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Abstract

The aircraft scheduling problem consists in sequencing aircraft on airport
runways and in scheduling their times of operations taking into consideration
several operational constraints. It is known to be an NP-hard problem, an
ongoing challenge for both researchers and air traffic controllers.

The aim of this paper is to present a focused review on the most rele-
vant techniques in the recent literature (since 2010) on the aircraft runway
scheduling problem, including exact approaches such as mixed-integer pro-
gramming and dynamic programming, metaheuristics, and novel approaches
based on reinforcement learning. Since the benchmark instances used in the
literature are easily solved by high-performance computers and current ver-
sions of solvers, we propose a new data set with challenging realistic problems
constructed from real-world air traffic.

Keywords: Runway scheduling problem, Aircraft landing problem, Aircraft
take-off problem, Mixed-integer optimization, Metaheuristics, Survey.

1. Introduction

Airport runways are recognized to be one major bottleneck of the Air
Traffic Management (ATM) system (acronyms meaning are also outlined in
Table C.10), and one of the key factors that determine airport capacity.
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Building new infrastructure (runways, airports) to alleviate the congestion
problem at the runway is not always a possible recourse because of the invest-
ment cost (e.g., building a new runway in Dublin airport costs 320 million
euros [1]). An alternative is to optimize the utilization of existing infrastruc-
tures through an improved planning.

Several researchers have been interested in optimizing the utilization of
runways. This aircraft runway scheduling problem is generally split into two
types of problems, involving either landings or take-offs, which come with
specific physical constraints (aircraft can stop before take-off contrary to
aircraft that are about to land), and are referred to in the literature as the
Aircraft Landing Problem (ALP) and the Aircraft Take-off Problem (ATP).

Generally speaking, the ALP (respectively ATP) consists in first assigning
an available runway to each aircraft ready to land (take off), then allocating a
scheduled landing (take off) time to each. When we consider the sequencing
and scheduling of both landings and take-offs, the problem is referred to as
the Aircraft Scheduling Problem (ASP). The latter problem is more realistic,
since air traffic controllers simultaneously deal with arriving and departing
air traffic.

In current day-to-day operations, solving the ALP consists of three steps:
first an initial schedule is created in a first-come first-served fashion. Then, it
is modified during the so-called approach phase, and finally frozen as aircraft
reach the final approach phase. The initial schedule includes aircraft within
the radar range of the airport’s landing planer, which corresponds to a time
horizon of about 40 minutes prior to landing. An update process is performed
each time a new aircraft enters the radar range so as to improve the previous
landing schedule [2].

For the ATP, flow management authorities such as the Network Manager
Operations Centre (NMOC) in Europe – sometimes also referred to as the
Central Flow Management Unit (CFMU) in previous surveys – assign take-
off slots to departing aircraft. The assigned time slot is a Calculated Take-Off
Time Window (CTOTW) defined usually by a target time, denoted T , and
a 15-minute time range [3], i.e., the interval [T − 5, T + 10].

In the mathematical formulation of the ALP/ATP, several operational
constraints must be taken into consideration. The most common require-
ments include the safety separation between consecutive aircraft, allowed
time windows defined by an earliest and a latest times of operation based on
fuel considerations, and precedence constraints. Various objective functions
can be considered depending on the decision maker, which can be an airport,

2



an airline company, a government, etc. The most common stakeholder point
of view considered in the literature is that of the airport, which typically
seeks at increasing runway capacity, or the viewpoint of the airline company,
which aims at maximizing punctuality and minimizing fuel consumption. An
exhaustive list of the objective functions considered in the literature can be
found in [2].

In the remainder of this paper, the acronym RSP (Runway Scheduling
Problem) is used to designate the ALP, the ATP or the ASP; we shall specify
which problem is concerned when relevant.

The RSP is known to be NP-hard [4]. Therefore, its solution time by
exact methods does not scale well with the problem size, here the number of
aircraft. The RSP represents an ongoing challenge for air traffic controllers
because they will have to deal with an increasing number of aircraft.

Since the publication of the first approach for solving the RSP in 1976
by Dear [5], several models and solution approaches have emerged in the
literature. Bennell et al. [2] proposed in 2010 a comprehensive overview of
the approaches from the literature. Recently, Veresnikov et al. published two
surveys on the ALP [6, 7]. The first one focuses on some exact approaches to
the ALP (mainly mixed-integer programming), and the second one overviews
mainly genetic and memetic algorithms. The common aspects between the
two above-mentioned surveys is that they are focused on theoretical aspects
of the ALP. For more general airport operation problems, a short review is
proposed in [8].

