots are the fixation points of the
participant, showing the locations of the screen he/she viewed. Compared with manual
mode or attention-guided mode, there was a significant increase in the number of fixation
points of participants under automated mode. According to Table 6, when comparing the
fixation behaviors of participants under the attention-guided mode and under automated
mode, there were significant differences in the number of fixation points between three
aircraft (F = 24.264, p = 0.000) and with six aircraft (F = 5.449, p = 0.028). However, no
significant difference was observed when traffic increased to eight aircraft.

(a) (b)

Figure 6. Distribution of fixation points. (a) Attention-guide mode, (b) automated mode.

In order to compute the gaze entropy, we divided the radar screen into 1296 (48 × 27)
small units, and computed the frequency that each small unit was viewed by the participant.
Figure 7 plots a typical gaze distribution of one participant with the color indicating the
frequency of gaze points falling into the region. Figure 7a shows the gaze frequency in the
scenario of attention-guided mode with three aircraft. Figure 7b shows the gaze frequency
in the scenario of automated mode with three aircraft. The statistical results on gaze entropy
is shown in Figure 5c. As shown in Table 6, there was no significant difference in gaze
entropy between the attention-guided group and automated group for all levels of traffic
(three aircraft (F = 2.224, p = 0.148), sixaircraft (F = 0.183, p = 0.673), and eight aircraft
(F = 1.872, p = 0.183)). Under the manual mode or attention-guided mode, gaze entropy
increased with the increase of traffic; while under automated mode, gaze entropy did not
change when the traffic increased. Interestingly, in the high traffic scenario, i.e., when the
number of aircraft was eight, the gaze entropy in the automated mode was lower than that
in the manual mode or in the attention-guided mode.

(a) (b)

Figure 7. Frequency of ATCOs looking at each small unit in two scenarios. (a) Scenario in attention-
guided mode with three aircraft; (b) scenario in automated mode with three aircraft.

Figure 5d shows the conditional entropy across all modes and traffic scenarios. Ac-
cording to Table 6, it can be seen that significant differences existed in conditional entropy
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between the attention-guided group and automated group for all traffic scenarios (three
aircraft (F = 55.851, p = 0.000), six aircraft (F = 19.761, p = 0.000), and eight aircraft
(F = 5.739, p = 0.024)). In the manual mode and in the attention-guided mode, conditional
entropy increased with the increase in traffic flow.

3.1.2. Saccade Behavior

The saccade duration is commonly used as a measure of the searching efficiency [48].
Figure 8a plots the saccade duration under different levels of automation and traffic flow.
It can be seen from Table 6 that there existed significant differences in the duration of
saccades between the attention-guided group and automated mode group (three aircraft
(F = 11.162, p = 0.003), six aircraft (F = 8.662, p = 0.007), and eight aircraft (F = 3.100, p =
0.090)). The saccade duration increased with the increase in traffic flow in the manual/
attention-guided groups, while no clear regularity was found in saccade duration under
the automated mode.

(a) (b)

Figure 8. Statistical results on saccade behaviors. (a) Saccade duration, (b) average saccade.

Figure 8b shows the average saccade under different levels of automation and traffic.
It can be seen from Table 6 that there existed significant differences in the average saccade
speed of participants between the attention-guided group and automated group (three
aircraft (F = 12.948, p = 0.001), six aircraft (F = 10.905, p = 0.003), eight aircraft (F =
4.268, p = 0.077)). The average saccade speed decreased with the increase in the traffic
flow under manual mode and under the attention-guided mode, while the average saccade
speed did not change significantly under the automated mode.

3.1.3. Effects of Traffic on Eye Movements

To examine whether traffic has effects on eye movements, we performed one-way
ANOVA. Table 7 shows the statistical results. The R2 listed in the last column of the table
was calculated from linear regression models, with the traffic level as the independent
variable. As it can be seen from the table, the average saccade velocity was not affected by
the traffic levels. The other eye movements indicators were affected by the levels of traffic
under the manual mode or under the attention-guided mode. Again, the levels of traffic
had no effect on eye movements under the automated mode.

Figure 9a shows the results of the participants’ 3D-SART scores, i.e., SAS. It can be
seen from the figure that the situation awareness significantly decreased when the flow
increased under each level of automation. We also found that situation awareness increased
when the level of automation increased under the same level of traffic. It was found that
there were significant differences in the situation awareness of the participants under the
manual and under automated mode both with eight aircraft scenarios (F = 6.95, p = 0.014),
while there was no significant difference under the two modes with the three aircraft
scenario (F = 0.271, p = 0.607) or six aircraft scenario (F = 2.692, p = 0.113).
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Table 7. Statistical tests on the effects of traffic on eye movements.

