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Abstract: In this paper, we propose a new piecewise polynomial model (PwPM) for the
modelling of an Unmanned Aircraft System (UAS) aerodynamic coefficients over a wide flight
envelope, where they are characterized by nonlinear and hysteresis phenomena. An associated
identification method using Constrained Least Squares (CLS) is then presented and successfully
applied to experimental data obtained from wind tunnel measurements. The resulting fitting
is finally compared with the similar piecewise models PWPFIT and AERODAS, showing a
greater precision in its modelling, while maintaining their relative simplicity and computation
performance.
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1. INTRODUCTION

Accurate Unmanned Aircraft System (UAS) dynamics
modelling is rarely straightforward and requires extensive
experiments to ensure a sufficient representation of every
aspect of the operational envelope of the aircraft. (Hoffer
et al., 2014; Uhlig and Selig, 2017; Cunis et al., 2019)

Based on an identification phase using wind tunnel cam-
paigns, Computational Fluid Dynamics (CFD) calcula-
tions or flight tests, a parametric model needs to be
elaborated which is as representative as possible of the
physical reality. This task is extremely challenging due to
nonlinear and unsteady aerodynamic phenomena beyond
the nominal flight envelope, as is the case during an upset
situation (Saderla et al., 2018). For instance, at the stall
angle of attack the flow around the wings detaches and
goes from laminar to turbulent. This phenomenon creates
a disparity between aerodynamic forces when flying in the
so-called pre-stall (below the stall angle of attack) and
post-stall (above this same angle of attack) domains. In
addition, a stalled aircraft can still reach angles of attack
below the previous value without re-attaching the air flow
and only do so later at a new and lower angle of attack.
This second nonlinear phenomenon is called aerodynamic
hysteresis, and is of practical importance since it affects
the behaviour of the aircraft and its possible recovery from
stall and/or spin flight conditions.

Furthermore, with the ongoing certification and integra-
tion into civil airspace of UASs found in EU regulations
(EU, May 2019), there is a clear need for reliable full-
envelope models of UAS flight dynamics, and in particular
during upset situations. Such models can be used for

the certification of an aircraft or a control law as well
as for safety and automation operations, including flight-
envelope protection and restoration (Ancel et al., 2017;
Bertrand et al., 2017). Having a robust upset recovery
controller leveraging accurate predictions of the vehicle
dynamics can indeed provide an increased safety for a
drone in critical situations where it experiences an in-flight
anomaly, as well as for other users of the airspace, ground
infrastructures and people.

Modelling the aerodynamic behaviour of an aircraft can be
done in several ways. For instance, one can solve numeri-
cally the Navier-Stokes equations as in Keller et al. (2019),
use semi-empirical models as in Leishman and Beddoes
(1989) or the AERODAS model (Spera, 2008), or use fully
data-driven models such as locally weighted projection
regression (Farcy et al., 2020) or splines (Morelli et al.,
2013). However, while splines present today a powerful yet
complex tool for accurate and smooth interpolation (Tol
et al., 2016), they are unsuitable for functional analysis
of trim conditions and stable sets, as in Kwatny et al.
(2013). Moreover, high-fidelity models often require hard
to obtain data, such as the flow separation point, which is
usually not available. More recently, research works (Cunis
et al., 2019) have been conducted on piecewise polynomial
models in order to provide a constructive method fit for
system analysis due to their continuous and differentiable
nature. However, those results do not represent completely
a real-life upset situation, due to the authors’ choice to
focus on deep stall control and as such to consider neither
the hysteresis phenomenon nor a higher count of pieces.

Motivated by all these reasons, this paper focuses on a
new formulation for a piecewise polynomial model and



its identification in order to improve the accuracy of
aerodynamic forces modelling for UASs, and in particular
around the aerodynamic hysteresis. The contributions
include: (i) the definition in Section 2 of a new Piecewise
Polynomial Model (PwPM) for the lift coefficient ; (ii) the
presentation of the identification problem, where the Least
Square (LS) cost metric is introduced Section 3 ; (iii) a
quick and efficient algebraic solution to this problem using
Lagrange multipliers in Section 4, followed by a proposal
for hyper-parameters optimisation. Finally, experimental
results based on wind tunnel data are presented Section 5,
with a comparison of PwPM’s performance to that of the
PWPFIT and AERODAS methods.

