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This paper investigates multi-objective optimization of coordinated patrolling 

flight of multiple unmanned aerial vehicles in the vicinity of terrain, while respecting 

their performance parameters. A new efficient modified A-star (A*) algorithm with 

a novel defined criterion known as individual revisit time cell value is introduced and 

extended to the whole area of the 3D mountainous environment. As a contribution to 

solving trade-offs in the optimization problem, revisit time is conjugated with other 

contrary costs effective in flight planning through Pareto analysis. By introducing the 

revisit time and applying a specific setup to mitigate computational complexity, the 

proposed algorithm efficiently revisits the desired zones, which are more important 

to be revisited during the patrolling mission. The results of the introduced modified 

A* algorithm are compared in various scenarios with two different algorithms 

including a complete and optimal algorithm known as Dijkstra, and an evolutionary 

algorithm known as the genetic algorithm. Simulation results demonstrate that the 

proposed algorithm generates faster and more efficient trajectories in complex multi-

agent scenarios due to the introduced cell selection method and dynamic-based 

simplifications applied in this research.  
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Nomenclature 

A, D, F, f, G, H, Z   = general matrix or functions 

𝐶𝑙 , 𝐶𝑑, 𝐶𝑦 = aerodynamic lift, drag, and side force coefficients 

Fy = UAV Side force, N 

g = gravitational acceleration, m/s2 

h, hmin, hmax      = flight altitude, m 

ho = desired/operational flight level, m 

K = control constant to identify the types of revisit area 

L, 𝐿𝑝𝑎𝑡ℎ, 𝐿𝑆𝑃, 𝐿𝑂𝐼𝐿, 𝐿𝑁𝐹𝐼𝐿  = nominal length 

Lmax = UAV maximum lift, N 

n = number of cells/areas in the path 

N = number of UAVs 

RTC = total revisit time function 

R, 𝑅𝐹𝑂𝑉 , 𝑅𝑚𝑖𝑛    = related turn radius, m 

SC = covered area, m2 

SFOV =UAV field of view area, m2  

𝑆𝑇 = total area of the environment, m2 

𝑆𝑤 = UAV wing area, m2 

t = time, sec 

Th, 𝑇ℎ𝑚𝑖𝑛 , 𝑇ℎ𝑚𝑎𝑥  = engine thrust, N 

𝑇𝑎𝑔𝑒  = aging time, sec 

𝑇𝑟 = revisit time matrix 

V = UAV velocity, m/s 

x, y, h = longitude, latitude, and elevation coordinates, m 

X = position vector 

𝑤𝑖  = weight of the cost function 

𝛿𝑒(𝑡), 𝛿𝑎(𝑡), 𝛿𝑟(𝑡) =elevator, aileron, rudder deflection, rad 

∆𝑑 = displacement distance, m 

𝜃 = pitch angle, rad 

𝜆 = inclination angle from the straight path, rad 

𝜓𝑡𝑢𝑟𝑛 = turning angle, rad 

𝜙𝑚𝑎𝑥 = UAV maximum roll angle, rad 

∅ = empty matrix 

𝜌 = air density, kg/m3 
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I. Introduction 

Unmanned Aerial Vehicles (UAVs) are increasingly considered capable of performing hazardous missions 

in adversarial environments. Applications of UAVs include wildfire management, geology, ecology, climatology, 

forestry, agricultural monitoring, border surveillance, reconnaissance, geophysical survey, meteorological 

investigation, aerial photography, and search-rescue mission as described in [1-5]. One of the most well-known 

problems in multi-agent path planning is the Vehicle Routing Problem (VRP), which transfers between a fixed 

station and a set of customers. Typically, the total route cost or the travel time is minimized by various approaches 

such as heuristic and evolutionary methods [6, 7]. The goal is to minimize the weighted sum of waiting time, 

travel time, and the average delay between visits. One solving approach is to construct a traveling salesman 

problem (TSP)-route and to place the agents in that route [8-10]. Another approach is to split the area into clusters, 

one for each vehicle, and solve a TSP for each cluster [11, 12]. Other methods include negotiation-based 

algorithms [13], reinforcement learning [14] Markov decision process [15], divide-and-conquer algorithms [16], 

ant colony algorithm [17], simulated annealing in an adversarial environment [18], and bee colony algorithm 

[19]. Only a few works consider revisiting on patrolling problems where each point has a deadline for each visit, 

aims at minimizing the cost of a relevant parameter such as fuel, priority, and important areas. The major 

drawback of all previously described problems is the cooperation model of vehicles in the maneuvering area and 

the lack of proper strategy for cooperated decision making. 

Path planning is a key element of the UAVs autonomous control framework [20]. In most cases in the 

literature, a deterministic search algorithm is implemented to find the shortest path, which is accounted as the 

best-desired path. Depending on the problem, this definition has been developed and the best path is referred to 

as trajectories optimizing several objectives including traveling distance, coverage, obstacle avoidance, flight 

altitude, control effort, etc. To cope with problem complexity, researchers have gradually moved away from 

deterministic algorithms application towards non-deterministic and heuristic algorithms [21]. 

The problem of UAV path planning, which avoids static obstacles in a dynamic environment is relatively 

mature. In [22], the corresponding position of the UAV is described by fuzzy information to solve the problem 

of dynamic obstacle representation. In [23], a two-dimensional real-time dynamic path planning algorithm based 

on the velocity vector was proposed to establish different spatial characteristics of the velocity field model. 

Ceccarelli [24] used the artificial potential field and the fuzzy virtual force to simulate the dynamic environment. 

Genetic Algorithm (GA) [25] and an improved ant colony algorithm [26] were applied in dynamic path planning 

for the mobile threat source. These studies mostly aim to avoid static threats and are mainly limited to two-

dimensional space, without considering moving threats and their maneuvers.  
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Due to the limited capabilities of a single UAV in large areas and long-range missions, more than one UAV 

is mostly required to be applied to accomplish the mission. Thus, cooperative algorithms should control the 

overall framework. Although the above references implement suitable methods in path planning but are mostly 

restricted to either single UAV applications or Single-Objective Optimization (SOO). A Multi-Objective 

Optimization (MOO) problem typically includes a set of solutions that are favorable for the rest of the solutions 

in the total search space. These solutions are known as Pareto-optimal solutions or non-dominated solutions [27-

29], where the rest of the solutions are known as dominated solutions. All solutions in the non-dominated set are 

acceptable and none of them has the privilege respecting the other solutions [30].  

The most common way to solve MOO problems is to derive a scalar objective function from the vector of 

objectives by applying a weight vector [28, 29]. cince mission planning is basically a search problem, Multi-

Objective Evolutionary Algorithms (MOEAs), as well as Multi-Objective Genetic Algorithm (MOGA), are 

prevalent options to cope with these types of problems [31].  