In this paper, we present a comprehensive review of state-of-the-art solu-
tion approaches in the literature to the three problems ALP, ATP, and ASP.
We concentrate not only on exact methods and metaheuristics, but we also
review two novel approaches based on Reinforcement Learning (RL), which
appear to be promising approaches for runway scheduling. We also highlight
the analogy between the RSP and well-known combinatorial optimization
problems, such as the traveling salesman problem and the vehicle routing
problem. Moreover, via a comparative study, we show how benchmark in-
stances used in the literature are no longer challenging for current versions
of solvers, because they can be solved optimally in reasonable computation
times. Therefore, we provide new data sets of challenging problems which
feature more realistic aspects of runway scheduling, and are constructed from
real-world traffic.

Our goal is to provide both the operational research community and the
ATM practitioners with an up-to-date synthesis on the RSP, with common
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notions and vocabulary, as well as common test instances and a general view
of the literature, providing thereby a common ground with new insights on
the RSP. Based on this view of the literature, promising future research
directions are derived, to address the limitations of current works on the
matter, and to consider more realistic aspects of this problem.

The remainder of this paper is organized as follows. Section 2 overviews
the basic aeronautical concepts related to the RSP. Section 3 first briefly
presents the most cited model in the literature, that of Beasley et al. [9].
The analogies of the RSP with classical combinatorial optimization prob-
lems are highlighted. Sections 5 and 6 present an overview of exact and
stochastic solution approaches (respectively) to the RSP, with a focus on
recent contributions in the literature. Finally, in Section 7 conclusions and
promising future research directions are suggested.

2. Aeronautical background

From take-off to landing and through the controlled airspace, aircraft are
guided by air traffic controllers, whose duty is to ensure a safe separation (see
below) between aircraft and an orderly traffic flow. Since safety rules impose
that the runway can be utilized by only one aircraft at a time, departing
and arriving aircraft near large airports are sequenced according to criteria
such as equity (limited deviation from the first-come first-served order) and
runway capacity [10].

The aim of this section is to define the basic concepts related to the
runway scheduling, starting with the most important constraints that must
be taken into consideration, until the basic techniques used by controllers to
sequence aircraft. Finally, we will briefly present the decision-support tools
available to assist controllers in sequencing and managing aircraft. Readers
may refer to [11] for further details on the aeronautical concepts related to
the RSP or to ATM in general.

2.1. Separation

The separation requirements are one of the factors that determine run-
way capacity, in terms of maximum number of aircraft that can use the
runway system during a specified time interval. According to [10], the most
commonly used separation standards are the following:
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• The radar separation is a minimal pairwise distance separation that
must be ensured between aircraft under radar control areas. The In-
ternational Civil Aviation Organization (ICAO) specifies the minimum
vertical separation for aircraft flying under Instrument Flight Rules
(IFR) as 1000 ft (300 m) below flight level 290 (altitude 29000 ft), and
2000 ft (600 m) at or above this level [12]. If any two aircraft are
separated by less than the minimum vertical separation, a longitudinal
separation is required. The ICAO sets this longitudinal separation at
5 nautical miles (nm; 1 nm = 1852 meters), but it can be reduced to 3
nm in congested areas [12].

• The Wake Vortex (WV) separation ensures that no aircraft is affected
by the wake-vortex turbulence generated by a leading aircraft, especially
during take offs and landings. Depending on their maximum take-off
mass, the ICAO classifies aircraft into three main categories: Heavy
(H), Medium (M) and Light (L)1. The separation requirements between
two consecutive aircraft depend on the wake turbulence category of the
leading aircraft and that of the trailing aircraft. The WV separation is
therefore sequence dependent. The WV separation between departures
is commonly expressed in time units, while between landings, it is given
in terms of distance, but can be converted to a time separation using
representative approach speeds, as explained in Appendix A.

Today’s ICAO WV separation rules are outdated and considered too con-
servative. For this reason, EUROCONTROL and the Federal Aviation Ad-
ministration (FAA) conducted research to redefine wake turbulence cate-
gories and their associated separation. RECAT (i.e., Re CATegorization) is
the FAA’s program that refines the ICAO’s classical categories into six new
categories. It has the objective of defining a pairwise separation that is con-
tinuously updated based on real-time information such as weather conditions
and aircraft-derived data [13].