Eye Movements Indicator Level of Automation F P R2

Gaze duration
Manual 21.410 0.000 0.516

Attention-guided 51.804 0.000 0.725

Automated 0.971 0.388 0.035

Number of fixation points
Manual 13.513 0.000 0.396

Attention-guided 12.403 0.000 0.383

Automated 0.301 0.742 0.006

Gaze entropy
Manual 6.218 0.005 0.221

Attention-guided 4.986 0.012 0.190

Automated 0.060 0.941 0.000

Conditional entropy
Manual 11.046 0.000 0.341

Attention-guided 11.423 0.000 0.369

Automated 0.678 3.238 0.018

Saccade duration
Manual 6.244 0.004 0.238

Attention-guided 5.473 0.008 0.216

Automated 0.808 0.453 0.030

Average saccade
Manual 0.601 0.553 0.027

Attention-guided 0.641 0.532 0.001

Automated 1.106 0.341 0.030

(a) (b)

Figure 9. Statistical results on SA and workload. (a) 3D-SART scale score, (b) NASA-TLX scale score.

3.2. Impact of Automation on Situation Awareness
3.3. Impact of Automation on Workload

Figure 9b shows the results of NASA-TLX for participants under different levels of
automation. It can be seen from the figure that as the number of aircraft increased, the work-
load of participant increased. The homogeneity test was performed on the participant’s
workload under the attention-guided and under automated mode. It was found that when
the number of aircraft was eight, there were significant differences in the participant’s
workload (F = 3.380, p = 0.077), while there was no significant difference found in the
scenario with three aircraft (F = 0.888, p = 0.355) or with six aircraft (F = 0.628, p = 0.435).
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3.4. Differences between Students and ATC Professionals

We found that nearly no differences existed between the students and ATC profes-
sionals among all the measurements, except for the saccadic velocity in a few scenarios.
The ANOVA analysis results are reported in Table 8. Under the manual mode, there
was a statistical difference between students and ATC professionals when traffic was six
(p = 0.040), while under the attention-guided mode or under the automated mode, signifi-
cant differences were found to exist in two different traffic scenarios (three aircraft and six
aircraft for attention-guided mode, three aircraft and eight aircraft for automated mode).

Table 8. Statistical tests on average saccade between students and ATC professionals.

Manual Attention-Guided Automated

Num. of AC 3 6 8 3 6 8 3 6 8

F 0.103 5.294 3.183 5.530 6.687 3.024 10.401 2.141 6.155

P 0.754 0.040 0.100 0.037 0.024 0.108 0.007 0.169 0.029

4. Discussions
4.1. Automation and Eye Movements

There was no significant difference found in the eye movement behavior of the
participants between the manual group and attention-guided group. This may be due
to the fact that both modes required participants to fully control the aircraft. We found
that gaze duration, the number of fixation points, and saccade duration almost linearly
increased with traffic (see the R2 calculated from linear regression models in Table 7).
The more aircraft in the airspace, the greater the difficulty in extracting and processing the
information. Due to the decision support information provided in the attention-guided
mode, the sound and colors of the flights were different when there was a potential
conflict. Studies have shown that color can affect the distribution of human attention [49].
When there were different colors on the display, the participant’s attention was attracted.
Consequently, compared with the manual mode, participants under the attention-guided
mode had a slightly longer gaze duration, slightly larger number of gaze points, and larger
conditional entropy.

Additionally, the participant’s eye movements were found to be significantly different
between the attention-guided group and automated group. This may be the result of
the change in the responsibilities of the participants, as their role shifted from that of an
active regulatory decision maker to a passive supervisor. Recall that a longer duration of
gaze may indicate that something has happened that is not according to the participant’s
expectation. The participant monitored the aircraft on the screen under automated mode.
He/she did not have to control the aircraft because the system can automatically resolve
any potential conflict. However, the way that the system resolved the conflicts may be
different from the one that the participant had planned. Therefore, it might take a longer
duration for the participant to understand how the system worked, leading to a longer
duration of gaze; (2) the increase in the number of fixation points, the increase in saccade
duration, and the decrease in the average saccade all implied lower searching efficiency.
All the air traffic controllers are trained to be able to quickly extract information from
current traffic situation. Participants under the automated mode seemed to have difficulty
in acquiring useful information. Again, this may be the result of differences in conflicts
detection and resolution strategies between automation and humans.