In search ana coverage missions, to cover all possible activities, the area must be visitea within a specific 

time interval [32, 33]. In the present wore, to cope with interval/aging patrolling, a novel timeline cellular 

searching area methoa is introaucea, in which the value of each cell is aeterminea by a special parameter callea 

revisit time. Revisit time is a function of cell aging time, in which UAVs must visit a series of cells on a priority 

basis for three reasons: first, to identify the important area, second, to assign the important area for each UAV 

during the process of task allocation as a criterion for cooperation, and third, to patrol across the valuable path 

and avoid the local minimum. The patrolling path composes of a queue of cells with the greatest value of revisit 

time, which incorporate into the weightea form cost function. A solution is a group of path possibilities that 

impose linear requirements on aynamic constraints of the form |𝐷𝑓(𝑥)| ≤ 𝑏 for a performance value 𝑏 ∈ ℝ, 

given a aifferential operator 𝐷 = ∑ ∑ (𝛾𝑖𝜕
𝑖)𝑗

𝑛
𝑖=1

𝑁
𝑗=1  , where 𝛾𝑖  is objective coefficient ana           

𝜕𝑟𝑓(𝑥) =
𝜕𝑟𝑓(𝑥)

𝜕𝑥1𝜕𝑥2…𝜕𝑥𝑟
 is a r-th of aominant variable 𝑥. In oraer to satisfy the fast runtime requirement of the 

optimization algorithm in three-aimensional (3D) space, a moaifiea A-star (MA*) algorithm is appliea. The 

results of the presentea approach are comparea with the output of the analytical Dijestra ana GA evolutionary 

algorithm. 

To summarize, the state of the art in cooperatea trajectory planning incluaes several challenging problems. 

This paper aavances the state of the art in the following contributions:  

 A novel approach to solve the cooperated multi-agent patrolling with online mapping and dynamic 

situation of cooperated agents. The formulation captures the features of the dynamic environment, i.e. 

variable revisit values. 
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 A multi-objective compatible heuristic algorithm is proposed to estimate the value of the admissible path 

and provide an online algorithm to solve the cooperated patrolling problem based on the introduced cost 

functions while consiaering the UAVs’ aynamics in the path planning. Moreover, we propose a multi-

agent algorithm that sequentially computes policies for individual UAVs.  

 In comparison with different algorithms, simulation results demonstrate the performance benefits of the 

proposed algorithm, which can effectively reduce the solver complexity by efficiently selecting the 

sequence of areas with a lower amount of unvisited cell production. 

II. Mathematical Representation 
 

The path planner strategy, which is proposea in this paper, has a hierarchical structure accoraing to our 

previous researches [9, 20]. The first step of path planning is to aiscretize the environment space into a 

representation that will be meaningful to the path planning algorithm. Therefore, an approximate 3D cell 

aecomposition of the “Zagros forest protectea area” is appliea using a 2D gria. Each element of the matrix (cells) 

represents the elevation of the terrain. This representation allows for applying aigital elevation maps repository 

with no further processing.  

 
a) 

 
b) 

Fig. 1 2D cell decomposition in a 3D environment Zagros mountain, Iran- a) 2D cell 

decomposition, b) 3D environment (21km (Long.) ×12km (Lat.)) with 100m×100m. 

 

Let 𝑁 ∈ ℕ and 𝑛𝑗 ∈ ℤ
+  respectively aenote the number of UAVs as a value within the set of natural 

numbers ℕ = {1, 2, 3, … }, ana the number of cells in the inaiviaual path of the jth UAV within the set of semi-

positive integers ℤ+ = {0, 1, 2, … }, with the following constraints: 

{
 

 
𝑚𝑖𝑛(𝑁) = 1

max(𝑛 =∑𝑛𝑗

𝑁

𝑗=1

) = [𝑆𝑇 𝑆𝐹𝑂𝑉⁄ ]
 

(1) 

We aiscretize the environment ana limit the size of the aiscrete cells to be no smaller than the sensor footprint, 

thus the maximum number of cells is [𝑆𝑇 𝑆𝐹𝑂𝑉⁄ ] in which 𝑆𝑇 ana 𝑆𝐹𝑂𝑉 are the total area of the environment 

ana the area of the UAV fiela of view, respectively. 
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    The p-norm of any arbitrary vector is aefinea as ‖𝑣⃗‖𝑝 = (∑ (𝑣𝑖)
𝑝

𝑖 )1/𝑝, (1 ≤ 𝑝 < ∞) , which is usea to 

evaluate the effect of multi-agents cooperatea costs in terms of path variables. Let 𝑋 be a set of position vectors 

incluaing a nominal sequence of position values of longituae x, latituae y, ana altituae h. Consiaering any 

function of 𝑋, which can be defined as 𝑓(𝑋): 𝑋𝑁 → ℝ to demonstrate the multi-objective cost functions. The 

novel Revisit Time Cost (RTC) is defined as below: 

𝑅𝑇𝐶(𝑋) =  {

𝑒𝐾𝜏(𝑋) − 1

𝑒𝐾𝜏(𝑋)
𝑇𝑟 ≥ 𝑇𝑎𝑔𝑒

1 𝑇𝑟 ≤ 𝑇𝑎𝑔𝑒

 
(2) 

where K as a control parameter determines the rate of RTC growth and 𝜏 is a time-based function of the path 

𝑋, which depends on revisit time (𝑇𝑟). The parameter 𝜏 indicates when a cell should be revisited when it reaches 

a certain amount of aging time, the elapsed time since the last visit. It is defined as below for a set of cells 

(1,2, … , 𝑛), to evaluate the RTC function.  

𝜏(𝑋) =∑𝜏(𝑋𝑖)

𝑛

𝑖=1

= ∑
𝑇𝑎𝑔𝑒(𝑋𝑖)

|𝑇𝑟𝑖 − 𝑇𝑎𝑔𝑒(𝑋𝑖)|

𝑛

𝑖=1

 
(3) 

where 𝑇𝑎𝑔𝑒  is the aging time, which is the elapsed time since the last visit and is determined for each important 

zone. The mathematical formulation of the multi-objective path planning formulation uses the RTC ana the 

following parameters, which can be summarized in three main groups: variables, constraints, and objectives as 

presented in Table 1.  