2. PIECEWISE POLYNOMIAL MODEL (PWPM)

As previously stated, this study was motivated by the
desire to model the aerodynamic coefficients of a UAS
during stall. Since stall behaviour is mainly represented
by the lift coefficient, it is this particular example that
will be presented here. Based on a priori knowledge in
Leishman and Beddoes (1989) and the experimental data
presented Section 5, the model should respect the five
following items:

(1) There should be two established domains respectively
representing the pre-stall and post-stall dynamics.

(2) Those domains are to be linked by two transitions for
going back and forth between them.

(3) No polynomial depends directly on the pitch rate α̇,
although it can still be used to determine in which
domain the drone is flying.

(4) The model is to be continuous and continuously
differentiable on the whole of its domain.

(5) Each polynomial should be of the lowest degree possi-
ble to avoid over-fitting and maintain simplicity and
computation performance.

As such, the following four-pieced polynomial model is
proposed, where each polynomial is cubic in α and does
not depend on α̇, as presented Fig. 1:

• A first polynomial, defining the pre-stall dynamics.
• A second polynomial, making the transition from the
pre-stall domain at the stall angle of attack α0 to the
post-stall domain at α1.
• A third polynomial, modelling the stalled dynamics.
• A final (fourth) polynomial, linking back from the
post-stall to the pre-stall dynamics between the sep-
aration angles of attack α2 and α3.

In addition, in order to accommodate requirement 4 of
the previous list, each two neighbouring polynomials (1
and 2 ; 1 and 4 ; 3 and 2 ; 3 and 4) are to respect same-
value and tangency constraints at their separation. This
proposed model leaves us with 16 polynomial coefficients
to be identified under a set of 8 constraints.

3. MODEL IDENTIFICATION

Identifying the model is akin to the fitting problem below.

3.1 Problem description

Let there be a set of n measurements composed of q
abscissae values x1,x2, · · · ,xq ∈ Rn and a single ordinate
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Fig. 1. The proposed model for the lift coefficient

value z ∈ Rn defining a function f : R× R× · · · × R→ R
to be identified.

∀j ∈ J1, nK, zj = f
(
x1j ,x2j , · · · ,xqj

)
(1)

Let there be a model, defined beforehand as in Section 2,
defining p polynomials, their respective degree with each
of the abscissa parameters dij (where this notation denotes
the degree of the ith polynomial with respect to the jth
parameter) and their associated domains in the abscissa
space Pi ⊂ Rq. Those domains should form a partition of
the abscissa space such that they are disjoint two by two
and cover it completely.{

Pi ∩ Pj = ∅ ∀ i, j ∈ J1, pK, i 6= j⋃p
i=1 Pi = Rq

(2)

In order to better represent the underlying data, the
model also defines a set of m constraint functions cj
depending linearly in the polynomial coefficients to be
respected by the fitted polynomials. Those constraints will
be considered respected if they reach a desired value dj .

"The jth constraint is respected"⇔ cj(·) = dj (3)
This linearity condition was chosen to simplify the alge-
braic solution below. It can seem reducing but it allows for
the definition of most common constraints, including all
derivatives continuity (including regular continuity) and
specific value at a given abscissa.

Let there finally be a cost function J ∈ R to be minimised,
quantifying the quality of the fitting. In this paper, a
weighted Least Square (LS) formulation will be used such
that J can be written

J =

n∑
j=1

1

2
γj

[
zj − F(x1j ,x2j , · · · ,xqj)

]2
(4)

where F : R × R × · · · × R −→ R is the fitted model
prediction and the coefficients γj 6= 0 are non-zero weight-
ing coefficients on each measurement. It is noted that this
choice of a cost function could reduce the quality of the
model in the case where the abscissae (angles of attack) are
too noisy. The difference in precision with other forms such
as the Total Least Squares (TLS) is however only marginal,
making this simpler LS formulation more attractive.



