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This paper investigates multi-objective optimization of coordinated patrolling flight of multiple unmanned aerial vehicles in the vicinity of terrain, while respecting their performance parameters. A new efficient modified A-star (A*) algorithm with a novel defined criterion known as individual revisit time cell value is introduced and extended to the whole area of the 3D mountainous environment. As a contribution to solving trade-offs in the optimization problem, revisit time is conjugated with other contrary costs effective in flight planning through Pareto analysis. By introducing the revisit time and applying a specific setup to mitigate computational complexity, the proposed algorithm efficiently revisits the desired zones, which are more important to be revisited during the patrolling mission. The results of the introduced modified A* algorithm are compared in various scenarios with two different algorithms including a complete and optimal algorithm known as Dijkstra, and an evolutionary algorithm known as the genetic algorithm. Simulation results demonstrate that the proposed algorithm generates faster and more efficient trajectories in complex multiagent scenarios due to the introduced cell selection method and dynamic-based simplifications applied in this research.

I. Introduction

Unmanned Aerial Vehicles (UAVs) are increasingly considered capable of performing hazardous missions in adversarial environments. Applications of UAVs include wildfire management, geology, ecology, climatology, forestry, agricultural monitoring, border surveillance, reconnaissance, geophysical survey, meteorological investigation, aerial photography, and search-rescue mission as described in [START_REF] Nex | UAV for 3D mapping applications: a review[END_REF][START_REF] Adao | data processing and applications for agriculture and forestry[END_REF][START_REF] Kim | Vision-basea navigation for unmannea aircraft using grouna feature points ana terrain elevation aata[END_REF][START_REF] Campion | UAV cwarm Communication ana Control Architectures: A Review[END_REF][START_REF] Gai | A constant guiaance law-basea collision avoiaance for unmannea aerial vehicles[END_REF]. One of the most well-known problems in multi-agent path planning is the Vehicle Routing Problem (VRP), which transfers between a fixed station and a set of customers. Typically, the total route cost or the travel time is minimized by various approaches such as heuristic and evolutionary methods [START_REF] Mersheeva | Multi-UAV monitoring with priorities and limited energy resources[END_REF][START_REF] Haghighi | Heuristic optimization of multi-agent persistent surveillance revisit time by minimum aistance weight functions[END_REF]. The goal is to minimize the weighted sum of waiting time, travel time, and the average delay between visits. One solving approach is to construct a traveling salesman problem (TSP)-route and to place the agents in that route [START_REF] Xu | A brief review of the intelligent algorithm for traveling salesman problem in UAV route planning[END_REF][START_REF] Haghighi | A hierarchical and priority-based strategy for trajectory tracking in UAV formation flight[END_REF][START_REF] Haghighi | Hybria Form of Particle cwarm Optimization ana Genetic Algorithm For Optimal Path Planning in Coverage Mission by Cooperatea Unmannea Aerial Vehicles[END_REF]. Another approach is to split the area into clusters, one for each vehicle, and solve a TSP for each cluster [START_REF] Ahmaai | A multi-robot system for continuous area sweeping tasks[END_REF][START_REF] Rus | Multi-robot monitoring in dynamic environments with guaranteed currency of observations[END_REF]. Other methods include negotiation-based algorithms [START_REF] Poulet | woreing as a Team: Using social criteria in the timea patrolling problem[END_REF], reinforcement learning [START_REF] Zhang | Geometric reinforcement learning for path planning of UAVs[END_REF] Markov decision process [START_REF] Capitan | Cooperative aecision-maeing unaer uncertainties for multi-target surveillance with multiples UAVs[END_REF], divide-and-conquer algorithms [START_REF] Aaamey | Collaborative multi-msa multi-target traceing ana surveillance: a aiviae & conquer methoa using region allocation trees[END_REF],

ant colony algorithm [START_REF] Dentler | Collision avoiaance effects on the mobility of a UAV swarm using chaotic ant colony with moael preaictive control[END_REF], simulated annealing in an adversarial environment [START_REF] Pare | Heuristics for aetermining a patrol path of an unmannea combat vehicle[END_REF], and bee colony algorithm [START_REF] Murrieta-Menaoza | Four-Dimensional Aircraft En-Route Optimization Algorithm Using the Artificial Bee Colony[END_REF]. Only a few works consider revisiting on patrolling problems where each point has a deadline for each visit, aims at minimizing the cost of a relevant parameter such as fuel, priority, and important areas. The major drawback of all previously described problems is the cooperation model of vehicles in the maneuvering area and the lack of proper strategy for cooperated decision making.

Path planning is a key element of the UAVs autonomous control framework [START_REF] Haghighi | A Hierarchical ana Prioritizea Framewore in Coorainatea Maneuver of Multiple UAV s Basea on Guiaance Regulator[END_REF]. In most cases in the literature, a deterministic search algorithm is implemented to find the shortest path, which is accounted as the best-desired path. Depending on the problem, this definition has been developed and the best path is referred to as trajectories optimizing several objectives including traveling distance, coverage, obstacle avoidance, flight altitude, control effort, etc. To cope with problem complexity, researchers have gradually moved away from deterministic algorithms application towards non-deterministic and heuristic algorithms [START_REF] Masehian | Classic ana heuristic approaches in robot motion planning-a chronological review[END_REF].

The problem of UAV path planning, which avoids static obstacles in a dynamic environment is relatively mature. In [START_REF] Cabo | Fuzzy logic unmannea air vehicle motion planning[END_REF], the corresponding position of the UAV is described by fuzzy information to solve the problem of dynamic obstacle representation. In [START_REF] Chuntao | Real-time path planning of UAV basea on velocity vector[END_REF], a two-dimensional real-time dynamic path planning algorithm based on the velocity vector was proposed to establish different spatial characteristics of the velocity field model.

Ceccarelli [START_REF] Ceccarelli | Micro UAV path planning for reconnaissance in wind[END_REF] used the artificial potential field and the fuzzy virtual force to simulate the dynamic environment.

Genetic Algorithm (GA) [START_REF] Darrah | A flexible genetic algorithm system for multi-UAV surveillance: algorithm ana flight testing[END_REF] and an improved ant colony algorithm [START_REF] Raja | Optimal path planning of mobile robots: A review[END_REF] were applied in dynamic path planning for the mobile threat source. These studies mostly aim to avoid static threats and are mainly limited to twodimensional space, without considering moving threats and their maneuvers.

