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Abstract

As drones become more and more frequent in industry and perhaps tomor-

row in everyday life, the variety and sensitivity of their missions will increase.

Securing the communication taking place with the drones and especially in the

network of a swarm, is of primary importance to allow a safe integration of

Unmanned Aerial Vehicles into air tra�c.

Drones are subject to a range of attacks, from GPS jamming to application

bug exploits. Among these attacks, and irrespective to whether they have al-

ready been implemented or not, communication is one of the main contributors,

both as a vector and as a target.

In this article, we use previous work on security threats concerning drones

to identify two main types of attack in a network of drones: intrusion from the

outside and network usage from inside. We take advantage of Software De�ned

Network (SDN) architecture to build a secure network for a swarm of drones

that allows the identi�cation of most outsider attacks, except eavesdropping and

address spoo�ng. In addition, tra�c injection using address spoo�ng is detected

using statistics monitoring and corresponding countermeasures are applied using

SDN.

Finally, concerning attacks from the inside, we show how a machine learning

solution based on Random Forest Classi�er can be implemented to detect com-

mon network attacks such as denial of service, port scanning and brute force.
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To train this algorithm, a SDN dataset is built from capture �les originating

from an Intrusion Detection System dataset and speci�c features easily available

from the SDN controller are extracted. Detection performance of these abnor-

mal behaviors are promising, both in terms of true positive and false positive,

and in terms of detection delay. Detection of these common attacks will allow

tightening of security in such wireless network by denying further access to the

network by rogue nodes.

Keywords:

UAV, UAV Ad hoc NETwork, UAANET, AODV, SDN, OpenFlow, swarm of

drones, security architecture, Machine Learning, Random Forest Classi�er

1. Introduction

With an anticipated market of tens of billions of dollars worldwide, Un-

manned Aerial Vehicles (UAV) are expected to become more and more widespread.

Drones will become actors in an increasing number of missions, meeting a larger

variety of objectives. Though the current typical mission usually only considers

individual drones, swarms of collaborating machines open new perspectives for

future missions. The missions undertaken by both single UAV and swarms will

become more and more critical. At the same time, they will have to be inte-

grated into air tra�c management. The security requirements of these systems

thus have to be addressed. It is even more important in the case of a swarm

where the communication means and network are crucial for the success of the

mission for collaboration and coordination.

Security is commonly de�ned by three goals: con�dentiality, integrity and

availability. In the context of a wireless network where any station in the cov-

erage of the transmitter may receive its signal, security is a challenging task.

Given the nature of the drones, which have limited computational resources

(memory and computation power), the challenge is even more di�cult.

Our approach is to build a twofold architecture capable of providing more in-

sight in the network. First, we will rely on Software De�ned Network techniques
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(SDN), that allow both a better control and monitoring information about what

is happening in the network. Second, we will use these mechanisms to provide

data about misbehavior that a Machine Learning algorithm will be able to de-

tect. Countermeasures can then be installed as SDN already provides all the

necessary building blocks.

In this article, we will reintroduce the AODV/SDN architecture principles

as a reminder of a previous published work. However, our focus will be its

usage as a support for innovative security mechanisms to protect the swarm

network. Compared to the previous contribution, the current paper demon-

strates the immunity of this architecture against several attacks from nodes

outside the legitimate network and proposes some detection and mitigation

techniques against tra�c injection. Finally, it proposes machine learning de-

tection of attacks within the network and contains important results showing

the performance of the proposed classi�cation model.

Section 2 describes research �elds related to SDN, security and machine

learning. Section 3 provides some insight into the architecture that will be used

during the rest of the article. Section 4 provides the threat model on which

the network threat analysis is based and devides the problem into two separate

attack scenarios. It then describes how the previously described architecture

addresses one of these scenarios. Section 5 focuses on the second scenario of

attacks, namely the situation where one of the nodes (drone or ground station)

has been infected and uses the network to discover its environment and prop-

agate. Finally, Section 6 shows the results of the previously detailed detection

method and Section 7 concludes this paper.

2. Related work

2.1. Security in UAVs

As security in UAVs is a key enabler for a wider integration into a shared

airspace and thus for broader adoption, several studies have addressed security

issues in the past.
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The author in [1] provides a risk analysis on UAVs compliant with Euro-

pean standards [2]. He studies the targets and vectors of attacks on Unmanned

Aerial Systems (UAS) and considers the con�dentiality, integrity and availabil-

ity of the data or subsystems, thus following the Cyber-Security Thread Model

de�ned by [3]. He proposes block diagram models of UAS. The communication

means are, however, not identi�ed, "as it encompasses all the modules and any

incoming/outgoing command and control signals and data signals pass through

it." The likelihood and the impact of each threat is evaluated. The risk is then

presented as the product of these two evaluations. The threats considered as

critical are eavesdropping, spoo�ng, command and control message modi�ca-

tion, denial of service (DoS), signal integrity and Viruses, Malwares, Trojans

and Keyloggers. Non critical threats are jamming, scrambling/distortion, cross

layer and multi-protocol attacks, social engineering, data tra�c modi�cation

and malicious code and subroutine exploits.

The contribution presented in [4] complements the �rst study by listing all

the attacks that have been implemented, either on real UAS or as a simulation.

Although the attacks targeted military UAVs, the same attacks will probably

also be e�ective on small commercial drones. Though a signi�cant proportion of

the identi�ed attacks concern GPS signal spoo�ng or jamming, approximately

a half do concern the communication stream as target or vector of the attack.

The study also lists the vulnerabilities of the Bebop drone for which an exploit

has been successfully implemented:

• bu�er-over�ow Attack (crash) "entry in JSON command requesting to

become the controller for the UAV was around 1000 characters";

• DoS (crash) "parallel multiple (around 1000) JSON requests to become

the controller for the UAV";

• ARP Cache Poisoning approach (landed) "the controller got disconnected

from UAV when ARP replies were sent continuously";

• control and modi�cation of the drone trajectory by using shared data to
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fool the anti collision system.

The authors propose a taxonomy of cyber vulnerabilities of drones, starting

from a similar study on autonomous vehicle [5]. Then, the attacks listed pre-

viously are bound to the taxonomy to show that most attacks target the GPS

signal but that there is currently very little research on data communication

stream attacks.

Although the target of these attacks are on-board applications, the vector

used for their implementation exploits the �aws of the network. Moreover, as

there is no limit to the extent of the attack on the network, any vulnerability is

widely exposed.

The authors in [6] and [7] present several implementations of attacks on

commercial drones, some of which speci�cally target the network link:

• wi� de-authentication;

• injecting commands to take control of the drone (overwhelming the drone

with attacker's commands);

• unauthorized access (telnet as root without password) allowing other at-

tacks to be prepared (uploading virus �les, killing processes, starting mal-

wares or backdoors...);

• ARP cache poisoning;

• DoS by exploiting vulnerabilities in the application protocol.

These vulnerabilities are either bound to the network (ARP cache poisoning)

or the consequence of poor design and could sometimes be avoided if the UAS

had more control over its network.

2.2. SDN and security

As summarized in [8] when it comes to SDN and security, "a twofold re-

search context has been identi�ed: on the one hand, leveraging SDN features to

enhance security; while on the other hand one can �nd the pursual of a secure
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SDN system architecture." Though security by SDN is the major focus of the

current article, the importance of security for SDN should not be ignored.

Concerning the latter, [8] identi�es seven main objectives of attacks, from

unauthorized access, to disclosure and modi�cation of information, to service

disruption. Orthogonally, attacks may be categorized by the origin or cause,

which is one of the SDN layers: application, control, control channel and in-

frastructure. The present article does not explore these questions in depth.

