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Abstract

Robustness of deep neural networks is a critical issue in practical ap-
plications. In the general case of feed-forward neural networks (including
convolutional deep neural network architectures), under random noise at-
tacks, we propose to study the probability that the output of the network
deviates from its nominal value by a given threshold. We derive a sim-
ple concentration inequality for the propagation of the input uncertainty
through the network using the Cramer-Chernoff method and estimates of
the local variation of the neural network mapping computed at the train-
ing points. We further discuss and exploit the resulting condition on the
network to regularize the loss function during training. Finally, we as-
sess the proposed tail probability estimates empirically on various public
datasets and show that the observed robustness is very well estimated by
the proposed method.

1 Introduction

Deep neural networks have proven to be very effective in practice to perform
highly complex learning tasks [11]. Due to this success, they have gained a
great deal of attention these past few years and they have been applied widely.
However, they also have been found to be very sensitive to data uncertainties
[9, 23] to the point that a whole research community is now addressing the so-
called network attacks in order to study and design input noise that can fool
the network decision. Attacks can be random when data are corrupted by some
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random noise or adversarial when the noise is specifically designed to alter the
network output [23]. Even though both types of attacks are related since they
are both addressing the robustness of the network, we will only focus in this
article on the random case. Most data are usually uncertain, either because
the data are related to naturally noisy phenomenon and we only have access
to some of its statistics or because assessing devices to do not have sufficient
accuracy to record precisely the data. In this study, we will therefore assume
that the network input data are corrupted by some additive bounded random
noise.

Robustness to bounded input perturbations has been analyzed in the past few
years. Most people have addressed the problem through the use of regulariza-
tion techniques [12, 19, 26, 10]. The main idea is to consider the neural network
as a Lipschitz map between the input and output data. The Lipschitz constant
of the network is then estimated or upper bounded by the norm of the layer-by-
layer weights product. This estimates the expansion or contraction capability
of the network and is then used to regularize the loss during training. Often,
there is a price to pay: the expressiveness of the network may be reduced, es-
pecially if the weights are too constrained or constrained layer by layer instead
of constrained accross layer [7]. Such strategies are enforcing robustness but do
not provide guarantees or estimates on the level of robustness that has been
achieved. In the case of adversarial perturbation, some authors have proposed
methods for certifying robustness [15, 4]. Recently, a probabilistic approach
has also been proposed in the case of random noise for convolutional neural
networks [27]. Pointing out that the threat of random noise may have been
overlooked by the research community in favor of adversarial attacks, the au-
thors have proposed probabilistic bounds based on the idea that the output of
the network can be lower and upper bounded by two linear functions. The work
proposed here is along the same line but distinct in several aspects. It combines
upper bounds on tail probabilities calculated by deriving a specific Cramer-
Chernoff concentration inequality for the propagation of uncertainty through
the network with a network sensitivity estimate based on a network gradient
calculation with respect to the inputs. The network gradient is computed by
automatic differentiation and estimates the local variation of the output with
respect to the input of the network. The estimation is carried out and averaged
over the complete training set. A maximum component-wise gradient variation
is also calculated in order to give probabilistic certificates rather than estimates.
The certificates can be used in place of estimates whenever guaranteed upper
bounds are needed, however they are often not as accurate since they are based
on variation bounds rather than averages. For the specific case of piece-wise
linear activation functions, we also propose an alternative bound based on the
calculation of an average activation operator matrix computed at each layer
using also the training samples. We then discuss the use of the derived bounds
and estimate to regularize the neural network during training in order to reach
regions of the weight space that ensure greater robustness properties. We then
design experiments in order to assess the robustness probabilistic estimates for
various regularization strategies.



The article is organized as follows: Section 2 provides the specific neural net-
work concentration inequality using the Cramer-Chernoff method and the cal-
culation of the network gradient estimate and the average activation operator
for the case of piece-wise linear activations. Section 4 deals with training of the
neural network and its regularization issues to increase its robustness. Section 5
provides the results of an empirical evaluation of the neural network robustness
for various public datasets. Finally, Section 6 concludes the article.