In practice, other factors may play a role in the application of separa-
tion between aircraft, e.g., weather conditions, airport runway configuration,
specific local departure and approach route structures, etc. For instance, in
Milan–Malpensa airport, the two parallel runways 17R/35L and 17L/35R are

1The ICAO classification includes also the Super Heavy category, which only contains
Airbus A380-800.
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used both for take offs and landings. The final approach separation to runway
17L/35R is the ICAO’s distance separation given in Table A.5. On the other
hand, for runway 17R/35L, the minimum separation between two landings is
always 6 nm, regardless of the type of the aircraft involved, because it takes
longer time for aircraft to free this runway after landing [14].

2.2. Sequencing techniques

The First-Come First-Served (FCFS) rule is a sequencing technique that
schedules aircraft based on the Estimated Time of Arrival (ETA) and the
Estimated Take-off Time (ETT) associated to each aircraft. For arriving
aircraft, a FCFS sequencer computes the Scheduled Landing Times (SLT)
based on the order given by the ETA – obtained when an aircraft enters the
airport’s radar – and taking into consideration the constraints imposed by
the runway separation requirements [15]. Similarly, for departing aircraft,
the sequencer computes the Scheduled Take-off Time (STT) based on the
ETT – which is given by the order of aircraft queueing at the airport holding
positions – and the separation requirements. The FCFS heuristic is widely
used in practice, since it is easy to implement, requires little controller work-
load, and guarantees equity between aircraft. The drawback of this technique
is that, in congested airports, it rarely provides optimal sequences in terms
of runway throughput or average delay, due to the WV separations.

The Constrained Position Shifting (CPS) is a concept first introduced
in 1976 in the PhD thesis of Dear [5]. It allows aircraft to deviate from
the nominal FCFS order up to a maximum number of position shifts. For
instance, if an aircraft occupies the 5th position in a landing sequence, and the
maximum number of position shifts allowed is equal to 2, then this aircraft
can only be re-scheduled in positions 3, 4, 5, 6 or 7. The CPS has the
double advantage of being a reasonable constraint in order to limit inequity
and of reducing drastically the solution time of exact scheduling techniques.
Although restricting the set of possible sequences it considers, the CPS can
considerably improve the FCFS sequence and increase runway throughput,
as we can see in Figure 2.2, because it allows to avoid undesirable landing
sequences, in which a “Heavy” aircraft is followed by a “Light” aircraft, that
requires the largest WV separation of 6 nm, i.e., about 196 seconds. Several
models presented in the literature [4, 16, 17, 18, 19] rely on the CPS.
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Light

Heavy
FCFS sequence

196 s 60 s 196 s

1-CPS sequence

60 s 196 s 60 s

2-CPS sequence

82 s 60 s 96 s

Figure 1: Comparison of three landing sequences using the required time separations of
Table A.7: the FCFS sequence that requires a total of 452 seconds to land the four aircraft
in the sequence, the FCFS sequence with a maximum number of position shifts equal to 1
(1-CPS sequence) that requires 316 seconds, and the FCFS order with maximum position
shifts equal to 2 (2-CPS sequence) that requires 238 s

2.3. Holding techniques

Sequencing and scheduling models aims at providing scheduled landing
(or take off respectively) times optimizing some given objective function while
satisfying the above-mentioned separation constraints. These models typi-
cally suppose that the aircraft to be scheduled are somehow “waiting” in
the air (on the ground respectively) and able to land (take off) at anytime.
However, when unpredictable delays occur, it may be difficult to respect the
initial schedule. Thus, some aircraft may need to hold before landing (or
taking off) [20]. This is particularly critical to the ALP where, contrary to
aircraft waiting for taking off, air traffic controller can not stop an aircraft. A
feature of several arrival routes in the airspace surrounding airports around
the world in which aircraft can hold is the so-called trombone arrival routes,
illustrated in Figure 2. They are predefined cycling tracks in the arrival
routes that some aircraft are asked to follow until they receive a clearance
from air traffic controllers. According to [21], this structure allows a fluid
and efficient traffic flow to the runway.