Recommendations will be provided for the most obvious barriers to be installed

to strengthen the architecture against some of the above mentioned objectives.

All other objectives will be assumed to be unreachable.

As suggested in [9], enhancing network security by SDN is made possible

thanks to the following four main features provided by this technology:

• dynamic �ow control providing the building blocks for the dynamic access

control function and allowing to separate malicious �ows from benign ones

dynamically;

• network-wide visibility with centralized �ow control eases network moni-

toring, and provides a more holistic view of the network, facilitating de-

tection of and protection against malicious �ows;

• network programmability, removing ad hoc network security middle boxes

that are di�cult to move and replacing them by SDN applications or

tunnels through the network, which makes SDN an important complement

to Network Functions Virtualization;

• simpli�ed data plane, enabling extension and thus greater suitability for

security.

SDN research addresses security in several manners. One approach is linked

to Network Functions Virtualization (NFV) for �rewalls, network intrusion de-

tection systems (NIDS) or intrusion protection systems (IPS). The power of the

tool however, comes at the expense of the number of transmissions required to

forward the packet. In the case of small devices such as drones, sending packets
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back and forth (from the source to the function and then to the destination) is

not compliant with energy consumption requirements.

Another approach relies on deep packet inspection, where some features

in the packets transported in the network are analyzed to detect previously

identi�ed attack signatures. However, this technique also requires that packets

selected for inspection are transmitted to the feature extractor. Once again,

this is not suited to our constrained environment: forwarding packets to the

controller consumes battery and performing inspection in the drone is limited

by CPU and battery resources.

2.3. Machine learning and security

Machine learning techniques have been used for almost every problem in

networking as shown in [10] and security is of course no exception.

Although some of the listed techniques exhibit remarkable performance, most

of the proposals based on machine learning use either the KDD'99 cup dataset

[11] which is known to contain important issues as described in [12], or its

enhanced version NSL-KDD [13]. However, some of the very diverse features

contained in these datasets are outside the network domain and thus inaccessible

to an SDN controller or switch (e.g. number of root accesses, number of �le

creation operations or number of shell prompts) or are not available at the

beginning of the �ow (e.g. its duration).

Few proposals are solely based on pure network features. As an example, the

authors in [14] propose the use of SDN features for each �ow: number of packets,

total byte count, byte rate, packet rate, length of �rst packet and average length

of packets. The proposed model targets malware tra�c detection. The delay

before the attack is identi�ed has not been measured. However, as some of

the features are known only at the end of the �ow (inter alia �ow duration,

number of packets, average length), the classi�er will most probably not be able

to detect malware immediately at the beginning of the �ow.

Others use packet header information as in [15], but are more dedicated

to intrusion detection systems (IDS): they continually snif packets and seek to
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detect the intrusion in the middle of the �ow. They do not have requirements

with regard to detection latency and may take time to process and alert the

network administrator.

3. Mobile architecture for security

As a prerequisite for the following discussion, the network architecture is

presented as proposed in a previous published work.

3.1. Network

An architecture to secure the network of a swarm of drones and the com-

munications taking place between the nodes was proposed in [16]. The size of

the swarm is not limited but remains small in comparison with usual networks.

In addition, drones are mobile nodes in the network with limited lifetime, CPU

power and memory capacity, while the ground station is �xed and does not have

these limitations.

All the nodes will have a set of network applications exchanging data ei-

ther between the drones and the ground station (e.g. command and control,

telemetry, mission data) or between drones with the intent to coordinate or

collaborate.

The possibility of encrypting all the communications between the UAVs has

not been considered possible due to the limit in CPU and memory capacity,

in addition to the limited battery lifetime [17]. Indeed, ciphering/deciphering

would be an important bottleneck in communication, in addition to depleting

the battery by an intensive CPU usage, if this option were implemented on board

the UAVs. Not ciphering the data will, however, allow the UAVs communications

to be eavesdropped.

3.2. The data plane using Software de�ned network

Access to the network is controlled using Software De�ned Network technol-

ogy, which de�nes SDN switches that are controlled by an SDN controller. For

the sake of simplicity, we will consider the ground controlling station to host
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Figure 1: Security use case for SDN

the SDN controller, but the latter may also be hosted on a specialized UAV.

The communication between the switches and the controller uses OpenFlow to

exchange some SDN events and will be described in more detail hereafter.

As opposed to a more traditional network layout where SDN switches are

speci�c and dedicated devices, we will consider each node (i.e. UAV or GCS)

hosts an SDN switch, managing each �ow entering or leaving, as shown in Figure

1.

For each new �ow, the switch will generate a PacketIn event for the controller

which will in turn take a decision on the legitimacy of the �ow and send FlowMod

events to all the switches along the path to the destination. FlowMod events

will install the required forwarding information for the packet to arrive at its

destination while performing any necessary frame checking and modi�cations.
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The granularity of the elementary FlowMod events may vary from a very

precise (MAC and IP addresses, protocol and ports) to a more general level

(destination IP address). Very precise �ow entries provide a very small attack

surface while increasing the required size of the �ow tables to achieve a given

routing. Generic �ow entries lower the required �ow table size for the same

routing, but allow more tra�c to cross a node, thus increasing the potential

attack surface. In addition, more generic �ow entries require less updating in

case of a topology change.

At the minimum, the destination node requires �ow entries to be precise

enough to guarantee that the received packets belong to a controller approved

�ow. Any packet not matching with these �ow entries will be ignored without

requesting approval.

Forwarding information is critical within the network. No external node

should be able to eavesdrop on the control plane, nor modify or inject forwarding

data. This is why OpenFlow has to be ciphered and OpenFlow will use TLS

[18] or even better DTLS [19] that is not subject to TCP [20] attacks such as

TCP reset attack or TCP sequence number attacks [21].

This setup needs to be complemented with the required routing between the

nodes and the controller, and the ability to e�ciently detect topology changes.

Indeed, the network supporting the control plane communication is usually out

of band, i.e. di�erent from the one supporting the data plane. In addition,

SDN has not been designed to support mobility and topology change events

in a wireless environment. Topology discovery is usually based on Link Layer

Discovery Protocol which is ine�cient here [16]. In the proposed architecture,

these two functions are provided inband using AODV [22].

3.3. Control plane routing and mobility

The routing between the nodes and the controller uses a secured version

of AODV, a well known protocol in the UAV networking �eld. This protocol

provides neighborhood monitoring and on-request route determination. In fact,

each node will always maintain only a single route to the controller. The rout-
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ing information consequently forms a spanning tree where the controller is the

root. Another consequence is in the case of a change in topology where a node

loses neighborhood with the next hop to the controller, any remaining or newly

discovered neighbor already has a replacement route and may quickly take the

forwarding over. Recovery is thus facilitated.

In addition, AODV Hello packets may provide some signed information to

the neighboring nodes in a secured way. In particular, a signed MAC address

of the sending node is added so that ARP is not required anymore within the

network. This is intended to prevent man in the middle attacks using ARP

cache poisoning.

In addition, the appearance (or disappearance) of a node detected by AODV

Hello packet reception (resp. timeout expiration) is forwarded in a new dedi-

cated OpenFlow event so that topology changes are forwarded to the controller.

The latter is then able to determine which �ow entries to modify so that the

forwarding of packets within the network is recovered.

Finally, having the control plane sent inband (i.e. on the data plane) requires

a set of static �ow entries to be installed on the SDN switch.

The public key infrastructure (PKI) required to use both TLS/DTLS and

the secured version of AODV is out of the scope of the present discussion.