2 Probabilistic certificates of robustness

Consider feed-forward neural networks that we represent as a successive compo-
sition of linear weighted combination of functions such that z! = f{(W*!) Ta!~14+
b') for I = 1,...,L, where /=1 € R™-1 is the input of the I-th layer, the
function f! is the Llf—Lipschitz continuous activation function at layer [, and
Wt e Ru-1X" and b' € R™ are the weight matrix and bias vector between
layer | — 1 and [ that define our model parameter § = {W! b'}L | that we
want to estimate during training. The network can be seen as the mapping
go : 2° — gp(x°) = zX. The training phase of the network can be written as the
minimization of the empirical loss L(xz,y,60) = > | l9(go(x), y;) where lg is
a measure of discrepancy between the network output and the desired output.

Assume now that we only have access to noisy observations z; of the input
sample. However, we know that these observations are drawn from a distribution
D with finite support. We first consider the special case where the functions
f! are linear or piece-wise linear (this includes the case of ReLu activation
functions) and then extend the analysis to more general functions. We start by
considering the one layer neural network setting to further extend the idea to
several layers.

2.1 The single layer architecture

In this section, we consider the simple case where the outputs of the network
y = 2% (with L = 1 in this case) depends linearly of the inputs z = 2% € R" as
follows: w 'z + b where w = W' is the single layer weights vector and b = b' is
the layer bias.

We assume that our input observations are corrupted by some additive noise €
such that e ~ D and Vi = 1,...,n, we have ¢; € [—v,7] with v < +00. Our
objective is to ensure the following property:

Peup ([y =l <T) > 1 -« (1)

where y. = w' (z+¢€) +b, I is the allowed output uncertainty and 1 — « is some
predefined level of confidence.

In the following proposition, we give a condition on w that will ensure, with
probability greater than 1 — «, that the output uncertainty remains below T'.



Proposition 2.1 If the network inputs are subject to an additive uncertainty €
where Vi =1,...,n, ¢ ~ D and supp(D) C [—7,7] (v < +0), then for a given
a € (0,1] and a given output uncertainty level T, the following condition holds:

' ' Tlp < —L22
If the layer weights vector w satisfies ||ww ' || p < VTR then
Peop (ly —ye| <T) > 1—a.

Proof: We start by observing that in general we have
Peup (ly = 4l T) 2 Pewp (tr (w'e(w'e)T) <T?), (2)

where tr(A) defines the trace of a matrix A. Note that in the particular case
where all activation functions are linear, equality is achieved.
Therefore inequality (1) may be satisfied by ensuring that

P.p (tr(wTe(wTe)T) >T?) =Peup (tT‘(eeTwa) >T2) <a.

We now state and prove the following Lemma which provides a simple concen-
tration inequality for the above probability.

Lemma 2.2 For any random matriz M € R™*™ of the form M = vv| where v
is a random vector such that for all i in {1,...,n}, v; are all independent, have
finite support included in [—6,0] and E(v;) =0, we have
+2
VQ € R\ {0,},5t >0, P(tr(MQ) >1t) <e *7FIIE, (3)
where 0y, is the n X n zero matriz and § = min{p > 0 s.t. Vz € R, % —
log(cosh(z)) > 0}.

Proof: The proof is based on the Cramer-Chernoff method [5] to bound the tail
probability of the random variable tr(M Q). Applying Markov inequality to the
left hand side of (3), we have:

P (tr(MQ) > t) <

for any positive and non decreasing function ¢. Therefore, since m;; = v;v; =
my;, for any p € Rt, we have

P(tr(MQ)>t) < e PE (eptT(MQ))
< PR (e” 2=t mriﬂjz‘)

e PR (ﬁ epmii‘hi> ﬁ e2Pmij dji . 4)

i=1 i,j=1:1<j

IN

Observe now that since for all i # j, we have that cov(m;, m;;)=0 and since
E(v;) = E(v;) = 0 that

COV(m,’i, mij) = COV(U,”UZ', Uﬂjj) =0.



Therefore, from (4), we have

P(tr(MQ) >1t) <e Pt ﬁ E (P95 |

i,j=1

Let now 9 (amq) be the moment generating function of tr(M@), its Cramer
transform obtained by Fenchel-Legendre duality is

Yemg)(t) = ng())(pt — V@) ()
p=

Note that m;; € [—62, 6] and that by convexity of the exponential function, we
can bound the moment generating function of m;; as follows:

1

Vz eR, E(efM¥) < e 4 56262 = cosh(z0%).