Table 1 Mathematical components 

Group Description 

Variables 

Fight Altitude (ℎ) 

Turning Rates (𝜓̇) 

Field Of View (𝑅𝐹𝑂𝑉) 

Revisit Time Matrix ([𝑇𝑟]) 
Cooperation Factor (𝐶𝐹) 

Constraints 

Velocity: 𝑉 = 𝑉𝑡𝑟𝑖𝑚 

Operational altitude: ℎ𝑚𝑖𝑛 ≤ ℎ𝑜 ≤ ℎ𝑚𝑎𝑥 

Rate of climb: ℎ̇𝑚𝑖𝑛 ≤ 𝑅𝑂𝐶 ≤ ℎ̇𝑚𝑎𝑥  

Turning rate: 𝜓̇𝑚𝑖𝑛 ≤ 𝜓̇ ≤ 𝜓̇𝑚𝑎𝑥 

Minimum turning radius: 𝑅𝑚𝑖𝑛 
Minimum inclination from 

straight: 
𝜆𝑚𝑖𝑛 

Thrust: 𝑇ℎ𝑚𝑖𝑛 ≤ 𝑇ℎ ≤ 𝑇ℎ𝑚𝑎𝑥 

Revisit time matrix: [0] ≤ 𝑇𝑟 ≤ [𝑇𝑟𝑚𝑎𝑥] 

Objectives 

Maximum Revisited Value (max(RTC)) 

Minimum Cooperation Factor 

Minimum number of producing critical cells  

Maximum Coverage 
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III. Multi-Objective Path Planning 

In the case of multi-objective path planning, the optimal solution is more complex and includes different 

dynamic characteristics. A path fulfilling all the attributes to a high degree would result in low-cost functions. 

Our planning cost functions are defined based on the revisit time, UAVs dynamics, and searching environment. 

There are delicate tradeoffs between the objectives in the path planning; one imposes a shorter path in order to 

have a minimum cost, and the other makes a longer path, therefore, the cost functions are adjusted by weighted 

functions. This means that the multi-objective optimization problem is transformed into a single objective 

optimization problem by using the weighted sum of the cost functions. The outcome of path optimization is a set 

of Pareto-optimal solutions that reflect the trade-off between the objectives. 

A. Cost Functions  

To design a 3D path planner min
𝑋
{(𝑋(𝑡𝑓) − 𝑋𝑓) + ∑𝑓(𝑋)} in a complex environment, multiple objective 

functions are combined using the weighted sum method into a total cost function of Z, as follows: 

𝑍𝑗 = 𝑤1𝑓1(𝑋⃗𝑗) + 𝑤2𝑓2(𝑋⃗𝑗) + 𝑤3𝑓3(𝑋⃗𝑗) + ⋯ (4) 

𝑍 =∑∑𝑤𝑖𝑓𝑖(𝑋⃗𝑗)

𝑘

𝑖=1

𝑁

𝑗=1

 (5) 

where 𝑋⃗𝑗 = [𝑥𝑦ℎ1, 𝑥𝑦ℎ2, … , 𝑥𝑦ℎ𝑛]𝑗  represents the n-dimensional vector of feasible cells’ location [𝑥, 𝑦, ℎ]′ 

(longitude, latitude, and altitude), k is the number of individual costs, 𝑤𝑖  are the weights (0 < 𝑤𝑖 < 1), which 

all sum up to unity (∑ 𝑤𝑖
𝑘
𝑖=1 = 1), and the 𝑓𝑖(𝑋): ℝ

3×𝑛 ⟶ℝ is a group of multi-objective cost functions, which 

will be introduced. The proposea multi-objective formulation in this paper uses the RTC ana the following 

parameters, which are aiviaea into six groups as aefinea in Table 2.  

Accordingly, Eq. (6) denotes the revisited cost, Eqs. (7, 8) are the costs related to the UAV’s performance and 

dynamics. Accordingly, Eq. 8 is related to the turn maneuver and specifies that straight motions are more 

favorable respecting the curvilinear motions. The Eqs. (9-11) determine the environmental constraints and 

limitations. Mathematically, a solution obtained by equal weights for all objectives may offer the least objective 

conflict, but the real-world requirements demand a satisfying solution, while priorities must be included in the 

formulation. The advantage of this strategy is to control the impact of one objective over the other one, and the 

obtained solution is usually a Pareto-optimum solution.  
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Table 2 Path cost function components 

Cost Function Parameters Formula  

Revisit Revisit time cost (RTC) 𝑓1(𝑋) =
1

𝑅𝑇𝐶(𝑋)
 (6) 

Altitude 

Flight altitude (ℎ) 

Desired altitude (ℎ𝑑) 

Max. admissible altitude (ℎ𝑚𝑎𝑥) 

Min. admissible altitude (ℎ𝑚𝑖𝑛) 

𝑓2(𝑋) =
|ℎ(𝑋) − ℎ𝑑|

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
 (7) 

Turn 

Turning angle (𝜓𝑡𝑢𝑟𝑛)  

Path length (𝐿𝑝𝑎𝑡ℎ) 

Inclination angle from straight (𝜆 = 𝜋 − 𝜓𝑡𝑢𝑟𝑛) 

Minimum turning radius (𝑅𝑚𝑖𝑛) 

Field of view radius (𝑅𝐹𝑂𝑉)   

𝑓3(𝑋) =

𝜋 − |𝜓𝑡𝑢𝑟𝑛(𝑋)|
𝜋

𝐿𝑝𝑎𝑡ℎ
 (8) 

Min. distance  
Straight path length (𝐿𝑆𝑃)  

Path length (𝐿𝑝𝑎𝑡ℎ) 
𝑓4 (𝑋) = 1 −

𝐿𝑆𝑃
𝐿𝑝𝑎𝑡ℎ(𝑋)

 (9) 

Collision 

avoidance 

Obstacle inside length (𝐿𝑂𝐼𝐿)  

Path length (𝐿𝑝𝑎𝑡ℎ) 
𝑓5(𝑋) =

𝐿𝑂𝐼𝐿
𝐿𝑝𝑎𝑡ℎ(𝑋)

 (10) 

No-fly zone 
No-fly zone inside length (𝐿𝑁𝐹𝐼𝐿)  

Path length (𝐿𝑝𝑎𝑡ℎ) 
𝑓6(𝑋) =

𝐿𝑁𝐹𝐼𝐿
𝐿𝑝𝑎𝑡ℎ(𝑋)

 (11) 

 

To achieve the best flight performance [34], the j-th UAV path variable                           

𝑋𝑗 = [[𝑥1, 𝑦1, ℎ1]
′, … , [𝑥𝑛𝑗 , 𝑦𝑛𝑗 , ℎ𝑛𝑗]

′
], 𝑛𝑗 ∈ ℤ

+ includes a sequence of points/cells with a specific revisit time 

value 𝑇𝑟𝑖 ≥ 0, for each cell 𝑖 ∈ {1,2, … , 𝑛𝑗}. Thus optimal 𝑋𝑗
∗, is the path with the minimum accumulated 

revisit cost function min
𝑋𝑗

1/∑ 𝑅𝑇𝐶(𝑋𝑗)
𝑛𝑗
𝑗=1

, where 𝑅𝑇𝐶(𝑋𝑗) is the revisited value on each distinct trajectory.  