In [2], other techniques used by controllers to delay aircraft are presented
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(a) Schematic representation (Based on [21] ) (b) Zurich airport

Figure 2: A schematic representation of the trombone 2a, and a real-world illustration
from real traffic in Zurich airport 2b.

such as, Vector For Space (VFS), which is a holding technique that stretches
the path of an aircraft instead of letting it flying the direct path between two
points, and Holding Patterns (HP) that are waiting loops on different flight
levels designed to delay aircraft by constant delay (typically 4 minutes to
accomplish one loop). Since the HP delays aircraft by a chosen multiple of a
constant time (4 minutes), it is appropriate for inducing substantial delays
(at the expense of extra fuel consumption).

For departures, aircraft can be held at specific points on the ground called
holding positions.

2.4. Decision-support tools

There are a number of decision-support tools available to assist controllers
in managing arriving and/or departing flows. One of these tools is the Center-
TRACON Automation System (CTAS) developed by NASA and the FAA. It
consists of three sub-tools, namely the traffic management advisor that pro-
vides runway assignment and scheduled landing times for arriving aircraft,
the descent advisor that assists controllers in guiding aircraft to metering
fixes2, and the final approach sequencing tool that provides speed and head-
ing recommendations. The CTAS has a component referred to as the expedite
departure path that helps managing departing aircraft. Readers may refer for

2Metering fixes: specific points along an established air route over which aircraft will
be metered prior to entering the terminal airspace surrounding airports.
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instance to [22] for more details on integrated tools in CTAS.
The European analogue of CTAS are the Arrival MANager (AMAN)

tools. They aim at assisting controllers in guiding arriving flows in termi-
nal areas to specific points, such as the runways threshold or metering fixes.
Basic AMAN versions provide a landing sequence, a timeline with the view
at runway threshold, and a target landing time for each aircraft. More ad-
vanced versions can provide advanced control actions such as radar vectoring
(altitude, speed, and heading control). Unlike the CTAS, the AMAN tools
cannot provide conflict (i.e., violated separation) detection and resolution
strategies, which may result in an increased pressure on controllers manag-
ing dense air spaces [11]. There exists a version of AMAN called Extended
AMAN (E-AMAN), whose considered horizon is extended up to 500 nm from
the airport, instead of around 100 to 200 nm for current AMAN [23]. The
motivation for such an extension is to begin sequencing much earlier so as
to attempt at reducing congestion, noise, and fuel burn in the airspace near
airports.

The Departure MANager (DMAN) is the European tool used for manag-
ing and merging departure flows into the en-route traffic. The DMAN tools
did not receive as much attention as the AMAN, and it is considered to be
less mature than the latter one.

3. Mathematical Models

In this section, we first describe the RSP, then we present the most
cited model in the literature, which is the mathematical formulation of [9].
The analogy between the RSP and some classical combinatorial optimization
problems is also highlighted in this section.

Consider a set of runways K = {1, 2, ...,m}, and a set of aircraft denoted
A = {1, ..., n}, ready to land (respectively to take off). Each aircraft i ∈ A
has a pre-defined time window denoted [Ei, Li], and a possible preferred time
of operation (landing or take-off) denoted Ti.

In its most basic versions, the RSP consists in first assigning an available
runway k ∈ K and a scheduled time of operation, denoted xi for each air-
craft i ∈ A, subject to operational constraints, mostly the WV separation
to ensure safety, and time-window restrictions to prevent excessive delays.
Additional constraints may also be considered, such as the CPS presented
in Section 2.2. Several objective functions may be considered according to
the decision-maker priorities. Readers may refer to [2] for a complete list of
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relevant objective functions according to whether the decision maker is an
airport, an airline, or a government.

Several mathematical formulations are proposed in the literature to model
the RSP, most of them are Mixed-Integer Programming (MIP) formulations.
Recently, the Markov Decision Process (MDP) framework has been used to
model the ATP [24], and the ALP [25]. A comprehensive review of these
two approaches is presented in Section 6. The mathematical formulations
proposed in the literature can be classified according to:

• The availability of the input data; the model is said to be static
when all the input data are known in advance, or dynamic when some
inputs are unknown for the considered time horizon.

• The uncertainty on the parameters values; the model is then said
deterministic or under uncertainty accordingly.

• The number of runways and their configuration; one distin-
guishes then the single-runway case from the multiple-runway model.
In the latter case, several configuration (i.e., layout or design) are pos-
sible, such as the parallel (two or more) runways, whose centerlines are
parallel. A comprehensive list of articles regrouped by the number of
runways and their configuration is reported in [26].