4. Threat model and �rst defenses

The architecture described above provides interesting security features by

design. In order to present these, the hypothesis taken in the rest of the article

is �rst stated.

4.1. Threat: model and characterization

The assumptions made concerning the architecture, the UAS and its mission

are described below:

• the size of the swarm is relatively small with about ten nodes (drones and

ground controlling station) and a limited number of applications on board

the UAVs;
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• a secured PKI infrastructure exists, the setting of the PKI and the ex-

changes of public keys and certi�cates is not studied here;

• the mission has a limited duration and the keys used during the mission

have the same duration as the mission (i.e. they are changed for each

mission);

• the node operating system and all the on board applications in the net-

work have proper authentication mechanisms, con�gurations and security

measures so that no unauthorized access will be considered here. In par-

ticular, we considered that connections from unauthenticated devices will

be rejected. We will not consider privilege escalation in this article;

• the SDN applications cannot be stopped nor altered and we do not con-

sider any zero day exploits. The controller generates only coherent �ows

that never overlap or con�ict with each other. This may require some

additional software that is not described here.

We will consider that the controller does not allow new applications to be in-

stalled, and that the installed SDN applications have the highest security stan-

dards.

In addition, we will assume the following concerning the intruder that tries

to harm the UAS or the mission:

• the intruder has free access to listen to the communication channel, and

thus receives all the transmissions of the drones nearby;

• the intruder has free access to send on the communication channel, and

thus is able to send any signal that may be received by the drones nearby;

• the intruder has a limited computational power. In particular, its compu-

tation capabilities are not powerful enough to break the keys during the

mission;

• the intruder does not have the credentials of the ground control station or

the drones;
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• the intruder does not have physical access to the drone during the mission.

As described in the previous sections, there are vulnerabilities in the commu-

nication system that a hacker may exploit for di�erent purposes. From security

holes to bad design, several techniques were successfully used to gain some if

not total control over the UAV trajectory, or to stop the mission.

If most of these attacks could be taken into account at the application level

or during the design of the UAV, the lack of security features at the network level

is the �rst missing barrier in most of these scenarios. Conversely, the network

security features described in this article will not be able to prevent any sort of

application level attacks, especially for eavesdropping as transmissions remain

unciphered. Security analysis of UAV applications and protocols is still one of

the �rst steps in the design of such applications and protocols.

We will consider two main scenarios in the following subsections: either the

hacker is an outside node trying to interfere with the drones, or it is a drone

that has been corrupted prior or during the mission, by any means giving access

to the node (drone or GCS). The latter will be referred to as attacks from the

inside.

4.2. Attacks from the outside

As explained in the previous sections, in this SDN based network, new �ows

will be validated and authorized by the controller before being installed on the

SDN switches hosted by every node.

4.2.1. Usual attacks

The �rst subsystem that may be targeted by a hacker is of course routing and

consequently, as routing is enforced by SDN, OpenFlow. The latter is assumed

to be operated on top of TLS or DTLS. In addition, we considered the usage of

a secured variant of AODV, e.g. SUAP as described in [23].

By construction, each node is able to determine whether a transmission is

part of the network or not: only those �ows that have a �ow entry in the switch

will be processed. This means that any attempt to send a frame to a UAV will
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be simply ignored by the network if it is not part of the acceptable �ows in the

network (based on its IP addresses, its transport protocol and, if applicable, its

transport ports).

We also added a custom �eld in the AODV announcement packets that con-

tains the MAC address of the sending node. This �eld has to be authenticated

so MAC spoo�ng inside AODV �eld is not possible. By doing this and by de-

activating ARP, ARP cache poisoning is made inoperative. Man in the middle

attacks based on this technique are thus very unlikely.

A test bed containing two drones and an intruder has been created with the

above described setting. Drones are started either with pure AODV or using

our AODV/SDN architecture. The intruder can start di�erent attacks using

nmap and ettercap tools:

• ARP cache poisoning;

• port scanning;

• ICMP redirect attack;

• smurf attack;

• SYN �ood attack.

The success or failure of di�erent attacks on the victim drone are shown in

Table 1.

4.2.2. Packet injection

As the intruder is allowed to send forged packets according to our threat

model, we also have to consider packet injection attacks. This technique has

been successfully used in some attacks to take control of a UAV by overwhelming

the drone with the intruder commands in the hope that the drone will execute

more unlawful than authorized actions. Of course, in the context of the work

presented in this article, MAC and IP address spoo�ng of a legitimate and

pre-existing �ow have to be used in conjunction by the attacker.
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Table 1: AODV vs. AODV/SDN vulnerability against common attacks

Attack AODV AODV/SDN

Eavesdropping Vulnerable Vulnerable

ARP cache poisoning Vulnerable Not vulnerable1

Port scan (with or w/o address spoof) Vulnerable Not vulnerable

OS �ngerprinting Vulnerable Not vulnerable

SYN �ood Vulnerable Not vulnerable2

MAC or IP spoo�ng Vulnerable Vulnerable3

1 This does not prevent an attacker from performing a Man in the mid-

dle attack at the application level.

2 SYN are dropped so the goal of the attack is not reached, but network

performance would be a�ected due to numerous transmissions on the

channel.

3 The SDN switch is not able to detect packet injection that uses both

MAC and IP addresses on a pre-existing �ow as described in section

4.2.2.

It should be noted that injection of transport packets will not be transparent

in the case of TCP streams. Indeed, the sending node will check the sequence

number of the ACK packets and react depending on its local counter value.

This makes packet injection more visible as the sequence number has to remain

congruent with local counter and will lead to send supernumerary TCP ACK if

this condition is not met [21].

It should also be remarked that some packet injection may have signi�cant

impact on the performance of the communication while remaining very di�cult

to detect. Sending an RST or a FIN is enough to terminate an open connection.

This kind of attack will require an ad hoc mechanism and will not be considered

here.
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Given V the set of drones in the swarm and E the set of oriented edges

representing the current radio visibility (or neighborhood) of drones as reported

by AODV, we have:

E = {(x, y) ∈ V 2}

Let G(V,E) be the oriented graph of neighborhood in the swarm of drones.

In this scenario, the intruder sends forged packets on a pre-existing �ow. Let

f ∈ Nn designate that �ow de�ned by the n di�erent attributes (addresses, pro-

tocol, ports). The controller, by accepting this �ow, given the current topology

G, has built a path P between the source node a and destination node b.
P = µ[a, b] = (u0, . . . ul),∀i, ui ∈ V,

u0 = a, ul = b,

∀i ∈ [1..l], (ui−1, ui) ∈ E

In SDN, each node maintains counters for each �ow table, �ow entry, port,

etc. In particular, when a packet matches a �ow entry, the corresponding packet

and byte counters are incremented. As a consequence, each node on the path

P will count packets and bytes for the �ow f .

Let ci(t) ∈ N be the count of received packets or bytes, at node ui of the path

P at time t. As the propagation of data is not instantaneous and downstream

nodes cannot receive a packet before it has been sent by the upstream node, we

have:

∀i, j ∈ [0..l], i < j ⇒ ci(t) ≥ cj(t) (1)

This invariant requires that the counters of all the nodes in a �ow are read at

the exact same time t and then sent to the controller. This does not imply that

the drones have to have their clock synchronized, but only that they synchronize

the readings.