1
2
Therefore, around zero, we can write

(820%)°

log(E(2m;;)) < log(cosh(26?)) < 5

where 8 is a coefficient in (0,1] that tightens the bound as much as possible

and can be defined as 8 = min{p > 0s.t. % — log(cosh(z)) > 0}. Replacing
z by pgj; with p > 0, we can derive the following upper bound for the Cramer
transform of ¢;‘r(MQ):

n
) . (pg;i36%)?
VEER, Yimg(t) < i Pt Z ) 2
)=

The minimum in the right hand side of the expression above is reached at

p* = W and therefore, applying Cramer inequality, we finally get
2
log(P (tr(MQ) > 1)) < *ma
which completes the proof of the lemma. O

Note that V(i,j) € R™*", we have (ec');; € [-7%,7?]. Hence, applying
Lemma 2.2 to bound Pe.p (tr(ee"ww') > I'?) will lead to

— 71—‘4 —7F4
]PeND (tr(eeTwa) > F2> <e 282y lww T 1% <e 2'y4Hw1uTH%7
since 8 € (0,1]. In order to remain below the level «, we then need that
F4

—m < log(a). (5)



. . T 2 . e
< —— 1.
This can also be written as |Jww ' | < NI proving Proposition 2.1

O

Note that in (5), one can keep the tightening coefficient S to get a sharper

bound whenever needed and write ||ww || < - . The value of 8 can
By2y/2log(1/a)

be estimated numerically.

2.2 Extension to deeper architectures

In this section, we address the case where the network is composed of several
layers | = 1,..., L with L?—Lipschitz activation functions. Property (1) should
now relate to the output of the last layer as follows:

Peup (2" =2 <T) > 1~ (6)

where xl is the output of the layer L when a noisy input 20 = 2% + ¢ is
propagated through the network and e is the additive input noise such that
e~DandVi=1,...,n, we have ¢; € [—7,7] (7 < +00). With this setting, we
can now state and prove the following:

Proposition 2.3 If the network inputs are subject to an additive uncertainty €
where Vi =1,...,n, ¢ ~ D and supp(D) C [—7,7] (v < +0), then for a given
a € [0,1] and a given output uncertainty level T, the following condition holds:

F2

(HlL:1 Wl) (Hlel Wl)—r ; < m

then Peop (lo% —2l|| <T) > 1— o with Ly = (HZL:1 Llf)

If the layer weights vector w satisfies

Proof: Propagating forward the input uncertainties through the network, we
can write:

-
L

lo® =l < LEII(WE) Tt~ < Ly (H Wl) €
=1

where €' is the propagated noise from layer 1 to layer I and Ly = (Hle Llf)

Furthermore, we have

L T L T
|zF —2l?2 < L? tr (HWZ> € <HWl> €
=1 =1
I T
< L?‘- tr (H Wl> e’ (H Wl>
=1 =1
L L T
< Litr|ee’ <H Wl> (H Wl> :
1=1 I=1

[=p}



Therefore, applying again Lemma 2.2 to upper bound the probability in (6),
the following condition on the layer weights matrices to ensure property (6) is
directly obtained:

L L T )
w! w! L ) 7
(E )(H ) L /2log (1) "

O

2.3 The case of convolutional layers

Deep neural networks often involved other types of layer structures such as
convolutional layers where connections within the layer are sparse [11]. Sparsity
arise from the fact that weights of convolutional filters are shared across neurons
within the layer when applied to the layer input. However, this structure is not
very different from the case of fully connected networks. Indeed, a convolutional
layer performs discrete convolutions with several filters. This can be seen as a
weight matrix multiplication operation where the weight matrix is very sparse
due to parameter sharing and sparse connectivity induced by the small size of
filters usually used in practical applications. Therefore, the output of a I-th
convolutional layer can also be written as ! = W!z!=! + b where 2!/~ ! is a
flattening transformation of a tensor X'~! of feature maps (transformation of
tensor into vector) and b is also a flattened version of the bias of the I-th layer
(see [11, 12] for more details about linearity of convolutional layers). In this
specific case, the weight matrix W' has a Toeplitz structure. This, in general,
helps when Toeplitz matrices are to be multiplied, since this can be done in
O(n?) if the matrices belong to R"*". The Toeplitz property is not preserved
by matrix multiplication which renders this result of little help if the network
involve more than two convolutional layers or if layers are combined with other
types of layers as discussed next. However, in [29, 30], the specific role of the
Toeplitz structure of W' has been emphasized and exploited to prove that CNN
have universal approximation properties. More specifically, following a similar
analysis of the sparsity and redundancy in W' may actually help in deriving

(e, w) (e, w)

lower bounds for

for (3).