• The objective function; one may maximize runway throughput (num-
ber of operations per hour), minimize maximum (over all aircraft) delay,
minimize weighted deviations from target times, etc.

• The constraints taken into account; the fundamental constraints con-
sidered are related to the safety separation, but one may also add time
windows, the CPS, or precedence constraints.

3.1. Mixed-Integer Programming formulations

Beasley et al. [9] present the most cited MIP model. The problem consid-
ered is the ALP with multiple runways, but the model can be easily adapted
to incorporate take offs. The majority of MIP models proposed in the liter-
ature are based on this formulation.

Input data For each aircraft i ∈ A, the input parameters are presented in
Table 1.
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Notation Parameter
◦ Ti ◦ Target/preferred landing time.
◦ [Ei, Li] ◦ Landing time window (Li > Ei).
◦ c−i ◦ Penalty cost (≥ 0) per time unit for landing before Ti.
◦ c+i ◦ Penalty cost (≥ 0) per time unit for landing after Ti.
◦ Sij ◦ The WV separation between aircraft i and j, when i and j land

on the same runway (i lands before j).
◦ sij ◦ The required separation (see [26]) between aircraft i and j, when

i and j land on different runways (i lands before j).

Table 1: Input parameters of Beasley’s model [9].

Decision variables The proposed formulation involves both binary and
continuous variables. The binary variables, for the runway assignment and
for sequencing, are defined as follows:

• aik =

{
1 if aircraft i is assigned to runway k,

0 otherwise,

i ∈ A, k ∈ K,

• zij =

{
1 if aircraft i and j are assigned to a same runway,

0 otherwise,

i, j ∈ A : i 6= j,

• δij =

{
1 if aircraft i lands before j,

0 otherwise,

i, j ∈ A : i 6= j.

The continuous variables, for assigning times at runway threshold, are
defined as follows for each i ∈ A:

• xi : landing time,

• x−i , x+i : deviations from target times (before and after Ti respectively),

In fact, x−i and x+i are introduced in order to linearize the objective function;
these variables are understood as: x−i = max(0, Ti−xi) and x+i = max(0, xi−
Ti).

Complete formulation
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The complete formulation of [9] is:

minimize
a,z,δ,x,x−i ,x

+
i

∑
i∈A

c−i x
−
i + c+i x

+
i (1)

subject to Ei ≤ xi ≤ Li i ∈ A (2)

0 ≤ x−i ≤ Ti − Ei i ∈ A (3)

0 ≤ x+i ≤ Li − Ti i ∈ A (4)

x−i ≥ Ti − xi i ∈ A (5)

x+i ≥ xi − Ti i ∈ A (6)

xi = Ti − x−i + x+i i ∈ A (7)

δij + δji = 1 i, j ∈ A : i 6= j (8)∑
k∈K

aik = 1 i ∈ A (9)

zij = zji i, j ∈ A : i < j (10)

zij ≥ aik + ajk − 1 i, j ∈ A : i < j, k ∈ K (11)

xj ≥ xi + Sijzij + sij(1− zij)−Mδji i, j ∈ A : i 6= j (12)

aik, zij, δij ∈ {0, 1} i, j ∈ A : i 6= j, k ∈ K (13)

The chosen objective function (1) aims at minimizing the sum of weighted
deviations from target times. Minimizing total delay is a particular case of
this objective function, and can be achieved by only considering the latest
landing. Constraints (2) represent the time-window restrictions on landing
times. Constraints (3) and (4) restrict the maximum possible advance and
delay respectively. Constraints (5)-(7) represent the relation between the
continuous variables. Constraints (8) express the precedence relationship be-
tween aircraft. Constraints (9) ensure that each aircraft lands on exactly one
runway. Constraints (10) are the symmetry constraints for aircraft landing
on the same runway. Constraints (11) ensure that, if two aircraft i and j
land on the same runway k, then zij is forced to be one; also if aircraft i and
j do not land on the same runway, i.e., zij = 0, then aik or ajk is forced to be
zero. Constraints (12) guarantee the WV separation (Sij) between aircraft
landing on the same runway, and the mandatory separation (sij) between
aircraft landing on different runways. Finally, constraints (13) ensure the
binary restrictions.
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In the original formulation of [9], the set of all possible pairs, i, j ∈ A, of
aircraft is partitioned into three sets according to their relative time-window
positions; the separation constraints (12) are then specifically expressed for
each set (which we do not include here to simplify the presentation of the
model).