This constraining real-time constraint may be relaxed by taking into account

the monotonically increasing nature of bytes and packets counters. We have

then:

∀∆t > 0 ci(t+ ∆t) ≥ ci(t) (2)
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Let ti be the time at which ci(t) has been measured and tj , the time at

which cj(t) has been measured. By combining (1) and (2) we obtain:
∀ti, tj ∈ R, ti ≥ tj ,

∀i, j ∈ [0..l],

i < j ⇒ ci(ti) ≥ cj(tj)

By checking if this invariant is true along the path, we can check if tra�c

injection occurred and locate the place where it occurred. However, there are

two factors that limit the applicability of this invariant: they require some form

of synchronization (either synchronizing the readings or synchronizing clocks to

allow time comparisons) and they assume that no packet losses occur. Unfor-

tunately, losses occur in a mobile network.

Moreover, mobility will reset counters on each path modi�cation, making

any further counter value comparison more di�cult. That is why we suggest

limiting counter checking to the start and end of the �ow: �ow entries speci�cally

designed to count packets on the source and destination nodes resolve the issue

with mobility counter resets.

Counter values can be read in OpenFlow using the Multipart Request/Reply

primitive. In order to lower the required throughput, we implemented an auto-

matic sending of Multipart requests as an experimental interaction. It has to

be noted that the default format of Multipart request is highly modular, hence

not very e�cient. As an example, sending a single statistic entry for a single

�ow in a switch will require up to 242 bytes. A more speci�c data structure

would require only about one hundred bytes for the �ow description and a small

number of counters: 82 bytes are due to the protocol overhead, each �ow will

require about 20 bytes.

A validation of this detection method has been successfully implemented in

a static drone network and shows that packet injection is detected in at most

two times the counters reading period.

The implemented counter measure consisted in changing the source port and

destination ports to a randomly chosen unused couple at the source node, and
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Figure 2: Incoming vs. �ltered tra�c during tra�c injection attack

changing it back to normal at the destination. This counter measure is e�cient

enough to allow the tra�c to be �ltered out, as long as the intruder is not able

to dynamically adapt the injected tra�c to the new port couples. This requires

being able to identify a protocol based only on the data and not on the ports.

Obfuscating the behavior and what actually happens in the network by contin-

uously changing the port pairs, may make the protocol detection and dynamic

adaptation of the injected packets very di�cult, but requires more OpenFlow

transmissions and may thus impair battery lifetime. As a complement, the user

application may implement steganography techniques [24] [25] as a way to check

or to convey sensible data, but is outside the scope of this article.

Figure 2 shows the �ltering of incoming packets using this invariant checking

method and the proposed counter measure. The dashed line shows the number

of packets received at the simulated wi� interface while the solid one shows

the packets that went through the SDN switch and will be received by the

application. Monitoring messages are sent one per second. The scenario is as

follows:
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• at t = 40, some tra�c is received �guring a command and control protocol

whose rate is about six packets per second;

• at t = 47, the intruder starts injection of packets;

• at t = 49, the intruder continues to inject packets as shown on the dashed

line, however the controller has already �ltered the tra�c resulting in the

di�erence with the solid line which returns to the usual value;

• at t = 57 the intruder has stopped injecting packets and at t = 62 the

scenario is �nished.

It should be noted that the simulated attack is not particularly strong (i.e.

one injected packet for one legal one). It is not certain that it would have

achieved its goal: taking control of the drone may require more injected packets.

Injecting more packets would make the method event more e�cient as the source

counter and that of the destination would diverge more rapidly.

With a one second monitoring period, it took less than twice this time for

the controller to detect and react. However, the automatic sending of counters

should be limited to avoid sending too much data. Especially when the node

experiences the kind of attacks that are dealt with in the next subsection.

4.3. Attacks from the inside and counter measures

We also considered the case of a drone being corrupted, perhaps by access

gained before the mission e.g. when the drone is interconnected with a ground

facility, or during the mission e.g. if the hacker managed to corrupt an on board

application by tra�c injection as shown in the previous subsection. Scenarios

leading to this situation range from opening a remote shell (e.g. telnet) allow-

ing the hacker to launch commands and attacks, to a virus, worm or Trojan

horse executed on one drone, including arbitrary code execution though bu�er

over�ows.

We did not consider the possibility of having the drone interconnected to the

internet through the GCS for example, as it may be considered a more common

19



network setup where the GCS will act as a �rewall and protect the UAVs from

the outside.

In the above described cases, the hacker will have the possibility to make

any usual attack as the controller authorizes any tra�c as long as it starts from

a node and arrives at another: trying to extend the control over other nodes

or just trying to stop the mission. Starting from the list of attacks described

in both the KDD99 dataset that has been used in many other studies, and the

IDS2018 dataset, we selected denial of service (e.g. syn �ood), unauthorized

access from a remote machine (e.g. guessing password), and surveillance and

other probing (e.g., port scanning) as the most probable attacks. Unauthorized

access to local superuser (root) privileges (e.g. various bu�er over�ow attacks) is

also a possible attack, but its detection requires more insight into the exchanged

data and has been proven to be more di�cult [10].

In addition to being possible attacks, they will also lead to unusual behavior

on the control plane of the SDN network. The clue of these can then be tracked

by the controller.

Moreover, once detected, the controller will be able to isolate the identi�ed

attacker by denying any new suspicious �ow or even by deleting some �ows.

However, if it seems reasonable to deny new �ows on the basis of the current

behavior of the drone, identifying already established �ows to be deleted will

probably be prone to errors.

5. Detecting rogue nodes

Attack detection is usually devoted to network intrusion detection systems

that analyze tra�c in the network, or to host intrustion detection systems

(HIDS) that also monitor the system and its resources.

Though the SDN switch is hosted by the node in the proposed architecture,

it does not require access to host information like memory and CPU usage,

processes, system calls, �les, etc. and does not compare well with host intrusion

detection systems.
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As stated in section 2, usual signature based NIDS with deep packet inspec-

tion techniques will require additionnal transmissions and thus increase the risk

of premature battery exhaustion on UAVs. This is why we focused on analyz-

ing events at the controller interface only (also known as the southbound API),

possibly complemented with tra�c monitoring techniques like the one proposed

in sub section 4.2.2.

Identi�cation of an abnormal behaviour can then be addressed in machine

learning using two approaches: anomaly detection in unsupervised learning or

classi�cation algorithms in supervised learning.

For unsupervised learning, there are e�ective online real-time techniques like

those described in [26] to perform clustering and anomaly detection in a stream

of data. However, the method raises two concerns.

First, whatever the method, the availability and the representativeness of a

dataset is of primary concern when Machine Learning techniques are at stake.

As far as we know, there is no dataset containing network tra�c of di�erent

typical missions of a swarm of drones that may be used to evaluate a model in

a close-to-reality environment.

Second, the unsupervised learning is based on the idea that normal tra�c

is signi�cantly more common than abnormal tra�c. This assumption cannot

be guaranteed for all the scenarios and missions, and may be ine�cient if the

attack arrives very early in the mission at a moment when the model has not yet

captured the normal tra�c. As an example, continuous camera streams with

command and control �ows do represent a possible scenario with very steady

�ows. Unfortunately, steadiness takes any feedback away from the controller: a

few PacketIn are received at the beginning, but once the required �ow entries are

installed, no more events will be received. Only monitoring counters such as that

proposed for tra�c injection detection could give feedback about the amount of

data exchanged. However, monitoring data cannot be received in real-time as

opposed to controller available data: requesting counter values from the nodes

requires time, while the controller has to take a decision as soon as possible.

Moreover, the increase in the amount of monitoring data to be transmitted
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cannot be limitless as it will use the battery of the drones.

As long as no network capture is produced on a typical swarm of drones

mission, results of an unsupervised learning model will remain questionable

with regard to its applicability to real-life situations. Moreover, due to the

lack of data about the quality of the exchanged information, the model may be

di�cult to train. As a consequence, we did not consider unsupervised learning

any further.