3.2 Matrical formulation

Based on the piecewise polynomial shape of the model
F, one can introduce a simplified expression for each of
the polynomials through a vector of monomial products
and that of the polynomial coefficients. The vector of
monomial products for the ith polynomial, µi : R × R ×
· · · × R −→ Rδi , returns all the possible combinations
of monomials products according to the maximal degrees
defined by the model,

µi(x1, x2, · · · , xq) =

x
di1
1 × x

di2
2 × · · · × x

diq−1

q−1 × x
diq
q

x
di1
1 × x

di2
2 × · · · × x

diq−1

q−1 × x
diq−1
q

...

x
di1
1 × x

di2
2 × · · · × x

diq−1

q−1 × x0q
x
di1
1 × x

di2
2 × · · · × x

diq−1−1

q−1 × xd
i
q
q

...
x01 × x02 × · · · × x0q−1 × x0q


(5)

where δi =
∏q
j=1

(
dij + 1

)
is the dimension of this vector.

It is noted here that the order in which the monomial
products appear is arbitrary and does not matter as long as
it remains the same throughout the problem. In addition,
it is not required that all monomial products are used as
long as the coefficients vector is amended in the same way.

By noting θi ∈ Rδi the vector of coefficients for that same
polynomial, one can then write

∀(x1, x2, · · · , xq) ∈ Pi,
F(x1, x2, · · · , xq) = 〈 µi(x1, x2, · · · , xq) , θi 〉

= µi(x1, x2, · · · , xq)ᵀθi
(6)

where the notation 〈 · , · 〉 denotes the inner product (here
in the Rδi space).

Using this simplified notation, one can then rewrite the
cost function

J =

p∑
i=1

Ji,

Ji =

ni∑
j=1

1

2
γij

[
zij − µi(x1,ij ,x2,ij , · · · ,xq,ij)

ᵀθi

]2 (7)

where Ji is the contribution of the ith polynomial to the to-
tal cost, the vectors zi,x1,i, · · · ,xq,i ∈ Rni are the restric-
tion of their respective vectors to only the measurements
whose abscissae lie in the domain Pi, the vector γi ∈ Rni

is the vector of weights for the measurements in this same
domain and ni is the number of those measurements. This
can be further simplified using the matrical formulation

Ji =
1

2
(zi −Φiθi)

ᵀ
Γi (zi −Φiθi) (8)

where Γi = diag(γi) ∈ Rni×ni is the weight matrix and
Φi ∈ Rni×δi is the matrix of monomial products for the
ith polynomial:

Φi =


µi(x1,i1, · · · ,xq,i1)ᵀ

µi(x1,i2, · · · ,xq,i2)ᵀ

...
µi(x1,ini

, · · · ,xq,ini
)ᵀ

 (9)

Finally, one can express the cost function in pure matrical
formulation

J =
1

2
(z −Φθ)

ᵀ
Γ (z −Φθ) (10)

with Φ ∈ Rn×δ the matrix of monomial products for all
measurements, θ ∈ Rδ the total vector of polynomial
coefficients and Γ ∈ Rn×n the total weight matrix. The
total polynomial coefficients vector has dimension δ =∑p
i=1 δi.

Φ = diag(Φ1,Φ2, · · · ,Φp) (11a)
θ = [θ1

ᵀ θ2
ᵀ · · · θpᵀ]

ᵀ (11b)
Γ = diag(Γ1,Γ2, · · · ,Γp) (11c)

It can be noted that the row-wise order in which the mea-
surements appear does not matter and there is therefore
no need to sort the data prior to the fitting.

Moreover, based on the linearity with respect to θ of the
constraint functions, one can write that
∀j ∈ J1,mK, ∃ cj ∈ Rδ | cj(·) = 〈 cj , θ 〉 = cj

ᵀθ (12)
such that all the constraints can too be rewritten under
the matrical formulation

"All the constraints are respected"⇔ Cθ = d (13)
where C ∈ Rm×δ is a matrix deriving from those con-
straint vectors and d = [d1 d2 · · · dj ]ᵀ ∈ Rm is the vector
of the constraints desired values.