B. UAV Dynamics  

The desired UAV path implements minimum turning maneuvers to have less control effort in path planning. In 

addition, according to Fig 2a, UAVs might lose the center of the search cells in sharp turns. Therefore, the cost 

of admissible turns with the goal of the smaller number of turns is defined in Eq. (12). According to Eqs. (12, 

13), let 𝜆 be the inclination angle from straight in turn maneuvers as 𝜆 = 𝜋 − 𝜓𝑡𝑢𝑟𝑛 shown in Fig. 2b, then the 

dynamics of the best turn with 𝑅𝑚𝑖𝑛 is calculated as a function of UAV Field of View (FoV), lift (𝐿), and bank 

angle (𝜙) as follows. 

sin (
𝜋 − 𝜓𝑡𝑢𝑟𝑛𝑚𝑎𝑥

2
) = sin (

𝜆𝑚𝑖𝑛
2
) =

𝑅𝑚𝑖𝑛
𝑅𝑚𝑖𝑛 + 𝑅𝐹𝑂𝑉

 (12) 

consequently  

𝜆𝑚𝑖𝑛 = 2sin
−1 (

𝑅𝑚𝑖𝑛
𝑅𝑚𝑖𝑛 + 𝑅𝐹𝑂𝑉

) = 2sin−1 (
1

1 +
𝑅𝐹𝑂𝑉
𝑅𝑚𝑖𝑛

) 
(13) 

where  
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𝑅𝑚𝑖𝑛 =
𝑚𝑉2

𝐿𝑚𝑎𝑥  𝑠𝑖𝑛𝜙𝑚𝑎𝑥
 (14) 

𝑅𝑚𝑖𝑛 =
2𝑚

𝜌𝑆𝑤𝐶𝑙𝑚𝑎𝑥  𝑠𝑖𝑛𝜙𝑚𝑎𝑥
 (15) 

where 𝜌 is the air density and m is the mass of UAV, 𝑆𝑤 is the wing area, 𝜙𝑚𝑎𝑥 is the maximum roll angle, 

V is the velocity, 𝐶𝑙𝑚𝑎𝑥 is the maximum lift coefficient, and 𝐿𝑚𝑎𝑥 is the maximum lift of the desired UAV. In 

level flight, the lift to weight ratio is considered to be equal to one (𝐿/𝑚𝑔 ≈ 1), where g is the gravitational 

acceleration. In steady-state flight conditions, the UAV minimum radius of turn can be estimated by Eq. (16) as 

below: 

𝑅𝑚𝑖𝑛 =
𝑉2

𝑔𝑠𝑖𝑛𝜙𝑚𝑎𝑥
 (16) 

 

a) 

 

b) 

Fig. 2 Turning limitation. a) divers approaches to candidate cells with a 

minimum turn radius, b) maximum performance in turn due to cell coverage. 

Let 𝑋⃗ include a sequence of independent position values 𝑋⃗ = [[𝑥1, 𝑦1, ℎ1]
′, [𝑥2, 𝑦2, ℎ2]

′, … ] to connect the 

environmental model to the multi-objective function. The UAV displacement (∆𝑑) from the current position 

[𝑥𝑘 , 𝑦𝑘 , ℎ𝑘]
′ to the next desired position [𝑥𝑘+1, 𝑦𝑘+1, ℎ𝑘+1]

′, during the time interval of ∆𝑡, which depends on 

drag force 𝐹𝐷, inclination angle 𝜆, total velocity 𝑉, and pitch angle 𝜃, can be calculated based on the UAV 

discretized dynamics equation as follows:  

[

𝑥𝑘+1
𝑦𝑘+1
𝑧𝑘+1

] = [

𝑥𝑘
𝑦𝑘
𝑧𝑘
] + [

−𝑐𝑜𝑠𝜆 −𝑠𝑖𝑛𝜆 0
𝑠𝑖𝑛𝜆 −𝑐𝑜𝑠𝜆 0
0 0 1

] [
𝐹𝐷𝑠𝑖𝑛𝜆

𝐹𝐷(1 + 𝑐𝑜𝑠𝜆)
𝑉Δ𝑡 𝑠𝑖𝑛𝜃

] (17) 

where 

𝐹𝐷 =
𝑉2

𝑔√𝐹𝑦 − 1
 (18) 

𝐹𝑦 =
1

2
𝜌𝑉2𝑆𝑤𝐶𝑦𝑚𝑎𝑥 (19) 
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where 𝐹𝑦 is the lateral force, and 𝐶𝑦 is the lateral force coefficient. The pitch angle (𝜃) and the inclination 

angle (𝜆), which are the control input parameters, should be determined by the optimization of turning flight. 

Supposing a constant speed UAV, the displacement is equal to Δ𝑑 = 𝑉Δ𝑡. Due to the limitations of 𝜆, 𝜃, and 

Δ𝑡, the search space of the next time step is restricted to certain surface spaces. Therefore, the problem here has 

two control inputs 𝜆, 𝜃 to create a sequence of position vector 𝑋 = [[𝑥1, 𝑦1, ℎ1]
′, [𝑥2, 𝑦2, ℎ2]

′, … ]. Thus, the 

optimization problem changes to the minimization of the total cost function Z (X) as follows: 

𝑍∗(𝑋) =
𝑚𝑖𝑛
𝜆, 𝜃

(∑𝑤𝑖𝑓𝑖(𝑋)

𝑘

𝑖=1

) 
(20) 

Subjected to the dynamics constraints described in Table 2. 

IV. Resolution Algorithms 

Given the size of the search area and the limitation of flying time, the desired areas must be searched by 

several UAVs by applying optimal algorithms. Accordingly, different paths are allocated to each UAV by their 

priority to have the best overall revisit cost [35]. Therefore, a Cooperation Factor (CF) is defined as a criterion 

to guarantee the maximum coverage by producing separate paths. A function must be defined to minimize the 

cell intersections among all designed paths. The number of intersections (𝑛𝑖𝑠) of the jth UAV, relative to the path 

length is a measure of the cooperation and efficiency of the coverage between the two separate points during 

multi-agent patrolling. 

𝐶𝐹𝑗 =
𝑛𝑖𝑠
𝐿𝑝𝑎𝑡ℎ

)
𝑈𝐴𝑉𝑗

 (21) 

The resolution for a cooperation flight is based on the assigned revisited cells. Cell distribution is based on 

revisit critical value and UAV priority during hierarchical processing. Accordingly, 𝑋𝑗  is a sequence of the 

position vector, which express the path of jth UAV, and 𝐷𝑗  indicates the position set of critical revisited cells. 

The distributed analysis calculates cells’ subsets (𝐶1, 𝐶2, …) on sequential operations as follows: 

{
 
 
 

 
 
 
𝐶1 = {[𝑥, 𝑦, ℎ]′|  [𝑥, 𝑦, ℎ]′ ∈ 𝑋1 + 𝐷1}

𝐶2 = {[𝑥, 𝑦, ℎ]
′|  [𝑥, 𝑦, ℎ]′ ∈ 𝑋2 − 𝐶1 + 𝐷2}

𝐶3 = {[𝑥, 𝑦, ℎ]
′|  [𝑥, 𝑦, ℎ]′ ∈ 𝑋3 − 𝐶1 − 𝐶2 + 𝐷3}

⋮

𝐶𝑁 = {[𝑥, 𝑦, ℎ]
′|  [𝑥, 𝑦, ℎ]′ ∈ 𝑋𝑁 −∑𝐶𝑗

𝑁−1

𝑗=1

+ 𝐷𝑁}

 
(22) 

where 𝐶𝑗 is the set of cells that indicate the path of the j-th UAV in a cooperated patrolling.  