5.1. Dataset

Having no datasets containing the kind of data required to train a new model,

we had to create a new dataset from an existing one by building the point of

view of the controller from a network capture: receiving PacketIn events for the

�rst packet only and �ow deletion events. We did not consider AODV events

(e.g. route requests).

In doing so we made a �rm assumption: an attack always exhibits a very

similar behavior in OpenFlow events, regardless of the network. This assump-

tion implies that a model trained on one dataset would be able to detect a

similar attack on a di�erent network, although the applications, the topology

and the throughput of the network are di�erent. They are at least as di�erent

as a wired network with web applications compared to the ad hoc network of a

swarm of drones.

This assumption seemed quite reasonable as most of the targeted attacks

(mainly volumetric) imply sending some network transmission "as quickly as

possible". However, this may prevent detecting at least a part of the attacks

that require lower transmission rates (application DoS) or attacks that are in-

tentionally conducted slower than usual (e.g. brute force attack with only one

attempts every second). We thus accepted to not be able to detect any sort of

attack and considered that slowing an attack down su�ciently will annihilate

its e�ect, given the limited duration of a drone mission.
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5.1.1. Content

On the �rst packet of a �ow for which an SDN switch has no �ow entry,

the latter sends a PacketIn to the controller. This is the starting point of the

validation using the proposed model and thus has to be captured in the dataset.

Date and all the details of the received packet are stored and the information of

the �ow is kept in memory. The dataset must contain all the �ows, regardless

of legitimacy, in order not to �lter any PI event.

The controller will accept the �ow and send a FlowMod command in a real

SDN network. Subsequent packets will follow the newly created �ow entry, and

thus will not be sent to the controller. However, the building process uses them

to check whether the �ow entry is kept, considering an idle timer of 20s as with

our test SDN switch.

In the case a second packet from the same stream arrives before the Flow-

Mod is received by the switch, a new PacketIn event will be created for the

controller. However, as the �ow is already recognized, it will pass the packet to

the destination as if it had been captured by the ongoing �ow entry, without

any validation. These events are not simulated in the dataset.

Mobility events are also �ltered by the controller and will not be considered

in the validation process: mobility is supposed to be transparent from a valida-

tion point of view. Mobility events (i.e. topology changes) do not need to be

simulated in the dataset.

Finally, �ows that are requested by the SDN switches for the backward

direction (e.g. opening the second half connection of TCP) are ignored. Indeed,

as the attacker is always the initiator in the kind of attacks that we have selected,

the PI event of the response will probably not bring much information to the

model. Moreover, it is possible for the controller to install reverse �ow entries

beforehand in the case of TCP, to lower the SDN overhead and latency. In such

cases, no PI event would be generated.

The dataset will have to contain the following data to allow monitoring of

the activity in the network, aggregate �ows together to compute useful metrics,
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etc:

• start and end date of the �ow;

• source and destination addresses (MAC, IP, ports);

• all the protocol �elds considered of any value, especially TCP �ags, etc.

5.1.2. Building

We �rst considered the datasets commonly used in this �eld for similar detec-

tion techniques as possible sources for our new dataset. Any dataset with net-

work captures and su�cient information concerning the attack scenarios along

with benign tra�c can be used. However, KDD99 and NSL-KDD do not contain

enough information about the tra�c to rebuild the OpenFlow events.

We �nally selected the Intrusion Detection System dataset 2018 from the

University of New Brunswick in collaboration with the Canadian Institute for

Cybersecurity [27] as it contains the captured packets from all the hosts in the

network in PCAP format with several typical attack scenarios like those that

we selected. These data allowed us to determine the OpenFlow events occurring

at the controller interface and thus to rebuild a separate dataset with the �ow

information:

• start and end of the �ow, assuming 20s idle time;

• IP header �elds: source and destination addresses and protocol;

• TCP, UDP or ICMP headers: ports, �ags, reason, etc.;

• length of the �rst packet.

The dataset was generated on an AWS computing platform simulating a net-

work of �ve subnets (R&D, Management, Technician, secretary and operation,

and IT department) of about hundred hosts each, in addition to a servers subnet.

The IT department machines run under Ubuntu operating system, while all the

others are Windows machines (8.1 and 10 for the end users and 2012 and 2016
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for the servers). Benign behaviors were simulated by a speci�c agent running

on each end user machine, while attacks were started from a separate attacker

subnet of 50 machines with the appropriate software, outside the previously

described subnets. The attacks conducted in the network are listed below:

• in�ltration of the network from inside (portscan);

• HTTP denial of service (DoS and DDoS);

• brute force attacks;

• SQL injection;

• botnet (screenshot and keylogger).

We developed and validated a toolset allowing the creation of a dataset

from a list of PCAP �les and the storage of the result in a database for later

investigation and feature computation.

5.1.3. Validation

We have conducted several validations of the initial dataset, comparing the

description of the dataset with what was observed through the identi�ed �ows.

What were given as the main scenarios for the di�erent capture �les were con-

�rmed. However, a number of deviations and some test cases were excluded

from the list of potential training data.

Through this validation, we gathered the necessary data to build the attack

scenarios that have been used to label the �ows. In particular, although the so

called "in�ltration" scenario where a malicious �le that exploits an application

vulnerability to launch a script is received by email has not been used per se, it

contains several port scanning attacks that were selected in the training dataset.

The list of selected scenarios is provided in Table 2.

Capture �les showed that a third of the �ows come from the DNS application

although DNS is never the target of the attack. Then comes HTTPS with about

a quarter of the �ows, followed by RDP and �nally HTTP. Figure 3 show the
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Figure 3: Number of �ows per application in the dataset

Table 2: Selected scenarios for

training

Date Attack

14/02/18 Brute force

15/02/18 DoS

20/02/18 DDoS

28/02/18 Scan

evolution of the number of �ows per application during the di�erent scenarios.

Except for one clearly identi�able HTTP DoS attack, the other attacks do not

appear obviously separable in terms of number of induced �ows.

5.2. Features

Using the description of the PacketIn events and the �ows as described in

a previous section, we have computed some statistics or measurements that
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could be used as a feature in our model: node degree of the source and of

the destination note in the graph of current �ows, current average number of

�ows per second of the source and of the destination. Nevertheless, none were

kept as �nal feature though. We also considered counting the number of events

corresponding to some errors, especially ICMP port unreachable. However, the

presence of this symptom may depend on the IP stack implementation and on

the transport protocol.

In addition, we also incorporated two measurements which are presented

in the following subsections, for which we extracted several features with the

following process.

We hypothesized that characterizing �ows based on the previous ones created

by the same source or same destination could be a valuable feature for a model

to identify the kind of misbehavior we intend to detect. Thus, for a single

mathematical expression, we computed one feature per group having the same

value(s) for given protocol �eld(s), providing a list of PI and their associated ti

times of arrival.

We extended this to every protocol �eld that could be used to group �ows

together and de�ned di�erent grouping criteria based on the �elds in the protocol

headers of the PI. The �elds used as grouping criteria are:

• source and destination IP addresses;

• IP protocol, which will di�erentiate between UDP and TCP �ows;

• source and destination ports for TCP and UDP ports;

• type and code for ICMP

It has to be noted that the number of criteria has an impact on the required

memory and thus potentially on the performance as the controller will need

more time to reach the previous value for the same group. The higher the

number of criteria, the fewer events per second we should have, and the higher

the required memory to store the ongoing groups: in a network with N nodes,

there will be at most N sources but N(N−1)
2 couples (source IP, destination IP).
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Garbage collector techniques to delete groups that would be too old may be

required here, depending on the number of criteria.