The above formulation has a weak continuous relaxation [10]. In order to
enhance it, several techniques are presented in the literature, such as:

• Optimal big-M values. Instead of using an arbitrary large value for
the so-called big-M parameter involved in the classical way to model
logical constraints, it is recommended to choose it as small as possible
(to avoid the well-known convergence problems), and tailored to each
particular pair (i, j) ∈ A ×A : i 6= j of aircraft. This can be achieved
by choosing M(i, j) = Li + Sij − Ej.

• Variable-Fixing Strategies. This is based on the Earliest Landing-time
Windows (ELW) rule presented in [27] (Lemma 1). It consists in fixing
the order of some aircraft that belong to the same class (the WV cat-
egory for instance) following the non-decreasing lexicographic order of
their time windows (e.g., Prakash et al. [4]). If the CPS constraints are
imposed, further variable values can be fixed based on these constraints.

• Additional Valid Inequalities, that may be redundant, can prove to be
useful to strengthen the MIP relaxation (cf. [9]).

3.2. Analogies and complexity

The ALP/ATP or more generally the ASP, is similar to a number of well-
known combinatorial optimization problems, such as the job-shop scheduling
problem, the Traveling Salesman Problem TSP), and the Vehicle Routing
Problem (VRP).

The relation between a job-shop scheduling and a basic ALP is described
in [9]. The runways are interpreted as the machines, and the aircraft to be
sequenced are the jobs. If job j follows job i, the sum of the processing time
of job i and the sequence-dependent set-up time between i and j corresponds
to the minimum WV separation between two landings i and j. The earliest
(respectively latest) landing time usually considered in the ALP is interpreted
as the release date (respectively due date). A typical objective function
minimizes the landing time of the last aircraft in the sequence (makespan).
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In this case, and considering a single runway, the ALP is equivalent to the
TSP, which is known to be NP-hard [28].

In a more realistic context, [14] shows that scheduling aircraft landings
and take-offs in terminal control areas, taking into consideration runway
configuration as well as the structure of inbound and outbound routes, is
analogous to a no-wait job-shop scheduling problem. In this context, each
approach (or departure) route is decomposed into smaller flight segments
of about 5 nautical miles length, and these flight segments, additional to
runways, correspond to machines. Arriving (or departing) aircraft corre-
spond to jobs to be scheduled, while as before, safety separations between
aircraft pairs correspond to the sequence dependent set-up times. The au-
thors suppose that every aircraft has earliest landing/take-off times, which
again correspond to the release dates.

The analogy between the ALP and the VRP can be derived from [27]
as follows. Runways correspond to vehicles to dispatch, aircraft correspond
the customers to serve, and the separation time between pairs of aircraft
corresponds to the distance between two customers, which is in this case
asymmetric, since the separation times between aircraft for both landings and
take offs are asymmetric. Target landing times correspond to times at which
customers prefer to be served. Lower and upper bounds on these preferred
times correspond to the classical time-window constraints. The objective is
to serve (to land) each customer (aircraft) within its time window so that
the total penalty cost of deviations from target times is minimized.

As a consequence of these reductions, the three problems ALP, ATP, and
ASP have the same complexity : they are NP-hard problems. However, if
one considers the same scheduling horizon, the ASP is expected to be more
complicated to solve, since it involves more traffic to schedule than consid-
ering only the ALP (landings) of the ATP (take-offs). Nevertheless, some
particular variants of the RSP presented below can be solved in polynomial
times. These include:

1. The ALP with aircraft classes [27]. This variant assumes that aircraft
can be regrouped in classes (e.g., the WV categories), and that aircraft
belonging to the same category are similar, i.e., have same delay cost.
The authors show that aircraft can then be sequenced according to
the FCFS rule. They propose algorithms that are polynomial in the
number of aircraft, but non-polynomial in the number of classes. For
simple variants of the ALP involving a single runway and one class, the
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proposed algorithm has a complexity O(n3). However, if one considers
three classes as in the ICAO WV categories, the algorithm may not be
tractable for a real-world application (O(n23)), see Theorem 4 in [27].