In convolutional architecture, usually convolution is combined with other types
of structures. Activation layers (ex: ReLu activation) provide non linearity to
the network and, from the point of view of our study, these can be treated
by integrating their Lipschitz constant Léc (which in many practical cases is 1)
in the calculation of the bounds. Pooling layers are also used to reduce the
dimension of feature maps by summarizing extracted information and can also
be viewed as an operator on the output of the convolutional layer that has a
Lipschitz constant smaller than 1 [12].

Therefore, from the point of view of noise contraction or expansion developed
above, combining the various types of layers usually found in CNN architecture,

and eventually tighter bounds
F




is another particular case of the general framework we have considered above.
Hence, the techniques developed in the following fully apply to deep network
architectures and the conclusions that are drawn in the sequel of the article are
also valid.

3 Improving the bound by taking the network
non-linearity into account

3.1 General neural network activations

Remember that the bound derived above relies on the fact that we have con-
sidered the linear upper bound of the neural network response. Therefore, the
inequality (2) applied to the multi-layers case gives

.
L L
F2
Pewp (l#% —af|| <T) > Peup |tr | e’ <H Wl> (H Wl> < 7 (8)
=1 =1

Even if Llf is known for all levels (ex: Llf =1 for all [ if all network activations
are Relu), their product L; may be a loose bound for the network Lipschitz
constant. This means that the Chernoff bound proposed above may be tight
with respect to the right hand side of the above inequality, however, with respect
to the left hand side, in general, (8) is not tight since the deep complex layer
structure of the neural network generates a highly non linear behavior where
some neurons are activated and some are not in a complex manner. Actually,
it has been proven that computed the actual neural network Lipschitz constant
is an NP-hard problem [26]. Therefore, the above bound as such may often be
of poor quality. To address this issue, we propose an alternative to estimate
the variation of the neural network response. In the following, we will consider
that the network output is 1-dimensional. The following developments also
generalize to the multi-dimensional output case by using differential calculus for
multi-dimensional valued mappings but at the unnecessary expense of clarity.
Since ||e|| may be considered small with respect to the magnitude of the network
inputs, we are interested in the local behavior of the network output that we
will approximate as follows:

el —al = Fz+e) - F(z) ~ V. F(x) e (9)
where F(z) = fH(WH)TfEmH(WEHTFE2 0 fO((WO) T +09)) +0572) +
bE—1) and V,F is the gradient of F with respect to the network input z.
The linear approximation (9) is only local but its advantage is that it can easily
be evaluated at many x values. Indeed, while visiting all input vector z during
training, this information is usually available at a very low extra computational
cost through automatic differentiation in most training computer algorithms
and packages for neural networks (such as TensorFlow [1] and Pytorch [21]).
Therefore, from local estimates at various training points z¥ for i = 1,...,n, we



calculate two ng-dimensional vectors of network variation estimates ﬁ and
V. F defined as follows:

(ﬁ)k:sign((vxF(x?k))k)Xvk VoF == VoF(l) (10)

AR

where

(v, i) = <Z€?113Xn}‘(VIF(x?))k ’irﬁ?i)i |(V$F($?))k|> :

The quantity V/m?‘ accounts for the maximum variation of the network response
in every component direction of the network input encountered during the train-

ing and gives therefore a tighter linear upper bound than (Hle Wl) when

input data are part of the training set. The quantity V,F does not provide
a linear upper bound but estimates an average linear behavior of the network
response that be used in practice to estimate the required I' value to reduce
Pewp (J2% — 2| > T) below . The larger is the training dataset, the higher

is the quality of these estimates. Replacing L (HzL:1 Wl) by these quantities
in (7), we derive the following robustness bound for the network:
2
o
F o ?y/2log(l/a)

and the following estimate of I" to achieve a robustness confidence level of 1 —a:

—— /\T
Hszsz . (11)

T 1
I 27 (210g(1/)| VP VP |I3) (12)

where the symbols < and 2 stand respectively for upper bound and lower bound
approximations, which does not strictly guarantee the inequalities.

3.2 The specific case of piece-wise linear activations

When activation functions are piece-wise linear such as in the case of ReLu
functions or when activations can be easily approximated by piece-wise linear
functions such as in the case of sigmoids, it is possible to compute explicitly
the above gradient V,F' and its average value over the entire training set V,F'.
To this end, we introduce the activation operator and its average counterpart
average activation operator.

