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Split-step wavelet with local operators for the 3D

long-range propagation

Thomas BONNAFONT∗, Remi DOUVENOT∗, Alexandre CHABORY∗,
∗ENAC, Université de Toulouse, Toulouse, FRANCE, thomas.bonnafont@enac.fr

Abstract—Modeling the long-range propagation in the low
troposphere is a topic of major concern for many systems
such as radar. In 3D, split-step Fourier methods are limited
by both computation time and memory size. Therefore, the N
times 2D split-step Fourier method is usually used to model the
propagation even if 3D effects are not taken into account. To
overcome this, we propose a 3D wavelet-based split-step method
that is memory and time efficient. This method is based on the
use of the fast wavelet transform, which is of low complexity
and allows efficient sparse representations. From numerical
experiments, we show that the 3D proposed split-step wavelet
method is efficient in terms of precision, time, and memory.

Index Terms—split-step, wavelets, 3D long-range propagation,
parabolic wave equation.

I. INTRODUCTION

The 3D long-range propagation of electromagnetic waves is

a topic of major interest in many applications in surveillance,

communication, and navigation. In this context, models based

on the parabolic wave equation (PWE) [1] are widely used.

One efficient method to solve the PWE is split-step Fourier

(SSF).

By going back and forth from the spectral to the spatial

domain, this method iteratively computes the propagation of

the field. The propagation is split into two terms. One term

of propagation in a homogenous slice of atmosphere in the

spectral domain. Another term to model the refraction with a

phase screen in the spatial domain. In 2D this method can

accurately model the propagation also taking into account

ground composition, with the discrete mixed Fourier transform

(DMFT) [2], and relief [3], [4].

In 3D, N×2D SSF methods are usually used. They consist

of scanning the domain with a 2D method. Nevertheless,

the 3D lateral effects are neglected. Therefore, extensions of

SSF to 3D have been developed [5]. Recently, its discrete

counterpart (DSSF) in cylindrical coordinates [6] has been

developed to avoid spurious solutions. These methods allow

to model the 3D propagation while taking into account 3D

effects. However, they are not memory and time efficient,

which prevent their operational use.

In 2D, a wavelet-based split-step method (SSW) has been

introduced [7]. Based on the fast wavelet transform (FWT) [8]

and the sparse representation allowed by wavelets, this method

is fast and memory efficient.

In this article, we propose a generalization of this method

to 3D in order to obtain a usable method for 3D long-

range propagation. The main objective is to obtain an efficient

method in terms of memory occupation and computation

time. In this work, the 3D scalar problem without taking

into account relief is studied. Yet, ground composition and

refraction are considered.

In Section II, the problem configuration is defined. In

Section III, a brief introduction to the 2D multilevel wavelet

decomposition on a separable basis is proposed. In Section

IV, the 2D wavelet transform is used in the 3D split-step

wavelet method. First, an overview of the method is given.

Then we focus on the propagation part of the method. In

Section V, numerical tests are proposed to validate the method

and highlight its advantages in terms of memory occupation

and computation time. Finally, Section VI concludes the paper.

II. CONFIGURATION

In this article, an exp (jωt) dependence is assumed, with

ω the angular frequency. We aim at modeling the 3D forward

propagation of the reduced field u in Cartesian coordinates

over the ground. The source is located at xs ≤ 0 and the field

is known at x = 0.

The domain is of finite size x ∈ [0, xmax], y ∈ [0, ymax]
and z ∈ [0, zmax]. First, a discretization along y and z axis is

applied

ypy
= py∆y, py ∈ [0, Ny − 1], (1)

zpz
= pz∆z, pz ∈ [0, Nz − 1], (2)

with Ny = ymax/∆y, Nz = zmax/∆z the number of points in

each direction. The discretized reduced field along y and z is

denoted by ux[py, pz]. A discretization along x is also applied

with a step ∆x and Nx = xmax/∆x.

III. BRIEF INTRODUCTION TO WAVELETS

Wavelets are widely used in image processing, e.g.,

JPEG2000 format. In this paper, the 2D multilevel wavelet

transform in a separable basis [8] is used to decompose

the reduced field ux[py, pz]. A basis of 3L + 1 wavelets

is used, with L the maximum level. A wavelet is a short

length oscillating function of zero-mean. in 2D, three different

wavelets are used to describe the horizontal, vertical, and

diagonal variations of the signal. These latter are dilated on L
levels to take into account slower variations of the signal. A

wavelet is denoted by ψo
l , with l its level and o its orientation

(horizontal, vertical, or diagonal). A last function, the scaling

function φ, of non-zero mean is added to take into account the



slowest variations of the signal. These functions are translated

(ty , tz) to obtain an orthonormal basis.

On this basis, using the FWT [8], the field is decomposed

on the wavelet atoms on L levels. This transform is of com-

plexity O(NyNz), lower than the FFT. Besides, the wavelet

coefficients are fastly decreasing to 0 allowing an efficient

sparse representation using compression.

IV. SPLIT-STEP WAVELET

In this section, the 3D split-step wavelet method is intro-

duced. For conciseness, since the scaling function φ and a

L-level wavelet are computed likewise, the scaling function is

omitted here.