Regrouping aircraft in classes allows one to define only class-dependent
delay costs, instead of aircraft-dependent cost, which may not be realis-
tic, since delay cost depend on features that are proper to each aircraft,
such as the number of passengers and the fuel consumption.

2. The ALP with the Constrained Position-Shifting restrictions [16]. Un-
der this CPS restriction, the authors propose a dynamic programming,
approach which scales linearly with the problem size. Indeed, for n
aircraft and a maximum position shifts of p, the complexity of the pro-
posed algorithm is O(n(2p+ 1)(2p+2)), which is however exponential in
p (of little consequence, since the value of p in practice is usually small:
2 or 3).

4. Summary of solution approaches

Several solution approaches are proposed in the literature to solve the
RSP, ranging from exact approaches, such as dynamic programming and
mixed-integer programming, to stochastic approaches including metaheuris-
tics such as genetic algorithms, simulated annealing, tabu search, and ant
colony optimization. Reinforcement learning techniques are also used in the
literature to address the ALP and the ATP. Hybrids of metaheuristics and
mathematical programming, termed matheuristics, are becoming more and
more frequent in the recent literature.

We display in Figure 3 the number of articles from the recent literature,
depending on the problem they address (ALP, ATP, or ASP), and regrouped
in four types of methodologies: Dynamic programming, mixed-integer pro-
gramming, metaheuristic/heuristic methods, and reinforcement learning. We
can observe from this histogram that most of the works from the literature
use heuristic approaches and metaheuristics. A possible explanation of this
tendency is the (NP-hard) complexity of the problem, that makes researchers
favor stochastic methods capable of providing good-quality solutions in low
computation times, over exact methods that may require high computation
times. Another possible explanation is the dynamic nature of the problem.
Indeed, aircraft in practice appear dynamically in the scheduling horizon.
Thus, an optimal solution of the RSP in a given scheduling horizon may not
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be optimal when new aircraft are involved, and computing new optimal so-
lutions with an exact method may require high computation times. We can
also observe in this histogram that solution approaches are mainly focused
on the aircraft landing problem; only few works address the aircraft take-off
problem as an independent problem.

After this high-level summary of the solution approaches proposed in the
literature, we propose an in-depth discussion of each method in the next two
sections.

Figure 3: Summary of the number of articles for the RSP, regrouped in five types of
methodologies: Dynamic Programming (DP), Mixed-Integer Programming (MIP), Meta-
heuristics/Heuristics (M/H), and Reinforcement Learning (RL)

5. Exact solution approaches

Since the publication of the first approach to solve the ALP [5], several
research works were interested in different versions of the runway scheduling
problem. In this section, we provide an overview of the most relevant exact
solution approaches used in the literature, with a focus on recent contribu-
tions (from 2010 up to now). We also provide details on the test instances
used to validate the approaches, and discuss results of numerical tests.

Several exact approaches are proposed in the literature to address the
RSP; the majority of them are either Mixed-Integer Programming based
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methods and dynamic programming approaches. In the current study, we
focus on exact solution methods based on MIP or DP as these are the ap-
proaches that are widely used in the literature. Remark that there are a few
studies that also address the RSP via constraint programming (see [29] for a
survey on approaches using constraint programming for air traffic manage-
ment problems, including the RSP). Here are two representative examples.
A decision-support tool for air traffic controllers is proposed in [30] to plan
the movements of departing aircraft (ATP). The problem is modeled as a
constraint satisfaction problem that features several realistic aspects of the
ATP, such as the airport layout, the take-off time slots, and the safety sep-
aration between pairs of aircraft. The model is solved using ILOG solver to
schedule optimally medium-size airports. In [31], the authors highlight the
analogy between the ALP and the K-king problem, where the airspace cor-
responds to a two-dimensional chessboard, the runway represents a special
square, and the aircraft correspond to the kings.
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The ALP is thereby reduced to a constraint satisfaction problem. The
authors propose several search strategies to solve the resulting model, and
are able to schedule optimally small-sized instances (6 to 14 aircraft).

Table 2 summarizes the most relevant exact approaches surveyed in this
section. In this table, the abbreviations Prec. and Sep. refer respectively to
the Precedence and the Separation constraints. The acronyms ALT, TWV,
and VFS mean respectively Average Landing-Time, Time-Window Violation,
and Variable-Fixing strategies.