Due to the limited capabilities of a single UAV in large areas and long-range missions, more than one UAV is mostly required to be applied to accomplish the mission. Thus, cooperative algorithms should control the overall framework. Although the above references implement suitable methods in path planning but are mostly restricted to either single UAV applications or Single-Objective Optimization (SOO). A Multi-Objective Optimization (MOO) problem typically includes a set of solutions that are favorable for the rest of the solutions in the total search space. These solutions are known as Pareto-optimal solutions or non-dominated solutions [START_REF] Chaneong | Multi-objective aecision maeing: theory ana methoaology[END_REF][START_REF] Asaai | Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with ctructural Damage[END_REF][START_REF] Asaai | Damagea airplane trajectory planning basea on flight envelope ana stability of motion primitives[END_REF], where the rest of the solutions are known as dominated solutions. All solutions in the non-dominated set are acceptable and none of them has the privilege respecting the other solutions [START_REF] Taboaaa | Multi-objective scheauling problems: Determination of prunea Pareto sets[END_REF].

The most common way to solve MOO problems is to derive a scalar objective function from the vector of objectives by applying a weight vector [START_REF] Asaai | Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with ctructural Damage[END_REF][START_REF] Asaai | Damagea airplane trajectory planning basea on flight envelope ana stability of motion primitives[END_REF]. cince mission planning is basically a search problem, Multi-Objective Evolutionary Algorithms (MOEAs), as well as Multi-Objective Genetic Algorithm (MOGA), are prevalent options to cope with these types of problems [START_REF] Ramirez-Atencia | colving complex multi-UAV mission planning problems using multi-objective genetic algorithms[END_REF].

In search ana coverage missions, to cover all possible activities, the area must be visitea within a specific time interval [START_REF] Nigam | Control of multiple UAVs for persistent surveillance: Algorithm ana flight test results[END_REF][START_REF] Peterson | Persistent Intelligence, curveillance, ana Reconnaissance Using Multiple Autonomous Vehicles with Asynchronous Route Upaates[END_REF]. In the present wore, to cope with interval/aging patrolling, a novel timeline cellular searching area methoa is introaucea, in which the value of each cell is aeterminea by a special parameter callea revisit time. Revisit time is a function of cell aging time, in which UAVs must visit a series of cells on a priority basis for three reasons: first, to identify the important area, second, to assign the important area for each UAV during the process of task allocation as a criterion for cooperation, and third, to patrol across the valuable path and avoid the local minimum. The patrolling path composes of a queue of cells with the greatest value of revisit , where 𝛾 𝑖 is objective coefficient ana

𝜕 𝑟 𝑓(𝑥) = 𝜕 𝑟 𝑓(𝑥) 𝜕𝑥 1 𝜕𝑥 2 …𝜕𝑥 𝑟
is a r-th of aominant variable 𝑥. In oraer to satisfy the fast runtime requirement of the optimization algorithm in three-aimensional (3D) space, a moaifiea A-star (MA*) algorithm is appliea. The results of the presentea approach are comparea with the output of the analytical Dijestra ana GA evolutionary algorithm.

To summarize, the state of the art in cooperatea trajectory planning incluaes several challenging problems. This paper aavances the state of the art in the following contributions:  A novel approach to solve the cooperated multi-agent patrolling with online mapping and dynamic situation of cooperated agents. The formulation captures the features of the dynamic environment, i.e. variable revisit values.

 A multi-objective compatible heuristic algorithm is proposed to estimate the value of the admissible path and provide an online algorithm to solve the cooperated patrolling problem based on the introduced cost functions while consiaering the UAVs' aynamics in the path planning. Moreover, we propose a multiagent algorithm that sequentially computes policies for individual UAVs.

 In comparison with different algorithms, simulation results demonstrate the performance benefits of the proposed algorithm, which can effectively reduce the solver complexity by efficiently selecting the sequence of areas with a lower amount of unvisited cell production.

II. Mathematical Representation

The path planner strategy, which is proposea in this paper, has a hierarchical structure accoraing to our previous researches [START_REF] Haghighi | A hierarchical and priority-based strategy for trajectory tracking in UAV formation flight[END_REF][START_REF] Haghighi | A Hierarchical ana Prioritizea Framewore in Coorainatea Maneuver of Multiple UAV s Basea on Guiaance Regulator[END_REF]. The first step of path planning is to aiscretize the environment space into a representation that will be meaningful to the path planning algorithm. Therefore, an approximate 3D cell aecomposition of the "Zagros forest protectea area" is appliea using a 2D gria. Each element of the matrix (cells) represents the elevation of the terrain. This representation allows for applying aigital elevation maps repository with no further processing. 

We aiscretize the environment ana limit the size of the aiscrete cells to be no smaller than the sensor footprint, thus the maximum number of cells is [𝑆 𝑇 𝑆 𝐹𝑂𝑉 ⁄ ] in which 𝑆 𝑇 ana 𝑆 𝐹𝑂𝑉 are the total area of the environment ana the area of the UAV fiela of view, respectively.

The p-norm of any arbitrary vector is aefinea as ‖𝑣 ⃗‖ 𝑝 = (∑ (𝑣 𝑖 ) 𝑝 𝑖 ) 

where 𝑇 𝑎𝑔𝑒 is the aging time, which is the elapsed time since the last visit and is determined for each important zone. The mathematical formulation of the multi-objective path planning formulation uses the RTC ana the following parameters, which can be summarized in three main groups: variables, constraints, and objectives as presented in Table 1. 

III. Multi-Objective Path Planning

In the case of multi-objective path planning, the optimal solution is more complex and includes different dynamic characteristics. A path fulfilling all the attributes to a high degree would result in low-cost functions.

Our planning cost functions are defined based on the revisit time, UAVs dynamics, and searching environment.

There are delicate tradeoffs between the objectives in the path planning; one imposes a shorter path in order to have a minimum cost, and the other makes a longer path, therefore, the cost functions are adjusted by weighted functions. This means that the multi-objective optimization problem is transformed into a single objective optimization problem by using the weighted sum of the cost functions. The outcome of path optimization is a set of Pareto-optimal solutions that reflect the trade-off between the objectives.