Definition 3.1 Consider a neural network layer 1 given by its weights matrix
W' and a piece-wise activation function f' such that f'(t) = apt + b, fort €
I, and where I, C R for p € {1,---,P} are P disjoint intervals such that
dom f = Uf::llp and (a,,b,) € R2. Consider also a given input sample x that
1s propagated through the first I layers of the network to give the I-th layer input



z'. We define as the l-th activation operator of x, the matriz M) ¢ Rm-1xm
given by its rows as follows:

np—1
(M(l)(:r))i =(a, -+ ap) for Z Wj!ix(lfl) €1,
S———— j=1

and forie {1,--- ,m}.

In other words, each row of the I-th activation operator M®(z) relates to
one neuron of the [-th layer and it records the slope of the active linear piece of
the neuron activation when an input z is propagated from the first layer to the -
th layer. Therefore the complete activation operator matrix records the various
active slopes for all the neuron structure of the I-layer. The following definition
considers the computation of such operators for all the dataset samples and
averages row-wise (meaning neuron-wise) their slope values:

Definition 3.2 Consider a training set S = {x1, -+ ,zn} € R™*" a neural
network layer | given by its weights matriz W' and a piece-wise activation func-
tion f' such that f'(t) = ayt+b, fort € I, and where I, C R forp € {1,---, P}
are P disjoint intervals such that dom f = Uz};lIP and (ap,b,) € R2. We define
O]

as the l-th layer average activation operator, the matriz M~ € R™-1X"™ gjyen

by its rows as follows:

1) = 2 3 000 )

m=1
where MW (x,,) is the I-th activation operator of v, and i € {1,--- n;}.

It is important to observe that the computation of the average activation
operator is at little extra costs during training since a forward pass through
the network is anyway necessary during training and these slope values can
be accumulated during the process. This cost is mainly a storage cost. The
associated computational cost is the cost for averaging which is even smaller
than the cost for computing the network gradient we have previously seen since
it requires automatic differentiation.

In the case of piece-wise linear function, the inequality (8) can therefore be
written as

.
L L

Peop (J2X — 22 <T) 2 Pep |tr [ e’ (HM(”WI> (HM(l)Wl> <12
=1

1=1
(13)
Additionally, for a given confidence 1 — «, we have
1
. . T2\ 1
T >y | 210g(1/a) (H M(”Wl> (H M(”Wl> (14)
=1 =1 P

10



Similar bound estimates could be derived also by defining a mazimum acti-
vation operator and by taking the row-wise maximum activation operator over
the entire dataset.

3.3 Discussion on the various bounds

The bounds given in ((11),(13)) and ((12),(14)) are interesting in practice in
several ways. First, they can be used as a network probabilistic robustness
estimates. Indeed, assume that the magnitude of the input uncertainty - is
known and a level of uncertainty I' is required for a practical application. Then
set a level of confidence 1 — a. After training, if the network weights satisfy
the bounds ((11),(13)), it implies that the output uncertainty will be below the
required level I" with a propability around 1 — «. Of course, obtaining strict
guarantees of robustness would be even more interesting. However, getting a
strict bound inequalities would require a strict upper bound on the network
local variation. An available upper bound is the global upper bound that we
have calculated in Section 2.2 using layer Lipschitz constant upper bounds but
at the expense of bound tightness. For this reason, instead of computing upper
bounds that are loose, we propose estimates of bounds that do not provide strict
certificate of robustness but are tighter to what is observed in practice as we
will see in Section 5.

Alternatively, assume now that you know ~ and after training you observe the

P —— L L 7Oy |
quantity |V FVoFT| g, or [[([[,o, MW" ([[,., MW . For a level

F
of confidence 1 — «, ((12),(14)) give estimates of the variation I' of the output

that you might expect. Therefore, for a specific application, the calculated
I' provides an additional performance criterion for the trained network. In
addition to validation accuracy and generalization performance, the I' value
gives an estimate of the sensitivity of the network to input uncertainty. The
larger is I', the more sensitive to uncertainty is the network since, for the same
level of o and +, one has to expect that the output should deviate (in norm)
from a nominal value by TI'.

Finally, these bounds emphasize also the relationship between the robustness
of the network and the weights values achieved after training. One idea is to
use this knowledge to drive the training process to regions where these bound
estimates are small in order to design networks that are intrinsically robust.
This is the objective of the next section.