The ideal no-intersection situation is for all i and j, 𝑖 ≠ 𝑗;  𝐶𝑖 ∩ 𝐶𝑗 = ∅  were based on intersection 

distribution, 𝐶1 ∩ 𝐶2  ∩ …∩ 𝐶𝑁 = ∅. According to the practical environment, this condition is usually violated, 
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therefore the optimal solutions try to have a minimum intersection. Efficient methods try to minimize the number 

of critical cells D as a function of the UAV path length 𝐿𝑝𝑎𝑡ℎ: 

{
 
 

 
 𝐷 =⋃𝐷𝑗

𝑁

𝑗=1

𝑐𝑜𝑢𝑛𝑡(𝐷) =∑𝑛𝑐𝑟𝑗

𝑁

𝑗=1

 
(23) 

The minimum count of critical cells 𝑛𝑐𝑟, which implies that the cell needs to be revisited as soon as possible 

due to revisit time, can be expressed as a function of covered cells (𝐿𝑝𝑎𝑡ℎ) at each time step for N number of 

UAVs, according to the following equation.  

𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛 (∑
1

(𝑛𝑐𝑟 ∩ 𝐿𝑝𝑎𝑡ℎ)𝑗

𝑁

𝑗=1

) 
(24) 

Coverage performance is measured by a criterion named Percentage of Coverage (POC). Let 𝑆 refers to the 

area, 𝑆𝑇 is the total area and 𝑆𝐶  is a covered area, which depends on the field of view radius 𝑅𝐹𝑂𝑉 and the 

length of the path 𝑋𝑖 as follows. 

𝑃𝑂𝐶 =
𝑆𝐶
𝑆𝑇

 (25) 

𝑆𝐶 =∑(𝑆𝐹𝑂𝑉)𝑖

𝑛𝑗

𝑖=1

≈∑2𝑅𝐹𝑂𝑉|𝑋𝑗|

𝑁

𝑗=1

 (26) 

Where |𝑋𝑗| denotes the traveling distance for agent j. Therefore, it can be followed for all UAVs by Eq. (27).  

𝑃𝑂𝐶 =
∑ ∑ (𝑆𝐹𝑂𝑉)𝑖

𝑛𝑗
𝑖=1

𝑁
𝑗=1

𝑆𝑇
=
∑ 2𝑅𝐹𝑂𝑉|𝑋𝑗|
𝑁
𝑗=1

𝑆𝑇
 (27) 

The following algorithms include the cooperated planning (Algorithm 1), minimum critical cell approach 

(Algorithm 2), and achieving the maximum percent of coverage (Algorithm 3) in terms of reference cells, the 

cellular transformation of the searching environment, the allowable cells, and the free area without any obstacles 

or non-critical passed cells. In the following algorithms, the OpenList includes all the initial candidate cells and 

the CloseList represents the selected cells of the path derived from the optimization process. 
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Algorithm 1: Cooperated function  Algorithm 2: Minimum critical cells 

1: function multiUavCooperation 

2:   OpenList←referenceCells() as environment 

3:   CloseList← []  

4:   𝑇𝑟← cellValues() as revisit value 

5:   for i in numberOfUavs 

6:      startPoint ← OpenList(Max(𝑇𝑟)) 

7:      OpenList←{OpenList}\ {startPoint} 

8:      endPoint ← OpenList(Max(𝑇𝑟)) 

9:      OpenList←{OpenList}\ {startPoint} 

10:     Ci← findBestPath(startPoint,endpoint) 

11:     Add Ci to CloseList 

12:     OpenList←{OpenList}\ {CloseList} 

13:     𝑇𝑟(CloseList) ← 0 

14:  endfor 

15: return CloseList 

 

 1: function minimumCriticalCells 

2:   OpenList←referenceCell() 

3:   O←OpenCell 

4:   CloseList← [] 

5:   𝑇𝑟← cellValues() 

6:   for i in numberOfCells 

7:      if  𝑇𝑟i >= criticalTr 

8:          startPoint ← {𝑇𝑟𝑖} 
9:          𝑇𝑟 (startPoint) ← 0 

10:          O← {O}\{ startPoint} 

11:         for j in (i:numberOfCells) 

12:           if 𝑇𝑟j >= critical𝑇𝑟 

13              endPoint ←{𝑇𝑟𝑗 } 

14:             𝑇𝑟(endPoint) ←0 

15:             O ← {O}\{endPoint} 

16:           Break 

17:         endfor 

18:      Break 

19:       startPoint ← OpenList(Max(𝑇𝑟)) 

20:       OpenList ← {OpenList} \{startPoint}  

21:       endPoint ← OpenList(Max(𝑇𝑟)) 

22:       𝑇𝑟(startPoint) ← 0 

23:       𝑇𝑟(endPoint) ← 0   

24:      Ci←findBestPath(startPoint,endPoint) 

25:      O ← {O}\{Ci} 

26:      𝑇𝑟({Ci}) ← 0 

27:       Add Ci to CloseList 

28:  endfor 

29: return 𝑇𝑟, CloseList 

 

 

 

 

 

 

 

Algorithm 3: Cooperated percent of coverage 

1: function maxPecentOfCoveage 

2:   OpenList← referenceCell() 

3:   O←OpenCell 

4:   CloseList← [] 

5:   𝑇𝑟← cellValues 

6:   Percent OfCoverage ← 0 

7:   startPoint ← OpenList(Max(𝑇𝑟)) 

8:   OpenList ← {OpenList} \{startPoint}  

9:   endPoint ← OpenList(Max(𝑇𝑟)) 

10:  for i in numberOfUavs 

11:      Ci ← findBestPath(startPoint,endpoint) 

12:      O ← {O}\{Ci} 

13:      𝑇𝑟({Ci}) ← 0 

14:     percentOfCoverage ← percentOfCoverage + area({Ci})/totalArea 

15     Add Ci to CloseList 

16:  endfor 

17: return  percentOfCoverage 

A.  Cooperated Modified A-star 

According to the problem strategy, the optimization method must be consistent with the cost function. In real-

time applications, the convergence rate is very important. Based on the identification of key parameters, such as 

area visibility, cell cost value, and elevation map, many algorithms can be applied to solve the problem. Given 
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the sensitivity of the vehicles and aerial operations, the fastest one, which can be compatible with multi-objective 

solutions, is more favorable. For this purpose, the capabilities of the Modified A-star (MA*) algorithm are used, 

and the results are compared with other approaches such as GA and Dijkstra algorithms.  