C = [c1 c2 · · · cm]
ᵀ (14)

The problem at hand can then be entirely expressed under
the simplified matrical form of the Constrained Least
Squares (CLS) problem:
Problem 1. (Constrained Least Squares).

Find θ∗ = arg min
θ

1

2
(z −Φθ)

ᵀ
Γ (z −Φθ)

s.t. Cθ = d

where θ∗ is the constrained solution.

4. PROBLEM SOLUTION

4.1 Common solving methods

Several work have already been conducted on the CLS
problem. Three methods in particular come to mind:

A first solution makes use of the simplification:

θ∗ = arg min
θ

1

2
(z −Φθ)

ᵀ
Γ (z −Φθ) + ‖d−Cθ‖22 (15)

This however suffers from a trade-off between a low value
for the cost J and respecting the constraints. Depending
on the data at hand, the obtained results can be unusable
because the constraints are not respected.

To balance this issue, a weight constant ω ∈ R+ has
been proposed to put more weight on the constraint while
retaining the simplicity of the previous formulation under
the new form

θ∗ = arg min
θ

1

2
(z −Φθ)

ᵀ
Γ (z −Φθ) + ω ‖d−Cθ‖22

(16)
such that when ω approaches +∞, the constraint is
perfectly respected (Golub and Van Loan, 2013).



Finally, the most common solution is to make use of itera-
tive algorithms such as quadratic programming, as is used
by MATLAB’s “lsqlin” method (Coleman and Li, 1996).
This method is more general, as it also authorizes inequal-
ity constraints, but it can have quite a long execution time
and require high computation power and memory space.

4.2 Algebraic solution

An exact solution to Problem 1 can be found using
the Lagrange multiplier method under the assumption
that ∆ = ΦᵀΓΦ ∈ Rδ×δ is invertible and so is
C∆−1Cᵀ ∈ Rm×m. It arises from the KKT matrix
equality [

∆ Cᵀ

C 0

] [
θ∗

λ∗

]
=

[
ΦᵀΓz
d

]
(17)

where the solution for θ∗ is then given by the 2× 2 block
matrix inversion formula:

θ∗ = θ◦ + P (d−Cθ◦) (18)
where θ◦ = ∆−1ΦᵀΓz ∈ Rδ is the unconstrained solution
and P = ∆−1Cᵀ(C∆−1Cᵀ)−1 ∈ Rδ×m is a correction
matrix. Several properties can be shown from this solution:
1) in the case where the unconstrained solution respects
the constraints, the constrained solution is also the uncon-
strained one (Cθ◦ = d =⇒ θ∗ = θ◦), and 2) in any case
the above result respects the constraints (by noting that
CP = Im).

It can also be noted that by construction the non-
singularity conditions on ∆ and C∆−1Cᵀ can be sim-
plified using the fact that Γ is diagonal with non-zero
coefficients to the form

"A solution exists"⇔
{

Φ has full column rank
C has full row rank

(19)

from which an additional condition can be derived: there
must be at least as many coefficients than there are
constraints (m ≤ δ). It might be worth noting that in
the case m = δ, the solution becomes θ∗ = C−1d which
is the only value respecting the constraint.

4.3 Hyper-parameters optimisation

Although the solution from (18) always yields the optimal
solution to the CLS problem, it requires the knowledge
of both matrices Φ and C to compute. In the case
where either the distribution of measurements in the
various domains Pi or the constraints cj depend on a
set of additional parameters s ∈ Rr another optimisation
process must be devised.

Due to the impracticality of conducting a grid search over
a high-dimensional grid, the solution we retained for this
is the use of an iterative optimisation algorithm over the
optimal cost

J∗(s) = J(θ∗)
∣∣
s

(20)
where s is treated as a vector of hyper-parameters. This
solution has the advantage of reducing the complexity of
the iterative algorithm by only considering the r hyper-
parameters for optimisation, ensuring higher chances of
convergence and speed.