4 Controlling the bound during training

In this section, we are interesting in exploiting the bounds derived above during
the process of training the neural network. The main idea would be to ensure
that optimal weights after training are satisfying the bound constraint (11) or
(13). Naturally, this could be formulated as a constrained optimization training

11



problem. Stochastic projected gradient techniques [18, 16] could be used to
solve such a problem. However, in the general case, the projection operator for
such constraint is not simple and would require important computational effort.
Therefore, instead of ensuring the constraint, we propose to regularize the loss
function during training by adding a penalization term as follows:

1
in ~L(z,y,0 w)l|3
min, £(z.0.6)+ [QUVI}
where X is a positive parameter, £ is a loss function (mean squared error
for example) and ||Q(W)| r is the Frobenius norm of a matrix Q(W) that

— —— T P
could be chosen among Q(W) = V,FV,EF , QW) = V,FV,F , QW) =
T T
() —()
(M w?) (e w?) - or Qv = (IT W) (T12, AT OW) - de-

pending on which bound from above we want to exploit.

Regularization is a common practice in machine learning [3, 11] and is usually
proposed to avoid overfitting and increase model generalization. The connection
between generalization and robustness to input uncertainty in machine learning
models has been established in several studies [28, 22].

The neural network update rule during training can be expressed as

1
VoL, .6) + Val Q)3

The second term corresponding to the regularization acts as a correction term of
the gradient of the loss to select direction of move that will ensure that ||Q(W)||r
will be decreased at each iteration. Of course, the overall optimization clearly
depends on the nature of Q(W). For choices of Q(W) listed above and espe-
cially for the network gradient or activation operator methods, depending on
the training samples, the regularization may not be convex and gradient descent
convergence may be slow to reach a local minimum. However, in practice, dur-
ing experiments (see Section 5), no convergence issue was encountered.
Intuitively, the ||Q(W)||% regularization term acts as a special weight contrac-
tion and it is natural to consider alternative possibilities to reduce the magnitude
of the network weights. One alternative is the squared spectral norm (largest
eigenvalue) of Q(W) that would also account for the maximum absolute con-
traction of a vector when multiplied by Q(W). Finally, in [7], the product
HlL:l |[W!|| which is an upper bound of the Lipschitz constant of the network
has also been proposed as regularization that promotes robustness. It accounts
for the overall Lipschitz regularity of the network and acts also as an overall
control on the contraction power of the network by coupling layers and allowing
some weights to grow for some layers as long as in other layers others weights
are getting smaller to compensate.

-
When Qw = (Hlel Wl) (Hle Wl) , its Frobenius norm and the Lipschitz
constant gradient can be explicitely derived and integrated into the backprop-
agation scheme and chain rule of gradients in order to optimize the augmented
loss during the training phase. However, for the spectral norm, approximation

12



methods are necessary and gradient will have to be computed using numerical
differentiation techniques. Among available approximation methods, the power
iteration algorithm [2], or preferably the Lanczos algorithm [17] since Q(W) is
symmetric, is well suited for the purpose. Note that there is no real need to
approximate Amqq(Q(W)) (the largest eigenvalue of Q(W)) with great accuracy
as it is only used as a regularization function to guide the optimization process
towards optimal regions where the spectral norm is reduced. Therefore, an al-
ternative approximation technique is to use an upper bound of Ay,q.(Q(W)).
As Q(W) is positive definite, we propose to use the Dembo’s upper bound [8]
defined as follows:

Let A, € R™*™ be an Hermitian positive definite matrix and let )\gn) <...<

/\E«Ln) be the eigenvalues of A,,. The matrix A, can be written as

 (An b
ao= ()

where b denotes the Hermitian transpose and the largest eigenvalue of A,

satisfies
(n—1) (n—1)
AP < CJMZ" +\/(C_AZ L

In the next section, we propose to carry out experiments with these various
regularization strategies and evaluate their respective impact on the robustness
properties of the network.

5 Experiments

In order to assess the quality of the estimated probability bounds, experiments
are conducted on two types of datasets (regression and classification data). The
neural network, its training and testing are implemented in the python [24]
environment using the keras [6] library and Tensorflow [1] backend. Results
for the general network gradient strategy and the activation operator strategy
presented in section 3 are tested and presented next.