A. Cost Functions

To design a 3D path planner min 𝑋 {(𝑋(𝑡𝑓) -𝑋 𝑓 ) + ∑ 𝑓(𝑋)} in a complex environment, multiple objective functions are combined using the weighted sum method into a total cost function of Z, as follows:

𝑍 𝑗 = 𝑤 1 𝑓 1 (𝑋 ⃗ 𝑗 ) + 𝑤 2 𝑓 2 (𝑋 ⃗ 𝑗 ) + 𝑤 3 𝑓 3 (𝑋 ⃗ 𝑗 ) + ⋯ (4) 𝑍 = ∑ ∑ 𝑤 𝑖 𝑓 𝑖 (𝑋 ⃗ 𝑗 ) 𝑘 𝑖=1 𝑁 𝑗=1 (5) 
where 𝑋 ⃗ 𝑗 = [𝑥𝑦ℎ 1 , 𝑥𝑦ℎ 2 , … , 𝑥𝑦ℎ 𝑛 ] 𝑗 represents the n-dimensional vector of feasible cells' location [𝑥, 𝑦, ℎ] ′ (longitude, latitude, and altitude), k is the number of individual costs, 𝑤 𝑖 are the weights (0 < 𝑤 𝑖 < 1), which all sum up to unity (∑ 𝑤 𝑖 𝑘 𝑖=1

= 1), and the 𝑓 𝑖 (𝑋): ℝ 3×𝑛 ⟶ ℝ is a group of multi-objective cost functions, which will be introduced. The proposea multi-objective formulation in this paper uses the RTC ana the following parameters, which are aiviaea into six groups as aefinea in Table 2.

Accordingly, Eq. ( 6) denotes the revisited cost, Eqs. [START_REF] Haghighi | Heuristic optimization of multi-agent persistent surveillance revisit time by minimum aistance weight functions[END_REF][START_REF] Xu | A brief review of the intelligent algorithm for traveling salesman problem in UAV route planning[END_REF] are the costs related to the UAV's performance and dynamics. Accordingly, Eq. 8 is related to the turn maneuver and specifies that straight motions are more favorable respecting the curvilinear motions. The Eqs. (9-11) determine the environmental constraints and limitations. Mathematically, a solution obtained by equal weights for all objectives may offer the least objective conflict, but the real-world requirements demand a satisfying solution, while priorities must be included in the formulation. The advantage of this strategy is to control the impact of one objective over the other one, and the obtained solution is usually a Pareto-optimum solution. , where 𝑅𝑇𝐶(𝑋 𝑗 ) is the revisited value on each distinct trajectory.

B. UAV Dynamics

The desired UAV path implements minimum turning maneuvers to have less control effort in path planning. In addition, according to Fig 2a, UAVs might lose the center of the search cells in sharp turns. Therefore, the cost of admissible turns with the goal of the smaller number of turns is defined in Eq. [START_REF] Rus | Multi-robot monitoring in dynamic environments with guaranteed currency of observations[END_REF]. According to Eqs. [START_REF] Rus | Multi-robot monitoring in dynamic environments with guaranteed currency of observations[END_REF][START_REF] Poulet | woreing as a Team: Using social criteria in the timea patrolling problem[END_REF], let 𝜆 be the inclination angle from straight in turn maneuvers as 𝜆 = 𝜋 -𝜓 𝑡𝑢𝑟𝑛 shown in Fig. 2b, then the dynamics of the best turn with 𝑅 𝑚𝑖𝑛 is calculated as a function of UAV Field of View (FoV), lift (𝐿), and bank angle (𝜙) as follows.

sin ( 𝜋 -𝜓 𝑡𝑢𝑟𝑛 𝑚𝑎𝑥 2 ) = sin ( 𝜆 𝑚𝑖𝑛 2 ) = 𝑅 𝑚𝑖𝑛 𝑅 𝑚𝑖𝑛 + 𝑅 𝐹𝑂𝑉 (12) 
consequently

𝜆 𝑚𝑖𝑛 = 2sin -1 ( 𝑅 𝑚𝑖𝑛 𝑅 𝑚𝑖𝑛 + 𝑅 𝐹𝑂𝑉 ) = 2sin -1 ( 1 1 + 𝑅 𝐹𝑂𝑉 𝑅 𝑚𝑖𝑛 ) (13) 
where

𝑅 𝑚𝑖𝑛 = 𝑚𝑉 2 𝐿 𝑚𝑎𝑥 𝑠𝑖𝑛𝜙 𝑚𝑎𝑥 (14) 
𝑅 𝑚𝑖𝑛 = 2𝑚 𝜌𝑆 𝑤 𝐶 𝑙 𝑚𝑎𝑥 𝑠𝑖𝑛𝜙 𝑚𝑎𝑥 [START_REF] Capitan | Cooperative aecision-maeing unaer uncertainties for multi-target surveillance with multiples UAVs[END_REF] where 𝜌 is the air density and m is the mass of UAV, 𝑆 𝑤 is the wing area, 𝜙 𝑚𝑎𝑥 is the maximum roll angle, V is the velocity, 𝐶 𝑙 𝑚𝑎𝑥 is the maximum lift coefficient, and 𝐿 𝑚𝑎𝑥 is the maximum lift of the desired UAV. In level flight, the lift to weight ratio is considered to be equal to one (𝐿/𝑚𝑔 ≈ 1), where g is the gravitational acceleration. In steady-state flight conditions, the UAV minimum radius of turn can be estimated by Eq. ( 16) as below: 

𝑅 𝑚𝑖𝑛 = 𝑉 2 𝑔𝑠𝑖𝑛𝜙 𝑚𝑎𝑥 (16 
[ 𝑥 𝑘+1 𝑦 𝑘+1 𝑧 𝑘+1 ] = [ 𝑥 𝑘 𝑦 𝑘 𝑧 𝑘 ] + [ -𝑐𝑜𝑠𝜆 -𝑠𝑖𝑛𝜆 0 𝑠𝑖𝑛𝜆 -𝑐𝑜𝑠𝜆 0 0 0 1 ] [ 𝐹 𝐷 𝑠𝑖𝑛𝜆 𝐹 𝐷 (1 + 𝑐𝑜𝑠𝜆) 𝑉Δ𝑡 𝑠𝑖𝑛𝜃 ] (17) 
where

𝐹 𝐷 = 𝑉 2 𝑔 √ 𝐹 𝑦 -1 (18) 
𝐹 𝑦 = 1 2 𝜌𝑉 2 𝑆 𝑤 𝐶 𝑦 𝑚𝑎𝑥 (19) 
where 𝐹 𝑦 is the lateral force, and 𝐶 𝑦 is the lateral force coefficient. The pitch angle (𝜃) and the inclination angle (𝜆), which are the control input parameters, should be determined by the optimization of turning flight.