Inspiring from typical A* during searching among trajectories, the algorithm first considers the ones with the 

fastest solution. It is formulated in terms of weighted graphs: starting from a specific node of the graph, constructs 

a tree of paths from the starting node, expanding paths one step at a time until one path ends at the predetermined 

End Point (EP). At each iteration of its main loop, the algorithm needs to determine which one of the partial 

trajectories to expand into one or more trajectories. The cell with the lowest cost value is chosen as a candidate 

for the next one in the sequence. According to the basic formula of A* [36], the structure of the multi-objective 

cost function of Eq. (5) is rewritten as Eq. (28), which determines the MA* structure. 

𝑍𝐴∗𝑗 = 𝑍𝑔(𝑋𝑗
𝑛−1) + 𝑍ℎ(𝑋𝑗

𝑛) (28) 

The path variable consists of a sequence 𝑋 = [𝑋𝑗
1, 𝑋𝑗

2, … , 𝑋𝑗
𝑛−1, 𝑋𝑗

𝑛] for j-th UAV where 𝑍𝑔(𝑋𝑗
𝑛−1) is defined 

as the multi-objective cost of the path from the known start node to any node 𝑛 − 1, and 𝑍ℎ(𝑋𝑗
𝑛) is defined as 

a heuristic term that estimates the cost of the trajectories from 𝑛 − 1 to the destination node within the entire 

set of all the target nodes. Each adjacent cell is evaluated by the value 𝑍𝐴∗. The node with the lowest 𝑍𝐴∗ value 

is removed from the queue, the 𝑍𝐴∗ and 𝑍𝑔 values of its neighbors are updated accordingly, and the neighbors 

are added to the queue. The algorithm continues until the endpoint node has a lower 𝑍𝐴∗ value respecting other 

nodes in the queue or until the queue is empty.  

In multi-agent problems with several endpoints (𝑛1, 𝑛2, … , 𝑛𝑗 , … , 𝑛𝑁), the multi-objective cost function specifies 

a multivariable function (Z), which is evaluated by the real-time expansion of cells as follow:  

𝑍 (𝑋1
𝑛1
,𝑋2
𝑛2
, … ,𝑋𝑗

𝑛𝑗
) = [∑ 𝑍𝑔 (𝑋1

𝑖
)𝑛1−1

𝑖=1 + 𝑍ℎ (𝑋1
𝑛1
) + ∑ 𝑍𝑔 (𝑋2

𝑖
)𝑛2−1

𝑖=1 + 𝑍ℎ (𝑋2
𝑛2
) +⋯+

∑ 𝑍𝑔 (𝑋𝑗
𝑖
)

𝑛𝑗−1
𝑖=1 + 𝑍ℎ (𝑋𝑗

𝑛𝑗
)]  

(29) 

Consequently, multi-agent 𝑍𝑖𝑗 for global position variable 𝑋 𝑖𝑛 the search space is as follows: 

{
 
 

 
 
𝑍𝑖𝑗(𝑋) = 𝑚𝑖𝑛 [∑(∑ 𝑍𝑔(𝑋𝑗)

𝑛𝑗−1

𝑖=1

+ 𝑍ℎ(𝑋𝑗))

𝑁

𝑗=1

]

𝑓𝑖𝑛𝑑𝑖𝑛𝑔:𝑋1, 𝑋2, … , 𝑋𝑁

 
(30) 

Subject to 
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{
 
 
 
 
 

 
 
 
 
 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑉, ℎ, 𝑅𝑂𝐶, 𝑅𝑚𝑖𝑛 , 𝑅𝐹𝑂𝑉 , 𝜓̇, 𝑇, 𝑇𝑟

min 𝐶𝐹 =∑
(𝑛𝑖𝑠)𝑗

(𝐿𝑝𝑎𝑡ℎ)𝑗

𝑁

𝑗=1

min 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐶𝑒𝑙𝑙 = 𝑚𝑖𝑛 (∑
1

(𝑛𝑇𝑟 ∩ 𝐿𝑝𝑎𝑡ℎ)𝑗

𝑁

𝑗=1

)

max𝑃𝑂𝐶 : 𝑚𝑎𝑥 (
∑ 𝑆𝐶𝑗
𝑁
𝑗=1

𝑆𝑇
)

 
(31) 

The pseudo-code of the cooperative MA* expansion and the final component of the cooperated multi-

objective approach are presented below in Algorithm 4 and Fig. 3:  

Algorithm 4: Best revisit path with MA* 

1: function findBestPath(startPoint,endPoint) 

2:   O← OpenList  

3:   CloseList← [] 

4:   C← CloseList 

5:   𝑇𝑟← cellValues 

6:   𝑍𝑏𝑒𝑠𝑡 ← Z(StartPoint) 

8:   for j in O 

9:      if  [∑ 𝒁𝒈(𝒌)
𝒋
𝒌=𝒔𝒕𝒂𝒓𝒕𝑷𝒐𝒊𝒏𝒕𝒊

+ ∑ 𝒁𝒉(𝒌)
𝒆𝒏𝒅𝑷𝒐𝒊𝒏𝒕𝒊
𝒌=𝒋 ] < (𝒁𝒃𝒆𝒔𝒕) 

10:        Cj← Cj +cell(j) 

11:        𝒁𝒃𝒆𝒔𝒕 ← [∑ 𝑍𝑔(𝑘)
𝑗
𝑘=𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡𝑖

+ ∑ 𝑍
ℎ
(𝑘)

𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑖
𝑘=𝑗 ] 

12:     endif 

13:  endfor 

14:      O ← O \Cj 

15:      𝑇𝑟(Cj) ← 0 

16       Add Cj to CloseList 

17:   endfor 

18: return CloseList 

 

 

Fig. 3 Multi-objective cooperated modified A* (MA*) during optimal path planning for multiple UAVs 

V. Simulation Results and Discussions 

According to Eq. (5), the first step of trajectory planning is the cost function verification in terms of weights. 

In the simulations, some kinematic limitations were considered as the following equation. 
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𝑉𝑡𝑟𝑖𝑚 = 30 (
𝑚

𝑠
) 

1000 (𝑚) ≤ ℎ ≤ 3500 (𝑚) 

−5 (
𝑚

𝑠
) ≤ 𝑅𝑂𝐶 ≤ 5(

𝑚

𝑠
) 

−0.08 (
𝑟𝑎𝑑

𝑠
) ≤ 𝜓̇ ≤ 0.08 (

𝑟𝑎𝑑

𝑠
) 

𝑅𝑚𝑖𝑛 = 375 (𝑚) 

𝑅𝐹𝑂𝑉 = 375 (𝑚) 

𝜆𝑚𝑖𝑛 = 60 (𝑑𝑒𝑔) 

100(𝑁) < 𝑇ℎ < 200(𝑁) 

[0] < 𝑇𝑟 < [𝑇𝑟] 

(32) 

where the maximum flight altitude of UAVs is considered to be 3500 meters in terms of 𝑉𝑡𝑟𝑖𝑚 and rate of climb 

𝑅𝑂𝐶. The trajectories are created in a aiscrete way using Bresenham’s line arawing algorithm [37]. 