Two speci�c features were computed that represent the activity of the group

and the port span. In the following, the set of ti represents the time of arrivals

of the PI events of the same group, regardless of the criteria used to de�ne this

group. The mathematical de�nitions of these features are described hereafter.

5.2.1. Measuring activity

The aim of this measurement is to give feedback about the activity, as per-

ceived from the controller of an SDN network. As described in a previous section,

the controller does not receive all the packets but only the �rst packet of each

�ow in the form of a PacketIn event. There are cases where it could receive

several packets at the beginning of a �ow, but only the �rst will be sugmitted

for a validation.

PacketIns are discreet events that occur at times ti, while a �ow has a

duration, packet count, byte count etc. Activity should be understood as the

number of created �ows, not the amount of data a node generates. It would

be possible to count the number of �ows a node has (the degree of a node) but

this does not take into account the time or speed of �ow creation. To obtain a

measurement of the speed, we need to count the number of PacketIn events per

time unit. Computing the average number of PacketIns per unit time or in a

time window requires keeping some history which may require a huge amount of

memory if there are many �ows. Another approach would be to use the average

value or the Inter Arrival Time (IAT) of these events, either using a moving

window or with an exponentially weighted moving average (EWMA).

We propose to use another measurement that employs exponentially decreas-

ing properties as for the EWMA, but with the following formula:

Let E = {ti ∈ R} be the set of times where the selected PacketIns occurred.

The selection criteria may be any criteria. In our application, this consists of a

set of characteristics that bind the �ows that generated these PacketIn events

together (e.g. same source node). At time t, let F = {ti ∈ E : ti ≤ t} be the
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Figure 4: Activity vs. IAT average and EWMA

set of previous events and n = |F | the number of events in F. A can then be

written:

A(t) =

n∑
i=1

αt−ti (3)

with α ∈ R and 0 < α < 1.

However, we will examine the activity value only on PacketIn event arrival

time (i.e. at each ti). At time tn, (3) can be written:

A(tn) = 1 +

n−1∑
i=1

αtn−ti = 1 + αtn−tn−1

n−1∑
i=1

αtn−1−ti

And then:

Sn = A(tn) = 1 + αtn−tn−1A(tn−1) = 1 + αδtnSn−1 (4)

where δtn = tn − tn−1.

The advantage of this activity de�nition, compared to a moving average of

the inter arrival time (or its multiplicative inverse), is that (4) directly uses the

time in the exponent part. As a comparison, exponentially weighted moving
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average of the form Sn = αδt + (1 − α)Sn−1 does not "forget" about the past

based on t.

Figure 4 shows the variation of the di�erent activity measurements proposed

so far. The scenario is as follows: the PI arrives each tenth of a second starting

at t = 0 and for two seconds, then every hundredth of a second for one second,

and �nally back to every tenth of a second for two seconds. It should be noted

that the x axis is not linear in order to ease the variation comparison.

The dotted line shows the actual number of PI events during a one second

sliding window. This curve represents the most accurate value of the activity

but does not have any form of memory. The average IAT reacts very quickly

as soon as the frequency of events varies. The EWMA with α = 0.1 is closer

to the window value but also moves very quickly and presents an unexpected

peak at the beginning. This artifact is due to the α value and could be reduced

with higher values. In this case, however, the EWMA curve will get closer to

the average curve rather than that of the windowed.

On the contrary, the proposed activity measurement, though slower in catch-

ing the maximum value, exhibits interesting properties both in terms of sim-

ilarity with the shape of the window curve and of smoothness, which can be

considered as a memory e�ect of the previous values.

Moreover, if δt is high enough, (4) will neglect the Sn−1 term while a moving

average will not, as 1− α does not depend on δt.

Concerning the determination of the α parameter, instead of the well known

half life duration method used for exponentially declining functions, we preferred

a more practical approach. Our method consisted in estimating the number of

events in the last N seconds (counting the number of events in a �xed size

sliding time window). As this method will require keeping the history or at

least a part of it and will require too much memory, we will compute the value

of the parameter α for which (3) provides the same value as this time windowed

method, in a steady inter arrival time situation.

For a given constant �ow of PacketIn events at frequency f , we have Sn =

Sn−1 and thus Sn = 1 + α
1
f Sn. We would also like to have α such that Sn ≈
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Algorithm 1 onEvent(pi)

1: inc← pi.length/B

2: t← pi.time

3: for all feat ∈ activity_features do

4: if ∃groups[feat][pi.get(feat.criteria]) then

5: group← groups[feat][pi.get(feat.criteria)]

6: else

7: group← new group() {Initializes sn to 0}

8: groups[feat][pi.get(feat.criteria)]← group

9: end if

10: group.sn ← inc+ feat.αt−group.last ∗ group.sn
11: group.last← t

12: feat.result← group.sn

13: end for

Table 3: Alpha value for di�erent parameter values

Delta T 2Hz 10Hz 100Hz 1000Hz

1s 0.25 0.348678 0.366032 0.367695

10s 0.9025 0.904382 0.904792 0.904833

100s 0.990025 0.990045 0.990049 0.990050

∆T × f . Resolving these equations gives:

Sn =
1

1− α
1
f

(5)

α(f,∆T ) =

(
1− 1

f ×∆T

)f
(6)

As α is not constant for any frequency f , we will select one value for a

reasonable value of f . See Table 3 for di�erent values of the parameter α.

Empirical analysis of the error shows that the error is relatively small: the
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Table 4: Maximum activity at di�erent transmission

lengths and throughput, with α = 0.75

L=226 L=1334

B (bps) Eq. 4 Eq. 7 Eq. 4 Eq. 7

104 1.97x101 3.57 3.78x100 4.04

105 1.92x102 3.48 3.30x101 3.53

106 1.92x103 3.48 3.26x102 3.48

107 1.92x104 3.48 3.25x103 3.48

108 1.92x105 3.48 3.25x104 3.48

error for α(1000Hz, 10s) is higher for lower frequencies and about 5% for f =

1Hz (Mn(tn) = 10.5 instead of 10) and less than 1% ∀f > 4Hz.

The de�nition of the activity as described by (3) is an absolute value whose

maximum is not generic as it depends on two factors: the speed and the length

of a transmission. Actually, the maximum activity of a node and hence the

measurement we provided an algorithm for, is limited by the maximum number

of PacketIns that a node could possibly generate, which is directly bound to the

speed of the transmission and the length of the data sent in the �rst packet of

the �ow and contained in the PacketIn event.

If B is the network throughput and L is the length of each packet, then the

maximum frequency f at which the PacketIn events arrive is: f = B
L .

Hence, according to (5), with the same throughput but di�erent length of

packets, the maximum activity will lead to di�erent values of Sn. Similarly, for

the same length of packet, if we modify the physical throughput, Sn is modi�ed.

As we intend to train our model on a dataset captured on one network and

use it on another with a throughput that may be slower by several orders of

magnitude, we have to take care that the features are not too dependent on

the physical characteristics of these networks. We expected the model to detect
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high speed activity that needs to be relative to the maximum capacity. As

a consequence, the model should be fed with a measurement of the activity

relative to the maximum activity rather than with absolute values.

Computing the maximum value obtained depending on the length of the

packet and the throughput of the network shows that the ratio is proportional

to the throughput and inversely proportional to the length. For the ranges of

values of L and B that correspond to our scenario, multiplying Sn by K = L
B

results in a maximum value that is almost constant whatever L and B. However,

a variation depending on L remains that may become signi�cant for low values

of B and α. See Table 4.

Then (4) transforms into:

Sn =
Li
B

+ αδtSn−1 (7)

Algorithm 1 shows how to compute and update Sn for each PacketIn event.