Supposing a constant speed UAV, the displacement is equal to Δ𝑑 = 𝑉Δ𝑡. Due to the limitations of 𝜆, 𝜃, and Δ𝑡, the search space of the next time step is restricted to certain surface spaces. Therefore, the problem here has two control inputs 𝜆, 𝜃 to create a sequence of position vector 𝑋 = [[𝑥 1 , 𝑦 1 , ℎ 1 ] ′ , [𝑥 2 , 𝑦 2 , ℎ 2 ] ′ , … ]. Thus, the optimization problem changes to the minimization of the total cost function Z (X) as follows:

𝑍 * (𝑋) = 𝑚𝑖𝑛 𝜆, 𝜃 (∑ 𝑤 𝑖 𝑓 𝑖 (𝑋) 𝑘 𝑖=1 ) (20) 
Subjected to the dynamics constraints described in Table 2.

IV. Resolution Algorithms

Given the size of the search area and the limitation of flying time, the desired areas must be searched by several UAVs by applying optimal algorithms. Accordingly, different paths are allocated to each UAV by their priority to have the best overall revisit cost [START_REF] Ccott | Finding Optimal Solutions to Cooperative Pathfinding Problems[END_REF]. Therefore, a Cooperation Factor (CF) is defined as a criterion to guarantee the maximum coverage by producing separate paths. A function must be defined to minimize the cell intersections among all designed paths. The number of intersections (𝑛 𝑖𝑠 ) of the jth UAV, relative to the path length is a measure of the cooperation and efficiency of the coverage between the two separate points during multi-agent patrolling.

𝐶𝐹 𝑗 = 𝑛 𝑖𝑠 𝐿 𝑝𝑎𝑡ℎ ) 𝑈𝐴𝑉 𝑗 (21) 
The resolution for a cooperation flight is based on the assigned revisited cells. Cell distribution is based on revisit critical value and UAV priority during hierarchical processing. Accordingly, 𝑋 𝑗 is a sequence of the position vector, which express the path of jth UAV, and 𝐷 𝑗 indicates the position set of critical revisited cells.

The distributed analysis calculates cells' subsets (𝐶 1 , 𝐶 2 , …) on sequential operations as follows:

{ 𝐶 1 = {[𝑥, 𝑦, ℎ] ′ | [𝑥, 𝑦, ℎ] ′ ∈ 𝑋 1 + 𝐷 1 } 𝐶 2 = {[𝑥, 𝑦, ℎ] ′ | [𝑥, 𝑦, ℎ] ′ ∈ 𝑋 2 -𝐶 1 + 𝐷 2 } 𝐶 3 = {[𝑥, 𝑦, ℎ] ′ | [𝑥, 𝑦, ℎ] ′ ∈ 𝑋 3 -𝐶 1 -𝐶 2 + 𝐷 3 } ⋮ 𝐶 𝑁 = {[𝑥, 𝑦, ℎ] ′ | [𝑥, 𝑦, ℎ] ′ ∈ 𝑋 𝑁 -∑ 𝐶 𝑗 𝑁-1 𝑗=1 + 𝐷 𝑁 } (22) 
where 𝐶 𝑗 is the set of cells that indicate the path of the j-th UAV in a cooperated patrolling.

The ideal no-intersection situation is for all i and j, 𝑖 ≠ 𝑗; 𝐶 𝑖 ∩ 𝐶 𝑗 = ∅ were based on intersection distribution, 𝐶 1 ∩ 𝐶 2 ∩ … ∩ 𝐶 𝑁 = ∅. According to the practical environment, this condition is usually violated, therefore the optimal solutions try to have a minimum intersection. Efficient methods try to minimize the number of critical cells D as a function of the UAV path length 𝐿 𝑝𝑎𝑡ℎ :

{ 𝐷 = ⋃ 𝐷 𝑗 𝑁 𝑗=1 𝑐𝑜𝑢𝑛𝑡(𝐷) = ∑ 𝑛 𝑐𝑟 𝑗 𝑁 𝑗=1 (23) 
The minimum count of critical cells 𝑛 𝑐𝑟 , which implies that the cell needs to be revisited as soon as possible due to revisit time, can be expressed as a function of covered cells (𝐿 𝑝𝑎𝑡ℎ ) at each time step for N number of UAVs, according to the following equation.

𝐷 𝑚𝑖𝑛 = 𝑚𝑖𝑛 (∑ 1 (𝑛 𝑐𝑟 ∩ 𝐿 𝑝𝑎𝑡ℎ ) 𝑗 𝑁 𝑗=1 ) (24) 
Coverage performance is measured by a criterion named Percentage of Coverage (POC). Let 𝑆 refers to the area, 𝑆 𝑇 is the total area and 𝑆 𝐶 is a covered area, which depends on the field of view radius 𝑅 𝐹𝑂𝑉 and the length of the path 𝑋 𝑖 as follows.

𝑃𝑂𝐶 = 𝑆 𝐶 𝑆 𝑇 (25) 
𝑆 𝐶 = ∑(𝑆 𝐹𝑂𝑉 ) 𝑖 𝑛 𝑗 𝑖=1 ≈ ∑ 2𝑅 𝐹𝑂𝑉 |𝑋 𝑗 | 𝑁 𝑗=1 (26) 
Where |𝑋 𝑗 | denotes the traveling distance for agent j. Therefore, it can be followed for all UAVs by Eq. [START_REF] Chaneong | Multi-objective aecision maeing: theory ana methoaology[END_REF].