Several optimisation algorithm can be used but it was
chosen in our case to use the first order adaptive gradient

Fig. 2. The experimental setup used to gather data.

descent (AdaGrad) method (Duchi et al., 2011). This
choice was motivated by the desire to improve on the
basic gradient descent for stability and convergence speed
while keeping a reduced complexity relative to Newton
derivatives. Computing the Hessian is indeed a lengthy
process and yielded no significant improvements in our
tests on the problem at hand.

It should be noted however that any gradient-based
method relies on the continuity of J∗. This is trivially guar-
anteed while no measurement changes domain due to their
variation, assuming that conditions (19) are respected, but
it should otherwise be ensured for each two neighbouring
domains. In the case of the lift model defined Section 2,
the hyper-parameters are the four separation angles of
attack αi, i ∈ J0, 3K described in Fig. 1. Continuity of
the optimal cost function is ensured by the continuity
constraints between each two neighbouring domains and
the fact that the weights are kept constant throughout the
study.

5. APPLICATION TO EXPERIMENTAL DATA

Following from the previously-defined model for the lift
coefficient and identification process, the polynomial iden-
tification method will be applied to experimental data.

5.1 Experimental setup

Experimental data has been obtained as shown Fig. 2 from
eight open wind tunnel experiments on a single aileron-less
straight wing with NACA profile 0012, chord 0.15m and
span 0.5m, placed perpendicular to the wind flow as to
get no side slip. The flow straightening grid hides a set
of 162 independent fans placed in a 9-by-18 configuration
that were tasked with generating a constant and uniform
wind velocity for the duration of each experiment, while
the angle of attack of the wing was progressively increased
from 0◦ to 35◦ at a speed of approximately 10◦/s and
back to 0◦ at 12◦/s. Two wind velocities of 7.5m/s and
10m/s were tested, with four experiments each, and the
wind velocity was measured by a Pitot tube located ahead
of the wing. Although it can be seen from Fig. 2 that the
wing used was fitted with a propeller, it was free-moving
during the experiments and only spun due to the incoming
wind. The same experiment with a clean, propeller-less
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Fig. 3. The fitting results on the experimental data

wing yielded no significant change in the collected data
and as such it was decided to keep it for this study.

5.2 Results

The resulting fitting is presented Fig. 3, where the hyper-
parameters have been found to be α0 = 15.77◦, α1 =
18.69◦, α2 = 14.65◦ and α3 = 11.13◦.

Immediately, one can find that the model seems to accu-
rately represent the lift on the whole of the domain consid-
ered. The total cost is J = 1.08 × 10−3, which represents
in our case half of the Mean Squared Error (MSE) of the
fitting with respect to the given data. In particular, the
pre-stall model seems to accurately represent the lift of
the wing up to the stall angle of 15.77◦, with an MSE
of only 8.08 × 10−4. The fitting in the post-stall domain
(third polynomial) is also accurately representing the lift
coefficient of the wing but suffers from the noisier data
given, with a higher MSE of 2.80 × 10−3. This is due to
unstationary effects of the turbulent flow that "pollute"
our measurements. Finally, the fitting about the aerody-
namic hysteresis interestingly gave good results, with once
again an accurate representation of the lift. The MSEs on
these domains were 5.42 × 10−3 for the polynomial going
from the pre-stall to the post-stall domain and 2.98×10−3

going in the opposite direction.

A robustness analysis of the iterative optimisation process
was conducted by running the algorithm a thousand times
with randomized initial hyper-parameters (taken from the
estimated best solution plus or minus 1.5◦ for the first
two separations and ±1.7◦ for α2 and α3). It gave a
convergence rate of 100% for a stop condition of ∀j ∈
J1, rK, ‖∆sj/sj‖ < 10−4 (0.01 %). The maximum number
of iterations was 518 for an average of 163.6, a median
of 146.5 and a standard deviation of 87.18, showing the
ability of the algorithm to quickly yield an accurate result.