5.2.2. Transport level port span

This feature represents the measurement of the di�erence between the mini-

mum and the maximum port number used at the transport protocol level. The

intent is to capture a misbehavior where a node starts to scan or only creates

many connections in a short period of time, like in a brute force attack. Indeed,

depending on the attack and on the IP stack software, either the source or the

destination or both port numbers will increase for a short period of time during

these attacks: it is the aim when one tries to scan all the open ports, it is a

consequence of opening several of connections in the case of a brute force attack.

One could compute this by taking the currently opened �ows and extract

the minimum and the maximum values. However, this algorithm would fail to

measure the behavior as the deletion of a �ow depends on external parameters:

idle timer, whether a �ow is closed on TCP FIN or not, whether the �ow is

actually accepted by the controller, etc. This is why we preferred to use a

di�erent de�nition of the port span.

We will compute maximum and minimum values as being the maximum
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(resp. minimum) between the transport port received in the PacketIn and a

decreasing (resp. increasing) function depending on the time and the port value

in the previous PI.

This function will memorize and arti�cially maintain the maximum value for

some time ∆T and then linearly drop the maximum down to 0 (and conversely,

increase the minimum to an absolute maximum value). We used the same

function for both the minimum and maximum, except that the slope of the

linear part is negative for the maximum and positive for the minimum. This

requires storing the times of the maximum or the minimum last update.

Let δtm = t − Tm and δtM = t − TM be respectively the time di�erence

between the current time and the last time minimum has been reduced (resp.

maximum has been increased). Let the function g be de�ned, for given p, k

(k > 0 for the minimum and k < 0 for the maximum) and ∆T , as:

g(p, k,∆T, δt) =

p ∀0 ≤ δt ≤ ∆T

p+ k (δt−∆T ) ∀δt > ∆T

S(t) = min(0, g(M,−k,∆T, δtM )− g(m, k,∆T, δtm)

5.3. Machine Learning algorithm and training set

As explained, the detection of malicious behaviors will be performed on the

controller side when receiving a PacketIn, just before the controller accepts a

�ow by issuing a FlowMod request to install the �ow entries on the drones.

We made the assumption that the controller is located in the ground station,

which will have more processing power than a UAV platform. However, we do

not want to exclude the possibility of having the controller located somewhere

else. Moreover, the machine learning algorithm should not impose additional

requirements on the processing unit of the ground station and stay responsive

even on a slow PC.

The list of candidate features include both numeric values (e.g. the activity

as de�ned in the previous section) and symbolic ones (e.g. IP protocol, �ags),

and the chosen algorithm should handle both types of features. In addition,
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Algorithm 2 onTransportPIEvent(pi)

1: t← pi.time

2: for all feat ∈ pspan_features do

3: feat.result← 0

4: port← feat.select_port(pi) {source or destination}

5: if ∃groups[feat][pi.get(feat.criteria]) then

6: group← groups[feat][pi.get(feat.criteria)]

7: min← g(pi.min, feat.k, feat.∆T, t− pi.tmin)

8: max← g(pi.max,−feat.k, feat.∆T, t− pi.tmax)

9: if port ≤ min then

10: group.min← port

11: group.tmin← t

12: min← port

13: end if

14: if port ≥ max then

15: group.max← port

16: group.tmax← t

17: max← port

18: end if

19: if max > min then

20: feat.result← max−min

21: end if

22: else

23: group← new group(pi.port, t)

24: groups[feat][pi.get(feat.criteria)]← group

25: end if

26: end for
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Table 5: Class balance in training datasets

Dataset Benign Brute Force DoS DDoS NMAP

Binary 50% 12.5% 12.5% 12.5% 12.5%

Multiclass 20% 20% 20% 20% 20%

as feedback is provided to the operator of the swarm, the machine learning

algorithm should construct a model that allows interpretation.

For these reasons, Neural Networks have been set aside. We �nally chose

the Random Forest Classi�er algorithm for its simplicity of usage as it does not

require the features to be normalized prior to training.

Given the amount of data extracted from the UNB IDS dataset (several

hundreds of thousand PI), we draw the learning curves to determine the maxi-

mum number of samples of the training set to avoid over�t. A quantity ranging

from 1000 to 10000 samples seems to be enough for the model to converge while

avoiding the risk of a high over�t.

As we had di�erent attacks in the dataset, we generated both a dataset for a

binary classi�er (benign or attack) and another for a multiclass classi�er (benign

and each attack) for comparison purposes.

In addition, we created balanced and unbalanced datasets. The balance of

the dataset is constructed by selecting the same number of samples per class,

for benign and each of the attacks concerning the multiclass classi�er. However,

in the case of a two class classi�er, we have the same number of benign and

attack samples, the latter containing the same number of samples for each type

of attack. Ratios are given in Table 5.

Building the model was then achieved by randomly selecting 10000 samples

in the balanced dataset, of which 20 per cent were kept for testing purposes.

Some testing on several datasets with di�erent ratios between the classes

con�rmed that the model was sensitive to the balance of the dataset, showing

more false negative (and conversely fewer false positive classi�cations) when the
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number of benign samples was increased.

As in most security detection model, a good model should have a low false

positive ratio. That is why we will not focus the evaluation only on precision,

but speci�cally on recall and F1 score. Moreover, while the precision, recall

or F1 scores are the usual performance criteria proposed for machine learning

models, the usability of the model is determined by its rapidity of detection.

6. Results

Using the above described dataset and applying the selected machine learn-

ing algorithm, we build and evaluate two classi�er models with the most im-

portant features: one for binary and one for multiclass classi�cation, the latter

being able to distinguish between the di�erent types of attack.

6.1. Selected features

The covariance matrix of the features shows high scores for similar groups

(i.e. having several common grouping criteria). As an example, activity grouped

by IP address couple is very similar to the activity grouped by IP address couple

and protocol. Recursive Feature Elimination, which starts with all the features

and removes the less signi�cant recursively, proved to be ine�cient and prone

to errors. Indeed, the model replaces the removed features by similar ones when

they existed, usually leading to an insigni�cant score di�erence.

We decided to start with only one feature, selecting the one that would

have the best F1 score, using the cross validation dataset. For each feature not

yet selected, we trained the model with the new feature and noted the score

di�erence with the model without the new feature. We selected the feature that

achieved the best improvement in the classi�cation as described in [28].

There was however one exception to this method. In fact, providing IP

protocol or TCP �ags as features gives the model a way to determine whether

the tra�c is TCP or not. Scans using TCP or UDP should be very similar

though we had only TCP scans in the dataset. The score increase of these

37



features that are based on TCP speci�c features (TCP �ags) is thus biased.

Instead of crafting UDP scans from the TCP ones into the dataset, we put

aside those features that may have led the model to be transport layer aware.

It is to be noted however that the transport port span feature is directly

bound to the underlying transport protocol and that the model may not be

able to generalize on some ICMP based attack scenarios.

With the method described above, we selected the four following features:

• the activity of the destination node application;

• the activity of a pair of nodes, per transport protocol;

• the source port span grouped by destination address and protocol;

• the same for the destination port.

Table 6 lists the parameters of the Random Forest Classi�er algorithm used

to train our model, as returned by get_params in SciKitLearn v0.22.2.post1.

6.2. Test scenarios

The evaluation of the model was made using data from the initial dataset

that contains internet like tra�c of a wired network. However, as we intend to

use the model on drones, a validation using a dataset with more realistic tra�c

is needed. This is the reason for building separate datasets for testing: a normal

scenario, based on 4 drones and a ground station, with command and control,

telemetry for each drone and camera �ows for three of them. In addition, they

exchange data with each other representing the mission data. Mission data are

simulated using iperf, web and ping exchanges. Table 7 summarizes the di�erent

scenarios.