Surprisingly, there was no significant difference found in the gaze entropy between
different automation groups. The gaze entropy measures the chaos of the overall gaze
behavior. We cannot tell from the gaze entropy any difference in the gaze behavior among
the three groups. In contrast, the conditional gaze entropy was found to be significant
lower under the manual/attention-guided mode compared to that under the automated
mode. Lower entropy indicates more regularity and certainty of gaze behaviors, suggesting
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that a participant’s gaze was better planned if he/she had to resolve any potential conflict
by themselves. In summary, changes in the level of automation did have effects on the gaze
behavior and saccade behavior. To keep the ATCOs ‘’in-the-loop‘’ under a higher level of
automation, maybe training on how automation works would help them to quickly gather
information and take control, if necessary.

4.2. Automation and Situation Awareness and Workload

The results suggested that situation awareness decreased as traffic flow increased
under each level of automation. This is mainly because the increase in the number of aircraft
increased the difficulty in obtaining and understanding relevant information. The traffic
situation became so complicated that participants could hardly spare any attention to
other tasks. In other words, in the scenario of heavy traffic, the attentional demands (De)
increased, but the understanding of the current situation (Ud) decreased. Thus, situation
awareness decreased. We noted that situation awareness increased with the level of
automation, improving under the same level of traffic. This is generally in agreement with
previous studies [50]. Higher situation awareness indicated that participants are more
competent. The participant’s situation awareness score was higher in the automated mode
because the role of the participant changed. The participant only had to monitor the system.
In the case of heavy traffic, the more automated the system is, the better it can improve the
participant’s situation awareness. Similar results were found for the participants’ workload.
The participants’ workload increased when the number of aircraft increased. The higher the
level of automation used in a heavy traffic scenario, the more the workload can be reduced.

4.3. Automation and Levels of Expertise

Eye movement indicators were reported to be used as effective measurements for
distinguishing novice and ATC experts [20]. Here, we did not find any significant difference
among the eye movements indicators between students and ATC professionals. There
may be several reasons for the little differences between these two groups of the subjects.
First, the main objective of this study was to examine how automation may affect eye
movements, situation awareness and workload. A simplified air traffic control simulation
environment was developed to capture the basic skills of air traffic control. We did not
impose too many constraints on the tasks, such as specific route structures that aircraft
must follow, or target altitudes that aircraft must reach. The complexity of the tasks was
not controlled. Second, the time to finish each simulation under low traffic was much
shorter (typically less than 5 min) than that under heavy traffic. Third, we used a 3 × 3
fully crossed, within subjects design. The simulation took place in the order of ‘’manual,
attention-guided, automated‘’. Traffic was gradually increased from three aircraft, to six
aircraft, and eight aircraft. We hoped that the participant could gradually participate “into
the loop”. Perhaps a between-subjects design could further uncover how automation
affects ATCOs’ behaviors.

5. Conclusions

This paper investigated the difference in air traffic controller’s eye movements, sit-
uation awareness and mental workload under three levels of automation. The results
suggested that visual and sound prompts hardly changed eye movements, compared to the
manual mode. While under the automated mode, the role of the participants shifted from
control decision maker to the supervisor, and their eye movements significantly changed.
In conclusion, we found that as the level of automation increased, the more chaotic the
ATCO’s gaze behavior became. Moreover, the eye movement indicators of participants
under automated mode remained almost stable no matter how the traffic flow varied. This
may be because high automation freed ATCOs from a series of routine tasks, and ATCOs
remained additional visual resources to allocate when serving as supervisors. Moreover,
we found that in the scenario with a large number of aircraft, automation can improve
ATCOs’ situation awareness and effectively reduce their workload.
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This work has several limitations. First, the complexity of the task should be controlled
more precisely. During simulations, aircraft were generated randomly at eight points on
the screen. The task complexity of resolving conflict for each simulation exercise could
be different. Second, the human–computer interaction interface was divided into areas
of different functions; perhaps we could explore the eye-movement data on each area,
respectively, to uncover the dependence of controllers on each area. Last, but not least, our
simulation was different from a real air traffic control environment. In reality, air traffic
controllers must make quick, correct decisions to keep air traffic safe and orderly. No
mistake is allowed during real-world operation, whereas during a real-time simulation,
the participants’ working attitude changes since they know that mistakes are allowed. This
could have an impact on eye movements and other physiological behaviors.
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