5.3 Comparison with other methods

The results from Section 5.2 will finally be compared
with two piecewise polynomial formulations: the PWPFIT
method developed by the authors of Cunis et al. (2019) and
the AERODAS model (Spera, 2008). However, since the
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authors of these papers chose not to consider the hysteresis
phenomenon, only the measurements with a positive pitch
rate will be used. The results of this comparison are
presented Fig. 4.

Without even considering, as stated, the hysteresis, the
PwPM method we propose here seems to be better at
modelling the lift of the wing, and in particular in the
transition from pre-stall to post-stall dynamics, where
Fig. 4 shows that PWPFIT fails to account for the brusque
variation in lift and AERODAS’s simpler shape overshoots
the measurements. In addition, both models are not differ-
entiable at the separation between the pre-stall and post-
stall curves, an issue that was addressed in part by the
authors of Cunis et al. (2020) by adding a sigmoid blending
term between the two polynomials. However, doing so
loses the polynomial formulation. PwPM in turn seems to
underestimate the lift in the post-stall domain, which can
be explained by the fact that it takes into account some
unrepresented data with negative pitch rates the other
twos don’t.

The poorer performance of the PWPFIT and AERODAS
models can be traced back to some choices by the authors.
Indeed, they both consider the lift on the entire flight
envelope up to α = 90◦ of angle of attack to be composed
of only two pieces, one for pre-stall flight and one for post-
stall, which forces them to sacrifice some precision for the
sake of simplicity of the model. As a result, the transition is
unsurprisingly where the fitting is the poorest. In addition,
the experiment featured is characteristic of the so-called
leading edge stall where the air flow detaches abruptly
due to the burst of a laminar separation "bubble" near the
leading edge and the flow separation point moves backward
toward the trailing edge. Such a behaviour is a lot less
common in the literature than the trailing edge stall and
one can assume that the authors of Cunis et al. (2019)
and Spera (2008) developed their models with this second
behaviour in mind, making it less effective on the dataset
at hand. PwPM is however compatible as is with trailing
edge stall behaviour and it is expected that it would still
outperform its competitors on such a dataset.

Table 1 proposes a summary of the MSEs for each of
the methods on the three domains considered, namely in
the pre-stall (α < α0), transition (α0 < α < α1) and



Table 1. Mean Squared Errors comparison for
the methods presented

Domain PwPM PWPFIT AERODAS
pre-stall 8.29× 10−4 1.50× 10−3 1.47× 10−3

transition 5.42× 10−3 1.16× 10−2 1.69× 10−2

post-stall 2.67× 10−3 1.72× 10−3 1.97× 10−3

Whole domain 2.05× 10−3 2.42× 10−3 2.95× 10−3

post-stall (α > α1) domains. Each of the three models
considers a different value for α1 but the value from
PwPM was used here for continuity. As noted before, the
two methods PWPFIT and AERODAS are better than
PwPM on the post-stall domain. However, their overall
precision is impacted by their worst fitting on the two
other pieces, where their MSEs are significantly higher,
and in particular on the transition domain.

6. CONCLUSION AND PERSPECTIVES

This paper proposed a new piecewise polynomial model
(PwPM) for the modelling of the lift coefficients of a UAS
as well as a Constrained Least Squares (CLS) method to
identify it. The model was chosen specifically for a better
modelling of the behaviour of the aircraft at stall when
going from laminar to turbulent flow and vice-versa, in-
cluding the aerodynamic hysteresis. Comparison with the
PWPFIT two-pieced polynomial model and the AERO-
DAS one showed that the PwPM approach outperformed
both overall and particularly in the transition from pre-
stall to post-stall dynamics, fulfilling its requirements. In
addition, the proposed method for identification is able to
quickly yield accurate results, even with noisy experimen-
tal data.

Further work will however be needed on the subject before
upset recovery can be tackled. In particular, polynomial
models for the other aerodynamic coefficients not pre-
sented here will have to be defined and identification on
real flight data must be carried on. In addition a recur-
sive adaptation of this algorithm must be defined before
attempting flights in the post-stall domains in order to
ensure airspace and ground safety.
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