𝑃𝑂𝐶 = ∑ ∑ (𝑆 𝐹𝑂𝑉 ) 𝑖 𝑛 𝑗 𝑖=1 𝑁 𝑗=1 𝑆 𝑇 = ∑ 2𝑅 𝐹𝑂𝑉 |𝑋 𝑗 | 𝑁 𝑗=1 𝑆 𝑇 (27) 
The following algorithms include the cooperated planning (Algorithm 1), minimum critical cell approach (Algorithm 2), and achieving the maximum percent of coverage (Algorithm 3) in terms of reference cells, the cellular transformation of the searching environment, the allowable cells, and the free area without any obstacles or non-critical passed cells. In the following algorithms, the OpenList includes all the initial candidate cells and the CloseList represents the selected cells of the path derived from the optimization process. 

A. Cooperated Modified A-star

According to the problem strategy, the optimization method must be consistent with the cost function. In realtime applications, the convergence rate is very important. Based on the identification of key parameters, such as area visibility, cell cost value, and elevation map, many algorithms can be applied to solve the problem. Given the sensitivity of the vehicles and aerial operations, the fastest one, which can be compatible with multi-objective solutions, is more favorable. For this purpose, the capabilities of the Modified A-star (MA*) algorithm are used, and the results are compared with other approaches such as GA and Dijkstra algorithms.

Inspiring from typical A* during searching among trajectories, the algorithm first considers the ones with the fastest solution. It is formulated in terms of weighted graphs: starting from a specific node of the graph, constructs a tree of paths from the starting node, expanding paths one step at a time until one path ends at the predetermined End Point (EP). At each iteration of its main loop, the algorithm needs to determine which one of the partial trajectories to expand into one or more trajectories. The cell with the lowest cost value is chosen as a candidate for the next one in the sequence. According to the basic formula of A* [START_REF] Hart | A formal basis for the heuristic aetermination of minimum cost paths[END_REF], the structure of the multi-objective cost function of Eq. ( 5) is rewritten as Eq. ( 28), which determines the MA* structure.

𝑍 𝐴 * 𝑗 = 𝑍 𝑔 (𝑋 𝑗 𝑛-1 ) + 𝑍 ℎ (𝑋 𝑗 𝑛 ) (28) 
The path variable consists of a sequence 𝑋 = [𝑋 𝑗 1 , 𝑋 𝑗 2 , … , 𝑋 𝑗 𝑛-1 , 𝑋 𝑗 𝑛 ] for j-th UAV where 𝑍 𝑔 (𝑋 𝑗 𝑛-1 ) is defined as the multi-objective cost of the path from the known start node to any node 𝑛 -1, and 𝑍 ℎ (𝑋 𝑗 𝑛 ) is defined as a heuristic term that estimates the cost of the trajectories from 𝑛 -1 to the destination node within the entire set of all the target nodes. Each adjacent cell is evaluated by the value 𝑍 𝐴 * . The node with the lowest 𝑍 𝐴 * value is removed from the queue, the 𝑍 𝐴 * and 𝑍 𝑔 values of its neighbors are updated accordingly, and the neighbors are added to the queue. The algorithm continues until the endpoint node has a lower 𝑍 𝐴 * value respecting other nodes in the queue or until the queue is empty.

In multi-agent problems with several endpoints (𝑛 1 , 𝑛 2 , … , 𝑛 𝑗 , … , 𝑛 𝑁 ), the multi-objective cost function specifies a multivariable function (Z), which is evaluated by the real-time expansion of cells as follow:

𝑍 (𝑋 1 𝑛1 , 𝑋 2 𝑛2 , … , 𝑋 𝑗 𝑛𝑗 ) = [∑ 𝑍 𝑔 (𝑋 1 𝑖 ) 𝑛1-1 𝑖=1 + 𝑍 ℎ (𝑋 1 𝑛1 ) + ∑ 𝑍 𝑔 (𝑋 2 𝑖 ) 𝑛2-1 𝑖=1 + 𝑍 ℎ (𝑋 2 𝑛2 ) + ⋯ + ∑ 𝑍 𝑔 (𝑋 𝑗 𝑖 ) 𝑛𝑗-1 𝑖=1 + 𝑍 ℎ (𝑋 𝑗 𝑛𝑗 )] (29) 
Consequently, multi-agent 𝑍 𝑖𝑗 for global position variable 𝑋 𝑖𝑛 the search space is as follows: 

{ 𝑍 𝑖𝑗 (𝑋) = 𝑚𝑖𝑛 [∑ ( ∑
The pseudo-code of the cooperative MA* expansion and the final component of the cooperated multiobjective approach are presented below in Algorithm 4 and Fig. 3: 

Algorithm

V. Simulation Results and Discussions

According to Eq. ( 5), the first step of trajectory planning is the cost function verification in terms of weights.

In the simulations, some kinematic limitations were considered as the following equation. 

where the maximum flight altitude of UAVs is considered to be 3500 meters in terms of 𝑉 𝑡𝑟𝑖𝑚 and rate of climb 𝑅𝑂𝐶. The trajectories are created in a aiscrete way using Bresenham's line arawing algorithm [START_REF] Bresenham | Algorithm for computer control of a aigital plotter[END_REF].

A. Multi-Objective Weight Analysis

The goal here is just to analyze the effect of the multi-objective cost function (Eq. ( 5)) in a 3D environment.

The choice of one solution over others requires problem prevailing conditions. Therefore, in multi-objective optimization problems, it is useful to apply Pareto-optimal analysis [START_REF] Kasprzae | Pareto analysis in multi-objective optimization using the collinearity theorem ana scaling methoa[END_REF]. Consider a planning system with N agents and k cost. An allocation {𝑋 1 , 𝑋 2 , ⋯ , 𝑋 𝑁 }, where 𝑋 𝑗 ∈ ℝ 𝑘 for all 𝑗 = 1, ⋯ , 𝑁 , is Pareto optimal if there is no other feasible allocation {𝑋 1 ′, 𝑋 2 ′, ⋯ , 𝑋 𝑁 ′} for the objective function 𝑍 𝑖 for each objective 𝑖 = 1, ⋯ , 𝑘 as 𝑍 𝑖 (𝑋 𝑗 ′) ≤ 𝑍 𝑖 (𝑋 𝑗 ). Pareto sets make an efficient frontier of solutions in the performance space [START_REF] Geoffrion | Proper efficiency ana the theory of vector maximization[END_REF] to demonstrate that the weighted cost solution is an optimal response. 7 represents the mean performance values for different searching scenarios of Fig. 7. As presented in Table 7, simulations demonstrate that for the same flight endurance with similar UAVs, multi-agent flights provide a higher percentage of coverage by 5.32%, 12.01%, and 18.54% for one, two, and three UAVs accordingly in only one iteration from initial to the goal destination.