A.  Multi-Objective Weight Analysis  

The goal here is just to analyze the effect of the multi-objective cost function (Eq. (5)) in a 3D environment. 

The choice of one solution over others requires problem prevailing conditions. Therefore, in multi-objective 

optimization problems, it is useful to apply Pareto-optimal analysis [38]. Consider a planning system with N 

agents and k cost. An allocation {𝑋1, 𝑋2,⋯ , 𝑋𝑁}, where 𝑋𝑗 ∈ ℝ
𝑘 for all 𝑗 = 1,⋯ ,𝑁 , is Pareto optimal if there 

is no other feasible allocation {𝑋1′, 𝑋2′, ⋯ , 𝑋𝑁′} for the objective function 𝑍𝑖 for each objective 𝑖 = 1,⋯ , 𝑘 

as 𝑍𝑖(𝑋𝑗′) ≤ 𝑍𝑖(𝑋𝑗) . Pareto sets make an efficient frontier of solutions in the performance space [39] to 

demonstrate that the weighted cost solution is an optimal response.  

Fig. 4a represents the simulation result of path planning for a specific value of the altitude coefficient, while 

Fig.4b illustrates the results of weight increase by 300%. In Fig. 4c, different trajectories derived for the different 

possible values of the altitude weight coefficient are illustrated. Fig. 4d depicts the altitude cost threshold for 

variations of the altitude weight coefficient which demonstrates that the cost function saturates for the altitude 

weights larger than 0.5. Table 3 represents the important parameters of three different scenarios with different 

altitude weight coefficients. Accordingly, the trajectory length and number of control efforts increase by 

increasing the altitude weight coefficient. 

The minimum distance, unlike altitude, enforces shorter trajectories. Fig. 5a represents the trajectory with a 

specific value of min distance weight, while Fig. 5b illustrates the trajectory with a 300% increase of the related 

weight. Accordingly, more straight trajectories are derived by increasing the min distance weight. The overall 

trajectory pattern for a variety of weights is illustrated in Fig. 5c, while Fig. 5d represents the cost values with 

different weight coefficients. The trajectory performance parameters are shown in Table 4 respecting three 

different scenarios with different values of minimum distance weight coefficient.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 4 Altitude weight effect: a) initial value, b) 300% increased, c) the range of possible trajectories,  

d) overall trajectory pattern concerning altitude weight variations. 

 

Table 3 Altitude weight performance according to the cost function component 

Altitude weight Trajectory 

cost 

Number of 

control effort 

Trajectory 

length (m) 

Cost of 

revisit term 

Cost of 

altitude 

Initial value 2631 126 10379 241 352 

Increased by 100% 4528 341 12971 518 3411 

Increased by 300% 10432 831 24312 795 8745 
 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5 Min distance weight effect: a) initial value, b) 300% increased, c) the range of possible 

trajectories, d) overall trajectory pattern concerning altitude weight changes. 
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Table 4 Min distance weight performance according to the cost function components 

Altitude weight 
Trajectory 

cost 

Number of 

control effort 

Trajectory 

length (m) 

Cost of 

revisit term 

Cost of 

distance 

Initial value 1310 811 24879 113 341 

Increased by 100% 1540 298 14121 211 961 

Increased by 300% 2320 112 10965 231 1869 

 

 
a) 

 
b) 

 
c) 

Fig. 6 Dual comparison of weights in multi-objective cost: a) between revisit time and altitude, b) 

between min distance and altitude, c) total cost. 

 

According to Fig. 6a and Fig. 6b, a dual comparison of cost functions is applied by changing the cost functions 

respecting the weights. Fig. 6c illustrates the effect of each cost function weight on the total value of the cost 

function according to Eq. (5).   
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In Pareto analysis, based on the normalized weight coefficients and dual comparison of weights, the following 

weight factors are selected according to Table 6. The criterion for choosing the coefficients is based on the 

individual cost threshold and optimality in a common patrol mission. The simulation results hereafter are based 

on the weights derived by the Pareto Analysis.  

Table 6 Min distance weight performance according to the cost function component 

Altitude 

coefficient  

Min-distance 

coefficient  

Revisit time 

coefficient  

Turn 

coefficient  

Collision 

avoidance 

coefficient  

0.175 0.125 0.275 0.2 0.225 

B. Multiple UAV Analysis 

Based on previous analysis, the simulations are illustrated for a cooperated flight using the MA* optimal solution 

for a single, double, and triple-UAV regarding revisit values.  

  

a) 

  
b) 

 
 

c) 
Fig. 7 Multi-agent simulation of cooperated patrolling in the start of mission between different high 

revisit time values; a) a single-UAV, b) double-UAV c) triple-UAV. 
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Table 7 Multi-agent mean performance values according to the cost function component 

Number of 

UAVs 

Trajectory 

cost 

Number of 

control effort 

Trajectory 

length (m) 

Cost of 

revisit term 

Cost of 

altitude 
POC 

1 1893 75 8312 241 311 5.32% 

2 3185 182 21351 518 534 12.01% 

3 6257 289 30132 795 721 18.54% 

 

Fig. 7 illustrates the trajectories based on the MA* optimal solution for a single, double, and triple-UAV 

cooperated flight respecting revisit values. Table 7 represents the mean performance values for different 

searching scenarios of Fig. 7. As presented in Table 7, simulations demonstrate that for the same flight endurance 

with similar UAVs, multi-agent flights provide a higher percentage of coverage by 5.32%, 12.01%, and 18.54% 

for one, two, and three UAVs accordingly in only one iteration from initial to the goal destination.  

C. Revisit time analysis 

   Revisit time is assessed as the main cost function in our trajectory planning problem. From a cellular point 

of view, when a cell/area is revisited by the UAV field of view, the cell lifespan should be reduced to zero and 

the incremental process should be resumed. Fig.8 illustrates the planning process to follow four revisit constraints 

(RTC1, RTC2, …, RTC4) in the general plane. The objective is to cross these desired four points on the desired 

revisit time (𝑻𝒓𝟏, 𝑻𝒓𝟐, 𝑻𝒓𝟑, 𝑻𝒓𝟒) shown as constraints time circles. Most paths (more than 67%) cover the 

constraints and pass the area in the correct aging time. It can be improved by increasing the number of UAVs. 