5.1 Experiments with network gradient bounds (11) and
(12)

In this experiment, we consider the BOSTON [13], DIABETES [25] and CALIFORNIA
[20] datasets. Several neural network architectures are considered and tested
with the constraint of having sufficient network depth in order for the reg-
ularization schemes to achieve a balance between weight values and network
expressiveness [7]. We retain the following architecture: 4 dense hidden layers
with 50 ReLu activations neuronal units and one dense linear output layer. All
results that are presented below are average results from 10 independent runs
that are carried out after random shuffling and random splitting of datasets. All
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Table 1: Dataset information and experimental setup

# # test/train  batch # learning
Dataset inputs samples ratio size  epochs rate
BOSTON 13 606 0.2 50 100 0.001
DIABETES 10 442 0.2 200 30 0.001
CALIFORNIA 8 20640 0.4 600 30 0.001

dataset samples are scaled so that they lie in [—1,1]. All neural network train-
ing procedures are executed with the ADAM stochastic optimization algorithm
with default parameters as given in [14]. Additional details about the datasets
dimensions and training parameters are given in Table 1.

All comparison results provided below are referring to the following methods
as described in section 4:

- no reg: training procedure with mean squared error loss without regular-
ization

- Lipschitz reg: training procedure with mean squared error loss with the
H1L:1 |W!|| regularizer as described in [7].

- Gradient reg: training procedure with mean squared error loss with the
|Q(W)||? regularizer as described above and where Q(W) = V. F VmFT.

- MaxEig reg: training procedure with mean squared error loss with the
Amaz(Q(W))? regularizer.

In order to estimate the probability P..p (||[y — y|| < T), the following pro-
cedure is applied. For each test sample from the validation set, we generate
random vectors €; with j € {1,...,10} and calculate the following probability
estimate:

T 10
1
10x T >0 Lyt @ <ry (€9) (15)
i=1 j=1

where T is the number of samples in the testing set, y® is the desired output
for the i-th testing sample and yéj) is the output of the network calculated via

a forward pass through the network for the input vector z(9) + €. In all ex-
periments, we have supp(D) = [—v,7] with various levels of . In the figures
described below, 7 is referred as gamma and I' as Gamma.

Figure 1(right) reports these observed probabilities together with the esti-
mated tail probabilities given by

4

T AN EY R 2
e 293V F Ve F |5

for various values of T', while Figure 1(left) reports the corresponding mean
validation error achieved during the training process. The probability level
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1 — « (with @ = 0.05) is also marked with a blue dashed line on each plot
on the right. Figure 2 provides further details about the magnitude of the
norm of the network gradient Hﬁ’” and Aoz (Qw)? (re-scaled by a factor
10 to ease the reading of the plot) for each dataset and the four regularization
strategies. Finally, Figure 3 provides, for each dataset and each regularization
strategies a comparison of the I" values achieved to reach a 1—« probability levell.

— _— 4
Three values are reported each time, I'(max) = (2 log(1/a)||V.F VxFTH%) ,

1
1

I'(mean) = (2log(1/a)||V.F VIFT 2 and the I' value observed so that the
F

probability given in (15) reaches a level 1 — a.

We see in Figure 1 that, for the three datasets and for a probability of 0.95, the
calculated T' value (x axis) obtained by the expression of the exponential tail
probability, provides a very good estimate of the I" value given by the observed
probability (probability that the output deviates from its nominal value by more
than T"). This validates experimentally, at least for these datasets, the relevance
of the estimate given in (12). For the BOSTON dataset, all regularizing strategies
give similar I" values whereas for the DIABETES and CALIFORNIA, the I' values are
more sensitive to the type of regularization employed. However, surprisingly,
no general rule can be given from these results. It is difficult to say which
regularizer performs best. It is dataset dependent. The left hand side plots
of Figure 1, representing the validation mean absolute error, show that similar
training performance were achieved by the four regularizing methods and do not
provide further explanation of this phenomenon. We believe, without providing
any evidence of it, that the high non linearity of the neural network error surface
may explain it. Indeed, after training, the optimization algorithm has reached
a local minimum where the loss value may not have decreased sufficiently to
really express the regularization power of the regularizer. This depends on the
geometry of the error surface that is greatly dependent on input data.