Starting from this normal scenario, we started di�erent attacks from one

drone to another, using di�erent techniques and di�erent parameters: brute

force, port scan, DoS using SYN �ood, OS �ngerprint or network explore. Some

scenarios use the same attack but with di�erent speeds or a di�erent transport

protocol. Table 7 summarizes the attack scenarios.
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Table 6: SciKitLearn Random Forest Classi-

�er parameters

Parameter Value

n_estimators 100

min_weight_fraction_leaf 0.0

class_weight None

min_samples_leaf 1

max_leaf_nodes None

random_state None

max_depth None

bootstrap True

max_samples None

ccp_alpha 0.0

min_samples_split 2

max_features 'auto'

criterion 'gini'

warm_start False

min_impurity_decrease 0.0

We then extracted the data as we made it on the data from the UNB IDS

captures, labeled the sample according to the scenario and compared the pre-

dictions of our model with the labels.

6.3. Attack detection

Table 8 shows the scores of the model when applied to our validation test

scenarios. The most important scores are benign recall (the higher the better) as
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Table 7: Test scenarios with parameters

Scenario Attack Parameters

no_attack None iperf + web + ping

patator Brute force default

scan_normal NMAP normal speed

scan_polite NMAP polite speed

scan_sneaky NMAP sneaky speed

syn�ood DoS

OS �ngerprint NMAP

UDPscan NMAP normal speed

explore NMAP polite speed

they show the ratio of false positive and attack precision. In each scenario where

the model detected an attack, the model identi�ed only one (attacker, victim)

pair and correctly identi�ed each of them. Finally, the last column shows how

much time it takes for the model to identify the attack.

Although the performance of the multiclass classi�er shown in Table 9 is

close to that of the binary one, it usually failed in providing useful additional

information. Indeed, if it identi�es the fact that an attack is underway, it

sometimes fails in determining accurately the type of attack the network is

undergoing. As a consequence, no speci�c countermeasure can be applied. This

may not be surprising as the model uses the same number of features as in the

binary class but needs to separate more classes. In addition, brute force and

SYN �ood imply the same type of behaviour: one attacker continuously opening

new �ows to one victim on the same port.

The binary classi�er with only two classes (benign or attack), achieves good

performances in general: recall of benign tra�c is close to 1.0 and misclassi�-
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Table 8: Binary RFC model scores with detection speed

Benign Attack

Scenario Acc prec. recall prec. recall ∆t

no_attack 1.0 1.00 1.00 - - N/A

�nger 0.88 0.70 1.00 1.00 0.84 <1ms

polite scan 0.94 0.81 1.00 1.00 0.92 1ms

syn�ood 0.99 0.88 1.00 1.00 1.00 10ms

normal scan 0.90 0.74 1.00 1.00 0.87 14ms

patator 0.84 0.51 0.96 0.99 0.83 27ms

UDP scan 0.98 0.97 1.00 1.00 0.98 1.2s

sneaky scan 0.84 0.84 1.00 0.00 0.00 -

explore 0.18 0.18 1.00 0.00 0.00 -

cations are linked to the fact that benign tra�c took place during the attack.

The model seems to classify the nodes as either benign or o�ender, rather than

classifying the �ows themselves. This is compliant with the countermeasures

we discussed previously: an infected node should not be trusted and must be

taken out of the mission. It is important to note that the technique consists in

denying any new �ow, but that already established tra�c may still be allowed,

in the hope of sending a return to base command and obtain telemetry data.

There are three principal exceptions to the good performances of our model.

UDP scan is detected but its detection takes more time. When the victim's

ports are slowly scanned, the model fails to identify the attack. However, slowing

down the scan will leave less time to explore and detect open ports. The explore

scenario is an attempt to ping di�erent addresses in the network to �nd other

victims. This attack is not present in the dataset.

As the training dataset and the veri�cation dataset are based on di�erent
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Table 9: Multiclass RFC model scores with detection speed

Benign Attack

Scenario Acc prec. recall prec. recall ∆t

no_attack 1.0 1.0 1.0 - - N/A

�nger 0.78 0.55 1.0 1.0 0.70 2ms

polite scan 0.95 0.82 1.0 1.0 0.93 3s

syn�ood 0.84 0.93 1.0 1.0 0.84 23ms1

normal scan 0.8 0.58 1.0 1.0 0.72 <1ms

patator 0.15 0.68 0.96 0.0 0.0 <1ms 2

UDP scan 0.99 0.98 1.0 1.0 0.99 <1ms

sneaky scan 0.84 0.84 1.0 0.0 0.0 -

explore 0.18 0.18 1.0 0.0 0.0 -

1 This value corresponds to the time between the start of the

attack and the �rst correct classi�cation. The model did

detect an attack after 19ms but misclassi�ed the type of

attack.

2 The model did detect an abnormal behavior but misclassi-

�ed the attack.

network topologies, it tends to exclude obvious data leakage that would explain

the good performances of the model.

In terms of performance, the mean execution time for a single prediction

varies between 4 and 45 micro seconds on a Intel(R) Core(TM) i7-4710MQ

CPU @ 2.50GHz using SciKitLearn v0.22.2.post1.
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7. Conclusion and future work

In this article, we showed how the SDN based mobile network architecture

presented in a previous article can be used and complemented to secure the

network of a swarm of collaborating drones. First, the network design provides

the capability to di�erentiate between outside and inside tra�c. The SDN

�ow entries can thus be designed in such a way that transmissions from the

outside will be ignored by the nodes in the majority of cases (i.e. except for

tra�c injection with address spoo�ng). We then demonstrated two techniques

to protect the network from outsider attacks using tra�c injection and common

insider attacks.

Outsider attack detection is based on counter comparison with dedicated

�ow entry to count packets at the edge of the network. The counter measure

demonstrated in this article is based on TCP header modi�cation and proves

to be e�cient, as long as the attacker is not able to adapt to the new condi-

tions. It is however dependent on the monitoring frequency, which has to be

balanced with the increased amount of monitoring data transmissions. This

counter measure can be extended to apply long term network obfuscation, by

regularly changing TCP header �elds (like TCP ports).

Insider attack detection is based on a signature based detection that di�ers

from other proposals by using only OpenFlow events as input for abnormal be-

havior identi�cation. We built a dataset starting from an existing set of network

tra�c capture �les. We proposed two functions along with an event selection

process for computing the features of the new dataset. Recursive feature addi-

tion was applied and four features were selected. Supervised machine learning

is then applied, using a Random Forest Classi�er model. We showed that the

detection has a good F1 score (high recall while precision may be lower) with

a small detection delay. The hackers may still throttle the attack to remain

undetected, but will then most probably not achieve their goal (e.g. DoS, port

scan, password detection), especially as the mission is supposed to last for a

limited period.
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We intend to implement these techniques on our controller along with some

counter measures to test the e�ciency of the solution. We then plan to apply

the whole system to a real drone.

It would also be worthwhile checking di�erent values of the parameters, and

comparing di�erent machine learning algorithms, in terms of accuracy and F1

score and in terms of CPU usage and detection time. The in�uence of the size

of the network could also be evaluated, both in terms of controller CPU usage

and its e�ect on the detection performances.

Other forms of attacks could also be tested to evaluate whether the model is

able to generalize. If the model is unable to generalize, the training set will have

to be extended with corresponding samples in order to evaluate if the model is

able to correctly classify new attacks.

Finally, unsupervised learning could be evaluated with the same features, as

soon as a representative dataset for swarm of drones mission becomes available.
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