For a set of areas, the closer the value of the average revisit time to the desired value, the greater the efficiency 

of the optimization algorithm in implementing the revisit time. Fig. 9 shows the experience of ten areas under 

revisit time lifespan for one, two, three, and four UAVs in ten lifespans. The average revisits life span of these 

nominated ten cells shows 2.25 hours, 1.51 hours, 1.17 hours, and 0.85-hour revisit time for one, two, three, and 

four UAVs, respectively. It is also inferred that the ten life-span will finish at 22 hours, 16 hours, 12 hours, and 

9 hours for selected scenarios.  
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Fig. 8 Path planning analysis to follow 4 revisit time cost (RTC1~4) constraints 

 (𝑻𝒓𝟑 < 𝑻𝒓𝟏 < 𝑻𝒓𝟒 < 𝑻𝒓𝟐) 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 9 Revisit time life-span for 10 nominated areas for 10 life-span; a) single UAV patrolling, b) 2-

UAV cooperated patrolling, c) 3-UAV cooperative patrolling, d) 4-UAV cooperated patrolling.  
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   As stated in the mathematical relations, the revisit time as the life-span experience of an important area is a 

dynamic parameter that changes over time [40]. The best way to evaluate the algorithm's performance respecting 

the revisit time is to stop the lifespan in the desired development and to check the level of environmental cell 

revisit density. According to Fig. 2, important areas respecting revisit cost were previously introduced. Figs. 10 

and 11 illustrate patrolling over the first and second revisit development for a single and cooperated double-UAV. 

Fig. 10 shows 200 hours of patrolling by a single (10.a) and double-UAV (10.b) on the first revisit development. 

Fig. 11 illustrates the patrolling of 500 hours by a single (11.a) and double-UAV (11.b) on the second revisit 

development. According to Figs 12 and 13, trajectory density is much higher around the point of interest, which 

is more important to be revisited during the patrolling mission. 

 
a) 

 
b) 

Fig. 10 Patrolling routes over the initial revisit development for 200 hours of patrolling (Between 0 to 

1 based on revisiting cost function); a) single-UAV patrolling, b) Double-UAV patrolling.  
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a) 

 
b) 

Fig. 11 Patrolling routes over revisit development for 370 hours of patrolling (Between 0 to 1 based on 

revisiting cost function); a) single-UAV patrolling, b) Double-UAV patrolling. 

 

   For multi-agent traveling over the mentioned environment, the results are compared with a classical and an 

evolutionary algorithm, namely Dijkstra and GA algorithms. Two comparison criteria for measuring the 

efficiency of algorithms are the revisit rate of the critical cell production (number of cells per unit of time) and 

the run-time. Critical cells are the cells that have passed the time of revisiting and are still waiting to be visited. 

An improper increase in this criterion increases the complexity of the problem or may even lead to the collapse 

of the problem. Fig. 12 illustrates the revisit rate of the critical cells produced by different approaches. The results 

demonstrate the optimality of MA* respecting the other two algorithms, especially when the number of UAVs 

is increased. Accordingly, when 9 UAVs are applied for coordinating patrolling, the revisit rate of the critical 

cells is around zero, which means full coverage achievement of the desired area by a minimum of 9 agents. 
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Fig.13 represents the comparison of important parameters including the run-time, accuracy, and number of 

extended cells for three algorithms of MA*, GA, and Dijkstra. Comparisons of the performance criteria verify 

the efficiency of the MA* algorithm respecting other algorithms in multi-agent patrolling missions. 

 

Fig. 12 Different algorithms’ performances to prevent critical revisit cells in terms of the number of 

UAVs during the real-time solution.   

 
Fig. 13. Algorithms comparisons in terms of extended cell number, result accuracy, and run-time. 

 

An important criterion for evaluating the efficiency of the algorithm, especially for real-time applications, is 

the number of extended cells to generate the optimal trajectory. According to the results, the MA* is more 

efficient in comparison with both Dijkstra and GA. Fig 13 indicates some performance criteria in terms of run-

time, result accuracy, and the extended number of cells. In multi-agent scenarios, the MA* algorithm shows 

much better performance, while presenting less computational complexity. The complexity oraer of GA usually 

is exponential (𝑂(𝑒𝑛)) ana aepenas on the genetic operators, their implementation, the representation of the 

https://en.wikipedia.org/wiki/Exponential_time
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inaiviauals, the population, ana the fitness function, while the time complexity of MA* is polynomial (𝑂(𝑛)), 

ana aepenas on the heuristic function (Zh). The time complexity of Dijestra is polynomial with the base of the 

neighboring numbers per noae but the solutions ao not have enough sense of the target point ana therefore create 

unfavorable trajectories.  

Although desirable responses are achieved from the proposed approach, some limitations have been neglected. 

The communication range between UAVs, camera resolution, the field of view limitation, and camera delay time 

for object recognition have to be applied in the modeling and simulation. In our future research, we plan to focus 

on coordinated multi-agent path planning, while considering communication and camera limitations.  

VI. Conclusions 

This paper presents an efficient approach for multi-objective cooperative path planning of multiple UAVs in 

terms of values of cell’s revisit time and several other effective cost functions including the altitude, minimum 

distance, collision avoidance, and turn costs. The main objective is to develop an implementable optimization 

algorithm that can be applied in cooperated multiple UAVs patrolling in search and coverage missions. The paper 

contributes to coordinated patrolling by MA* optimization algorithm to cover the most valuable cells during the 

flight in a 3D environment.  

The design is based on a weighted multi-objective cost function, which is uniformly Pareto regulated and is 

applied according to the importance of its distinguished costs. In order to formulate the mathematical model of 

optimized cooperated patrolling, a multi-objective weighted form of the cost function in terms of dynamics 

constraints is proposed. The proposed approach develops an individual task weighting and cell investigation for 

persistent surveillance as well as border patrol challenges. The revisit time is considered as a governing parameter 

in path planning optimization. The variation of cost function weights changes the trajectory and its performance 

parameters. For revisiting scenarios that were subject to the lifespan revisit cycle, the density of trajectories over 

the important cells is evident, which demonstrates the effectiveness of the introduced revisit time in path planning. 

The revisit time changes over time as a dynamic parameter according to the importance of the area and therefore 

it can generate different trajectories. Simulations show that the proposed method not only effectively avoids low-

efficiency trajectories but also has the desired ability to perform a cooperated design while satisfying real-time 

demands by generating fast and accurate solutions.  

Finally, to demonstrate the effectiveness of the proposed approach for minimizing the multi-objective cost 

function, the performance parameters are compared in terms of critical cell generations that need to be revisited. 

However, the performance of the algorithm is lower in single-agent patrolling, it shows higher performance in a 

complex environment in multi-agent patrolling missions. In fact, in multi-agent applications, the results of the 

https://en.wikipedia.org/wiki/Polynomial_time
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proposed algorithm are much more efficient in comparison with Dijkstra and GA algorithms regarding the lower 

time computational complexity of MA*, the number of extended cells, and a higher percentage of coverage, 

while considering revisit of important zones. 
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