On Figure 2, the norm of the network gradient tends to be slightly smaller
for the Gradient reg strategy. This would confirm that regularizing by the
network gradient would help in achieving better robustness. Additionally, the
figure also shows that the maximum eigenvalue regularization is not correlated
to the network gradient norm and may not be a suitable alternative for ro-
bustness purposes. The I' value comparison in Figure 3 confirms that the I'
estimates calculated by the proposed method are very closed to the observed
values. This is true for all datasets and regularizing strategies. Furthermore,
the T' upper bound values (T'(mazx)), are loose as expected in Section 3 but
provide certificates for robustness. These certificates follow the same pattern
as the norm of the network gradient in Figure 2, which was also expected since
their expression in (11) are directly dependent. Therefore, as for the network
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gradient, we observed that these certificates are better (tighter but still quite
loose) for the network gradient regularizing strategy.

5.2 Experiments with activation operator bound (13)

The setting of this experiment is identical to the previous one. For the same
datasets, the same network architecture, the same data preparation process and
the same noise generation for estimating the probability (15), we now consider
an additional regularization scheme corresponding to the average activation op-
erator method and compute an estimated tail probability with respect to this
method rather than the network gradient method. More specifically, the addi-
tional regularization scheme is as follows:

- WMRO reg: training procedure with mean squared error loss with the
|Qw||? regularizer as described above and where

QW) = (ﬁ mez) (ﬁ M(Z)Wl>

=1 =1
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and for all regularization strategies we also report the following estimated tail
probabilities:

S
e 2IRMWIE

Figure 4(right) reports the above tail probability estimates for various levels of
I' as well as the observed probability (15) after training.

In Figure 1, we see that, for the three datasets and for a probability of 0.95,
the calculated T value (z axis) obtained by the expression of the exponential tail
probability, provides also a good estimates of the I' value given by the observed
probability, although not as sharp as in the case of the general network gradient
method.

Experiments with real life data

Next, we use the MNIST dataset to carry out similar experiments on classifi-
cation real life data. The dataset contains 60000 training samples and 10000
validation samples. Each sample is a 28 x 28 image of handwritten characters.
As before, the network architecture is composed of a 5 fully connected layers of
50 neurons each . Hidden activations are ReLu activations and output activa-
tion is the softmax activation. The exact same perturbation process is used to
calculate after training the observed probability that the output deviates from
its nominal value by more than I'. To illustrate how these noise perturbations
act on the image samples, Figure 5 shows 5 input samples where various noise
level n were applied. Figure 6(center) reports the observed probability and the
calculated tail probability estimates for various levels of I'. Figure 6(right) shows
the difference between observed and estimated probability the various levels of
I . As before, Figure 6(left) provides the average validation accuracies achieved
by the various regularized loss minimization during training.

We see in Figure 6(right) that among the various strategies, the Gradient reg
and WMRO reg achieve the smallest values, meaning that there are better esti-
mates of the observed probability. Again, as in the previous experiment, the
network gradient method tends to give slightly better results than the mean
activation operator method.

We see in Figure 6(right) that among the various strategies, the Gradient
reg and WMRO reg achieve the smallest values, meaning that there are better
estimates of the observed probability. Again, as in the previous experiment, the
network gradient method tends to give slightly better results than the mean
activation operator method.
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Figure 5: MNIST dataset samples with various levels v of random noise (n €
{0.0,0.2,0.4,0.6} from top to bottom)
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Figure 6: Mean absolute validation error profiles during training with Q(W) =
_ . T
(M W) (T, W) (teft), Comparison of Pew (ly — yell < T) vs

exponential tail bound for various levels of T' (center) and difference between
observed probability Pep (||y — ve|]] < T') and exponential tail bound (right)
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6 Conclusions

In this study, we have proposed analytical probabilistic estimates (and certifi-
cates) for feed-forward neural networks. The idea combines tail probability
bound calculation using the Cramer-Chernoff scheme and the estimation of
the network local variation. The network gradient computation is using the
automatic differentiation procedure available in many neural network training
packages and carried out only at the training samples which does not require
much extra computational cost. In the case of piece-wise linear activations, an
alternative bound calculation was proposed. It is also based on the local be-
havior of the network at the training samples but provides an explicit average
activation operator calculation that does not require automatic differentiation.
Experiments with these methods have been conducted on public datasets and
have shown that the calculated robustness performance estimates well the ob-
served empirical performance. Further analysis on these datasets show that the
quality of the estimates is not really impacted by the regularization strategy,
however, the network gradient regularization tends to generate slightly more
robust network architectures.
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