A. Overview of the method

In this section, an overview of the split-step wavelet (SSW)

method is given. This latter is an iterative method that com-

putes the field further from the source by going back and forth

in the wavelet and spatial domains. A step of SSW from x to

x+∆x is performed as follows:

1) The reduced field ux is decomposed in the wavelet

domain with a FWT (operator W ). Compression with

threshold Vs is applied (operator C). The sparse matrix

Ux of size Ny ×Nz containing the wavelet coefficients

is obtained

Ux = CWux. (3)

2) Propagation in the wavelet domain is achieved using

operator P

Ux+∆x = PUx. (4)

The propagator corresponds to a wavelet-to-wavelet

scattering matrix. This operation is comprehensively

introduced through Section IV-B to IV-C. This is based

on the use of a set of local propagators to propagate

each non-zero coefficient of Ux.

3) The free-space propagated field ufs
x+∆x is obtained by

applying an inverse FWT (operator W−1)

ufs
x+∆x =W−1Ux+∆x. (5)

Thus, ufs
x+∆x is expressed in the space domain.

4) The refraction is taken into account using the phase

screen method [2] (operator R) to obtain the field at

x+∆x

ux+∆x = Rufs
x+∆x. (6)

A PEC ground is taken into account with few additional

points using the local image method [9]. In the case of an c

ground, the local image method with the DMFT change of

variable is applied.e

Finally, the domain is limited at each side in y-direction and

at the top in z-direction. An apodization with the Hanning

window is applied to model absorbing conditions toward

infinity.

B. Computing the local propagators

In this section, we introduce how to efficiently compute

the set of local propagators. This set is constructed following

and adapting the 2D strategy [7], which stores the essential

wavelet-to-wavelet propagations.

The computation of this set is performed in 3 steps as

follows:

1) For each level l and orientation o the wavelet χo
l,0[py, pz]

is propagated of ∆x using the 3D DSSF [6]. Thus,

ψo
l,∆x[py, pz] is obtained. Thus, a total of 3L+1 DSSF

is needed.

2) Since, as in 1D [9], the space grids of the wavelets are

dilated by 2 at each level in each direction, translations

of (plty , p
l
t,z) ∈ [0, 2L−l[×[0, 2L−l[ in y and z direc-

tions are required. The translated propagated wavelet

ψo
l,∆x[py + plty , pz + pltz ] is thus obtained. This leads

to 22(L−l) translations for each level.

3) The propagated wavelet field ψo
l,∆x[py+p

l
ty
, pz+p

l
tz
] is

decomposed with a 2D FWT and compressed (threshold

Vp) to obtain propagator Pl,o,pl
ty

,pl
tz

. Hence a total

of only 1 + 3
∑L

l=1 2
2(L−l) sparse wavelet-to-wavelet

propagations are stored in P . This corresponds to the

minimal number of necessary propagations.

The support of the wavelet is smaller than the overall

domain and theoretically known [8]. Therefore computing

the propagation of the wavelet on its own support induces

a drastic reduction of the computation time [7]. Besides, if

∆y = ∆z the vertical wavelet corresponds to a rotation of

90◦ of the horizontal wavelet. Using this rotation invariance,

the propagation of the vertical wavelet can be computed as the

rotation of the propagated horizontal wavelet. This yields to

only 2L+ 1 necessary DSSF propagations instead of 3L+ 1,

reducing further the computation time.

C. Propagation using the local propagators

In this part, the method to compute the propagation using

the set of local propagators P is introduced.

First, the non-zero wavelet coefficients of Ux, denoted by

αo
l [py, pz], are obtained by applying a FWT and a compression

to the field ux. Second, for each of this coefficient, we select

the associated local propagator Pl,o,pl
ty

,pl
tz

with

plty = py mod 2L−l, (7)

pltz = pz mod 2L−l, (8)

l and o the level and orientation of α, respectively. Third, the

free-space elementary propagation associated with this coeffi-

cient corresponds to αo
l [py, pz]Pl,o,pl

ty
,pl

tz
. Finally, these local

propagations are translated to the position of the coefficient

and summed up to obtain the propagated wavelet coefficients

Ux+∆x =
∑

l,o,py,pz

(

αo
l [py, pz]Pl,o,pl

ty
,pl

tz

)

[·+py, ·+pz]. (9)

With these steps, the propagated wavelet coefficients Ux+∆x

are obtained. An inverse FWT yields the free-space propagated

field.



V. NUMERICAL EXPERIMENTS

The objective of the numerical experiments is to test the

method and compare it to DSSF in terms of computation time

and memory occupation.

A. Free-space propagation

In this test, we aim at validating the method with a free-

space propagation. To do so, the propagation in free space of

the field radiated by a CSP at 300 MHz is studied. The domain

is of size xmax = 1500 m and ymax = zmax = 1024 m. The

steps are set to ∆x = 50 m and ∆y = ∆z = 0.5 m. The

source is placed at xs = −50 m and ys = zs = 512 m. The

waist size is W0 = 5 m.