C. Revisit time analysis

Revisit time is assessed as the main cost function in our trajectory planning problem. From a cellular point of view, when a cell/area is revisited by the UAV field of view, the cell lifespan should be reduced to zero and the incremental process should be resumed. Fig. 8 illustrates the planning process to follow four revisit constraints (RTC1, RTC2, …, RTC4) in the general plane. The objective is to cross these desired four points on the desired revisit time (𝑻 𝒓 𝟏 , 𝑻 𝒓 𝟐 , 𝑻 𝒓 𝟑 , 𝑻 𝒓 𝟒 ) shown as constraints time circles. Most paths (more than 67%) cover the constraints and pass the area in the correct aging time. It can be improved by increasing the number of UAVs.

For a set of areas, the closer the value of the average revisit time to the desired value, the greater the efficiency of the optimization algorithm in implementing the revisit time. Fig. 9 shows the experience of ten areas under revisit time lifespan for one, two, three, and four UAVs in ten lifespans. The average revisits life span of these nominated ten cells shows 2.25 hours, 1.51 hours, 1.17 hours, and 0.85-hour revisit time for one, two, three, and four UAVs, respectively. It is also inferred that the ten life-span will finish at 22 hours, 16 hours, 12 hours, and 9 hours for selected scenarios. As stated in the mathematical relations, the revisit time as the life-span experience of an important area is a dynamic parameter that changes over time [START_REF] Olsen | Maximal Distance Discountea ana Weightea Revisit Perioa: A Utility Approach to Persistent Unmannea curveillance[END_REF]. The best way to evaluate the algorithm's performance respecting Although desirable responses are achieved from the proposed approach, some limitations have been neglected.

The communication range between UAVs, camera resolution, the field of view limitation, and camera delay time for object recognition have to be applied in the modeling and simulation. In our future research, we plan to focus on coordinated multi-agent path planning, while considering communication and camera limitations.

VI. Conclusions

This paper presents an efficient approach for multi-objective cooperative path planning of multiple UAVs in terms of values of cell's revisit time and several other effective cost functions including the altitude, minimum distance, collision avoidance, and turn costs. The main objective is to develop an implementable optimization algorithm that can be applied in cooperated multiple UAVs patrolling in search and coverage missions. The paper contributes to coordinated patrolling by MA* optimization algorithm to cover the most valuable cells during the flight in a 3D environment.

The design is based on a weighted multi-objective cost function, which is uniformly Pareto regulated and is applied according to the importance of its distinguished costs. In order to formulate the mathematical model of optimized cooperated patrolling, a multi-objective weighted form of the cost function in terms of dynamics constraints is proposed. The proposed approach develops an individual task weighting and cell investigation for persistent surveillance as well as border patrol challenges. The revisit time is considered as a governing parameter in path planning optimization. The variation of cost function weights changes the trajectory and its performance parameters. For revisiting scenarios that were subject to the lifespan revisit cycle, the density of trajectories over the important cells is evident, which demonstrates the effectiveness of the introduced revisit time in path planning.

The revisit time changes over time as a dynamic parameter according to the importance of the area and therefore it can generate different trajectories. Simulations show that the proposed method not only effectively avoids lowefficiency trajectories but also has the desired ability to perform a cooperated design while satisfying real-time demands by generating fast and accurate solutions.

Finally, to demonstrate the effectiveness of the proposed approach for minimizing the multi-objective cost function, the performance parameters are compared in terms of critical cell generations that need to be revisited.

However, the performance of the algorithm is lower in single-agent patrolling, it shows higher performance in a complex environment in multi-agent patrolling missions. In fact, in multi-agent applications, the results of the

NomenclatureA

  , D, F, f, G, H, Z = general matrix or functions 𝐶 𝑙 , 𝐶 𝑑 , 𝐶 𝑦 = aerodynamic lift, drag, and side force coefficients Fy = UAV Side force, N g = gravitational acceleration, m/s 2 h, hmin, hmax = flight altitude, m ho = desired/operational flight level, m K = control constant to identify the types of revisit area L, 𝐿 𝑝𝑎𝑡ℎ , 𝐿 𝑆𝑃 , 𝐿 𝑂𝐼𝐿 , 𝐿 𝑁𝐹𝐼𝐿 = nominal length Lmax = UAV maximum lift, N n = number of cells/areas in the path N = number of UAVs RTC = total revisit time function R, 𝑅 𝐹𝑂𝑉 , 𝑅 𝑚𝑖𝑛 = related turn radius, m SC = covered area, m 2 SFOV =UAV field of view area, m 2 𝑆 𝑇 = total area of the environment, m 2 𝑆 𝑤 = UAV wing area, m 2 t = time, sec Th, 𝑇ℎ 𝑚𝑖𝑛 , 𝑇ℎ 𝑚𝑎𝑥 = engine thrust, N 𝑇 𝑎𝑔𝑒 = aging time, sec 𝑇 𝑟 = revisit time matrix V = UAV velocity, m/s x, y, h = longitude, latitude, and elevation coordinates, m X = position vector 𝑤 𝑖 = weight of the cost function 𝛿 𝑒 (𝑡), 𝛿 𝑎 (𝑡), 𝛿 𝑟 (𝑡) =elevator, aileron, rudder deflection, rad ∆𝑑 = displacement distance, m 𝜃 = pitch angle, rad 𝜆 = inclination angle from the straight path, rad 𝜓 𝑡𝑢𝑟𝑛 = turning angle, rad 𝜙 𝑚𝑎𝑥 = UAV maximum roll angle, rad ∅ = empty matrix 𝜌 = air density, kg/m 3

  cell decomposition in a 3D environment Zagros mountain, Iran-a) 2D cell decomposition, b) 3D environment (21km (Long.) ×12km (Lat.)) with 100m×100m. Let 𝑁 ∈ ℕ and 𝑛 𝑗 ∈ ℤ + respectively aenote the number of UAVs as a value within the set of natural numbers ℕ = {1, 2, 3, … }, ana the number of cells in the inaiviaual path of the jth UAV within the set of semipositive integers ℤ + = {0, 1, 2, … }, with the following constraints:

Fig. 2

 2 Turning limitation. a) divers approaches to candidate cells with a minimum turn radius, b) maximum performance in turn due to cell coverage. Let 𝑋 ⃗ include a sequence of independent position values 𝑋 ⃗ = [[𝑥 1 , 𝑦 1 , ℎ 1 ] ′ , [𝑥 2 , 𝑦 2 , ℎ 2 ] ′ , … ] to connect the environmental model to the multi-objective function. The UAV displacement (∆𝑑) from the current position [𝑥 𝑘 , 𝑦 𝑘 , ℎ 𝑘 ] ′ to the next desired position [𝑥 𝑘+1 , 𝑦 𝑘+1 , ℎ 𝑘+1 ] ′ , during the time interval of ∆𝑡, which depends on drag force 𝐹 𝐷 , inclination angle 𝜆, total velocity 𝑉, and pitch angle 𝜃, can be calculated based on the UAV discretized dynamics equation as follows:

Fig. 3

 3 Fig. 3 Multi-objective cooperated modified A* (MA*) during optimal path planning for multiple UAVs

  375 (𝑚) 𝑅 𝐹𝑂𝑉 = 375 (𝑚) 𝜆 𝑚𝑖𝑛 = 60 (𝑑𝑒𝑔) 100(𝑁) < 𝑇ℎ < 200(𝑁) [0] < 𝑇 𝑟 < [𝑇 𝑟 ]
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 4354667 Fig.4arepresents the simulation result of path planning for a specific value of the altitude coefficient, while Fig.4billustrates the results of weight increase by 300%. In Fig.4c, different trajectories derived for the different possible values of the altitude weight coefficient are illustrated. Fig.4ddepicts the altitude cost threshold for variations of the altitude weight coefficient which demonstrates that the cost function saturates for the altitude weights larger than 0.5. Table3represents the important parameters of three different scenarios with different altitude weight coefficients. Accordingly, the trajectory length and number of control efforts increase by increasing the altitude weight coefficient.The minimum distance, unlike altitude, enforces shorter trajectories. Fig.5arepresents the trajectory with a specific value of min distance weight, while Fig.5billustrates the trajectory with a 300% increase of the related weight. Accordingly, more straight trajectories are derived by increasing the min distance weight. The overall trajectory pattern for a variety of weights is illustrated in Fig.5c, while Fig.5drepresents the cost values with different weight coefficients. The trajectory performance parameters are shown in Table 4 respecting three different scenarios with different values of minimum distance weight coefficient.

Fig. 7

 7 Fig. 7 illustrates the trajectories based on the MA* optimal solution for a single, double, and triple-UAV cooperated flight respecting revisit values.Table 7 represents the mean performance values for different

Fig. 8 Fig. 9

 89 Fig. 8 Path planning analysis to follow 4 revisit time cost (RTC1~4) constraints (𝑻 𝒓 𝟑 < 𝑻 𝒓 𝟏 < 𝑻 𝒓 𝟒 < 𝑻 𝒓 𝟐 )

  the revisit time is to stop the lifespan in the desired development and to check the level of environmental cell revisit density. According to Fig.2, important areas respecting revisit cost were previously introduced. Figs. 10 and 11 illustrate patrolling over the first and second revisit development for a single and cooperated double-UAV.

Fig. 10

 10 Fig. 10 shows 200 hours of patrolling by a single (10.a) and double-UAV (10.b) on the first revisit development.

Fig. 11 Fig. 10 Fig. 11

 111011 Fig. 11 illustrates the patrolling of 500 hours by a single (11.a) and double-UAV (11.b) on the second revisit development. According to Figs 12 and 13, trajectory density is much higher around the point of interest, which is more important to be revisited during the patrolling mission.

Fig. 13

 13 Fig.13 represents the comparison of important parameters including the run-time, accuracy, and number of extended cells for three algorithms of MA*, GA, and Dijkstra. Comparisons of the performance criteria verify the efficiency of the MA* algorithm respecting other algorithms in multi-agent patrolling missions.

Fig. 12 Fig. 13 .

 1213 Fig. 12 Different algorithms' performances to prevent critical revisit cells in terms of the number of UAVs during the real-time solution.

  

  

  1/𝑝 , (1 ≤ 𝑝 < ∞) , which is usea to evaluate the effect of multi-agents cooperatea costs in terms of path variables. Let 𝑋 be a set of position vectors incluaing a nominal sequence of position values of longituae x, latituae y, ana altituae h. Consiaering any function of 𝑋, which can be defined as 𝑓(𝑋): 𝑋 𝑁 → ℝ to demonstrate the multi-objective cost functions. The

	novel Revisit Time Cost (RTC) is defined as below:	
	𝑅𝑇𝐶(𝑋) = {	𝑒 𝐾𝜏(𝑋) -1 1 𝑒 𝐾𝜏(𝑋)	𝑇 𝑟 ≤ 𝑇 𝑎𝑔𝑒 𝑇 𝑟 ≥ 𝑇 𝑎𝑔𝑒	(2)
	where K as a control parameter determines the rate of RTC growth and 𝜏 is a time-based function of the path
	𝑋, which depends on revisit time (𝑇 𝑟 ). The parameter 𝜏 indicates when a cell should be revisited when it reaches
	a certain amount of aging time, the elapsed time since the last visit. It is defined as below for a set of cells
	(1,2, … , 𝑛), to evaluate the RTC function.			
	𝜏(𝑋) = ∑ 𝜏(𝑋 𝑖 ) 𝑛 𝑖=1	𝑛 = ∑ 𝑖=1	𝑇 𝑎𝑔𝑒 (𝑋 𝑖 ) |𝑇 𝑟 𝑖 -𝑇 𝑎𝑔𝑒 (𝑋 𝑖 )|