For the wavelet parameters, we choose the symlet family

with 6 vanishing moments and a maximum level L = 3. The

thresholds are set to Vs = Vp = 5.3× 10−4.

The propagation is computed both with SSW and SSF.

Firstly, in Figure 1 (a) the normalized field obtained with SSW

in the yOz-plane is plotted. Secondly, Figure 1 (b) shows the

normalized field obtained with SSW in the xOz-plane. Finally,

in Figure 1 (c) the root mean square (RMS) difference in dB

between SSW and DSSF is presented.

The final normalized difference between both methods is

below −45 dB. This error and the RMS difference is due to

the two compressions (of thresholds Vs and Vp) that induce

an accumulation of error throughout the propagation. Never-

theless, differences are acceptable and can be managed using

the thresholds. Therefore, the method is working correctly in

this case.

In terms of computation time and memory occupation,

results are summed up in Table I. In this latter, propagator

time or memory correspond to the set of local propagators

for SSW and to storing the propagation matrix for DSSF.

The propagation time and memory correspond to the time to

compute the propagation on the overall domain and to the

memory needed to store the propagated field or coefficients,

respectively.

TABLE I: Computation time and memory occupation needed

by SSW and DSSF.

method DSSF SSW

propagator time (s) 138 8.3
propagation time (s) 343 330

propagator memory (MB) 604 10.2
propagation memory (MB) 604 0.05 to 2.1

We can conclude that in this case, SSW is comparable in

terms of computation time to SSF. Nevertheless, the memory

occupation is better with SSW both to store the propagator or

the propagated wavelet coefficients. This shows the advantage

of SSW over DSSF.

B. Bidirectional-duct scenario

Now a more complex scenario with 3D lateral effects along

y and z is studied. The propagation of the field radiated by a

CSP at 300 MHz with a bidirectional-duct is modeled. With
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Fig. 1: Propagation of the field radiated by a CSP in free space

with.

the 3D method, we expect to obtain the same results in both

directions, whereas a N×2D method could only be accurate

in one direction.

The configuration parameters are as follows. The propa-

gation is computed over 10 km with steps of 200 m in x-

direction. The domain is of size 2048 × 2048 m in y and z
directions with ∆y = ∆z = 1 m. The source is a complex

source point placed at xs = −50 m with a waist size of

W0 = 10 m and at ys = zs = 1024 m.

The wavelet parameters remain the same, except for the

thresholds Vs = Vp = 10−3.

The bidirectional-duct is modeled with tri-linear models

with the same parameters in both y and z directions. The

parameters for the two ducts are: M0 = 330 M-units, yb =
zb = 950 m, yt = zt = 100 m, c0 = 0.118 M-units/m and

c2 = −1 M-units/m. The corresponding modified refractive



index M is plotted in Figure 2. This corresponds to the phase

screen applied at each step.
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Fig. 2: M-index (M-units/m) on the yOz-plane.

As previously, the propagation is computed both with SSW

and SSF. Firstly, in Figure 3 (a) the final normalized field

obtained with SSW in the yOz-plane is plotted. Secondly,

Figure 3 (b) shows the final normalized difference between

SSW and DSSF in the yOz-plane. Finally, in Figure 3 (c)

horizontal and vertical cuts of the field at Ny/2 and Nz/2 are

presented.

We can observe that the 3D effects due to the refraction

are accurately simulated. Indeed, in both directions, the results

match within an acceptable error. Besides the normalized error

with DSSF is below −30 dB, which is negligible. Thus, SSW

has been successfully tested in a 3D long-range propagation

scenario with complex atmospheric effects.

In terms of computation time and memory occupation, the

results are summed up in Table II.

TABLE II: Computational cost of lSSW and DSSF in terms

of computation time and memory occupation.

method DSSF lSSW

propagator time (s) 133 6.5
propagation time (min) 9.2 10

propagator memory (MB) 604 5.1
propagation memory (MB) 604 0.03 to 3.4

In this case, the computation time is slightly better with

DSSF. This is due to the propagation part. In DSSF this

part uses the optimized Python matrix-vector product, whereas

SSW is a Python laboratory code with loops. Nevertheless,

the memory occupation is better with SSW by a factor of 100,

showing the advantage of SSW for 3D long-range propagation.

VI. CONCLUSION

In this paper, a wavelet-based split-step method for model-

ing the 3D long-range propagation has been proposed.

This method iteratively computes the field by going back

and forth in the wavelet and spatial domains. The method is

based on the propagation of the wavelet coefficients of the

field using a set of local propagators. Using the advantages of

the wavelet transform, this method yields a fast and memory-

efficient method. Numerical experiments have been performed

to validate the method. First, propagation in a homogeneous
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Fig. 3: Propagation of the field radiated by a CSP in a

bidirectional-duct scenario.

atmosphere has shown that the method is accurate and effi-

cient. Second, a long-range propagation scenario with a bi-

directional duct has shown that the method is as accurate as

DSSF. Besides SSW is better in terms of memory occupation

than DSSF. Nevertheless, the computation time is of the same

order and should be improved.

Future works include implementing the wavelet propagation

in a compiled language for future comparison with DSSF.

Also, the problem of taking into account the relief in 3D

should be considered.
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