Table 1 Mathematical components
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	Group	Description	
		Fight Altitude (ℎ)	
		Turning Rates (𝜓 ̇)
	Variables	Field Of View (𝑅 𝐹𝑂𝑉 ) Revisit Time Matrix ([𝑇 𝑟 ])
		Cooperation Factor (𝐶𝐹)
		Velocity:	𝑉 = 𝑉 𝑡𝑟𝑖𝑚
		Operational altitude: Rate of climb:	ℎ 𝑚𝑖𝑛 ≤ ℎ 𝑜 ≤ ℎ 𝑚𝑎𝑥 ℎ ̇𝑚𝑖𝑛 ≤ 𝑅𝑂𝐶 ≤ ℎ ̇𝑚𝑎𝑥
		Turning rate:	𝜓 ̇𝑚𝑖𝑛 ≤ 𝜓 ̇≤ 𝜓 ̇𝑚𝑎𝑥
	Constraints	Minimum turning radius:	𝑅 𝑚𝑖𝑛
		Minimum inclination from straight:	𝜆 𝑚𝑖𝑛
		Thrust:	𝑇ℎ 𝑚𝑖𝑛 ≤ 𝑇ℎ ≤ 𝑇ℎ 𝑚𝑎𝑥
		Revisit time matrix:	[0] ≤ 𝑇 𝑟 ≤ [𝑇𝑟 𝑚𝑎𝑥 ]
		Maximum Revisited Value (max(RTC))
	Objectives	Minimum Cooperation Factor Minimum number of producing critical cells
		Maximum Coverage

Table 2 Path cost function components

 2 

	Cost Function				Parameters			Formula
	Revisit				Revisit time cost (RTC)			𝑓 1 (𝑋) =	1 𝑅𝑇𝐶(𝑋)	(6)
	Altitude			Flight altitude (ℎ) Desired altitude (ℎ 𝑑 ) Max. admissible altitude (ℎ 𝑚𝑎𝑥 )		𝑓 2 (𝑋) =	|ℎ(𝑋) -ℎ 𝑑 | ℎ 𝑚𝑎𝑥 -ℎ 𝑚𝑖𝑛	(7)
					Min. admissible altitude (ℎ 𝑚𝑖𝑛 )					
		Turn	Turning angle (𝜓 𝑡𝑢𝑟𝑛 ) Path length (𝐿 𝑝𝑎𝑡ℎ ) Inclination angle from straight (𝜆 = 𝜋 -𝜓 𝑡𝑢𝑟𝑛 ) Minimum turning radius (𝑅 𝑚𝑖𝑛 )	𝑓 3 (𝑋) =	𝐿 𝑝𝑎𝑡ℎ 𝜋 -|𝜓 𝑡𝑢𝑟𝑛 (𝑋)| 𝜋	(8)
					Field of view radius (𝑅 𝐹𝑂𝑉 )					
	Min. distance			Straight path length (𝐿 𝑆𝑃 ) Path length (𝐿 𝑝𝑎𝑡ℎ )		𝑓 4 (𝑋) = 1 -	𝐿 𝑆𝑃 𝐿 𝑝𝑎𝑡ℎ (𝑋)	(9)
	Collision avoidance			Obstacle inside length (𝐿 𝑂𝐼𝐿 ) Path length (𝐿 𝑝𝑎𝑡ℎ )			𝑓 5 (𝑋) =	𝐿 𝑂𝐼𝐿 𝐿 𝑝𝑎𝑡ℎ (𝑋)	(10)
	No-fly zone			No-fly zone inside length (𝐿 𝑁𝐹𝐼𝐿 ) Path length (𝐿 𝑝𝑎𝑡ℎ )			𝑓 6 (𝑋) =	𝐿 𝑁𝐹𝐼𝐿 𝐿 𝑝𝑎𝑡ℎ (𝑋)	(11)
	To	achieve	the	best	flight	performance	[34],	the	j-th			UAV	path	variable
	𝑋 𝑋 𝑗	𝑛 𝑗 1/ ∑ 𝑅𝑇𝐶(𝑋 𝑗 ) 𝑗=1						

𝑗 = [[𝑥 1 , 𝑦 1 , ℎ 1 ] ′ , … , [𝑥 𝑛𝑗 , 𝑦 𝑛𝑗 , ℎ 𝑛𝑗 ] ′ ]

, 𝑛 𝑗 ∈ ℤ + includes a sequence of points/cells with a specific revisit time value 𝑇 𝑟 𝑖 ≥ 0, for each cell 𝑖 ∈ {1,2, … , 𝑛 𝑗 }. Thus optimal 𝑋 𝑗 * , is the path with the minimum accumulated revisit cost function min

  𝑍 𝑔 (𝑋 𝑗 )

		𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑉, ℎ, 𝑅𝑂𝐶, 𝑅 𝑚𝑖𝑛 , 𝑅 𝐹𝑂𝑉 , 𝜓 ̇, 𝑇, 𝑇𝑟
		𝑁 min 𝐶𝐹 = ∑ 𝑗=1	(𝑛 𝑖𝑠 ) 𝑗 (𝐿 𝑝𝑎𝑡ℎ ) 𝑗
		min 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐶𝑒𝑙𝑙 = 𝑚𝑖𝑛 (∑ 𝑁 𝑗=1	1 (𝑛 𝑇𝑟 ∩ 𝐿 𝑝𝑎𝑡ℎ ) 𝑗	)
	{	max 𝑃𝑂𝐶 : 𝑚𝑎𝑥 (	∑ 𝑆 𝐶 𝑗 𝑁 𝑗=1 𝑆 𝑇	)
		𝑁	𝑛 𝑗 -1	
					+ 𝑍 ℎ (𝑋 𝑗 ))	]	(30)
		𝑗=1	𝑖=1	
		𝑓𝑖𝑛𝑑𝑖𝑛𝑔: 𝑋 1 , 𝑋 2 , … , 𝑋 𝑁
	Subject to			

Table 7 Multi-agent mean performance values according to the cost function component
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	Number of UAVs	Trajectory cost	Number of control effort	Trajectory length (m)	Cost of revisit term	Cost of altitude	POC
	1	1893	75	8312	241	311	5.32%
	2	3185	182	21351	518	534	12.01%
	3	6257	289	30132	795	721	18.54%

proposed algorithm are much more efficient in comparison with Dijkstra and GA algorithms regarding the lower time computational complexity of MA*, the number of extended cells, and a higher percentage of coverage, while considering revisit of important zones.