5.1. Dynamic programming

Psaraftis [48] develops one of the first DP approaches to address the ALP,
involving at first only one runway, and then extending it to two runways. In
his work, there is no assumption on the landing times, i.e., all aircraft can
land at time 0 and no restrictions are imposed on delays. Moreover, it is
considered that the set of aircraft can be partitioned into a small number
of classes : aircraft that belong to a same class are similar in the process of
scheduling. Two objectives are investigated: minimizing the runway through-
put, which is equivalent to minimizing the landing time of the last aircraft
in the sequence, and minimizing the total passenger delay cost, which only
depends on the aircraft class.

Briskorn and Stolletz [27] extend the approach to multiple independent3

runways, and bounded landing times (time windows). Under the assump-
tion that aircraft are partitioned into classes and ELW rule, they prove that,
within each class, it is optimal to schedule aircraft according to the FCFS
rule. The ALP is then modeled as finding the shortest path in a directed
acyclic graph, and solved using DP. For the more general case of multiple
runways and multiple aircraft classes, the state variables of the dynamic pro-
gramming are the number of aircraft that have been scheduled in each class,
and the runway occupation profile (time and aircraft class) of the last sched-
uled aircraft on each runway. Briskorn and Stolletz provide theoretical results
about the polynomial complexity of the proposed approach, which is however
exponential in the number, W, of aircraft classes: O(RWR+1n(R+1)W 2+R+1),
where R is the number of runways, and n is the number of aircraft. The
proposed approach is not implemented, but they adapt the MIP model of [9]

3Runways are said independent if operations (landings or take offs) on one runway do
not affect operations on the other runways
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to their objective function, which depends on each aircraft class. The ob-
tained MIP formulation is then solved using CPLEX. They conclude from
their results that computation times can be significantly reduced if a MIP
model is enhanced with constraints based on the ELW rule.

The approach proposed in [33] uses the DP framework of [27], but it
does not allow early landings (landings before target time). The authors
also develop a criterion to avoid considering states that are dominated: if
two states have the same number of aircraft (of each class) that have already
been scheduled, but differ in terms of the runway occupancy profile, the dom-
inance criterion then selects the state for which the runways are freed earlier.
This dominance criterion together with their restriction that prohibits early
landings significantly reduce the state space, which allow them to implement
efficiently the DP algorithm of [27]. Results show the benefit of using this DP
method instead of a standard MIP approach. Nevertheless, the proposed ap-
proach ensures only successive separation (separation between two successive
aircraft), assuming that the triangular inequality necessarily holds, in order
to guarantee separation between any pair of aircraft. Recall finally that the
above authors assume that runways are independent. This assumption may
not be true in a general setting: heterogeneous interdependent runways are
common in airports. For this more general case, Lieder and Stolletz [26]
extend the approach to ensure complete separation (separation between all
pairs of aircraft), and to handle both landings and take offs.

Another DP framework is proposed by Balakrishnan and Chandran [16,
17, 18], assuming this time the CPS constraints. The idea in De Maere et
al. [37] is to model the problem as a modified shortest path on a directed
graph and then to solve it by DP. The graph consists of n stages (n is the
number of aircraft), where each stage represents an aircraft position in the
final sequence. A node in this graph features a subsequence of aircraft.
Several objective functions are considered. In [16], the dynamic programming
recursion aims at finding the landing schedule that maximizes the runway
throughput, in a deterministic setting. The approach is later extended in [18]
to take into consideration uncertainty in actual landing times, that may differ
from the scheduled landing times, causing violation of the constraints. The
objective is then to compute trade offs between good runway throughput
and schedule robustness to the violation of safety constraints. The dynamic
programming recursion is rewritten in [17] to consider other objectives, such
as minimizing the average delay and minimizing the maximum delay.

Multi-objective dynamic programming is also proposed in the literature
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to solve the RSP [34, 35, 36, 37].
In [34], Rathinam et al. consider the problem of scheduling aircraft depar-

tures (ATP) on a single runway. They take into consideration time-window
constraints and precedence order between aircraft in a same runway queue.
Separation requirements are ensured only between successive pairs of air-
craft, since the authors assume that the triangular inequality holds. The
objective function minimizes total delay. The authors reformulate this prob-
lem as a multi-objective optimization problem, that minimizes total delay
and the departure time of the last aircraft in the sequence (makespan). The
state variable of their multi-objective dynamic programming (called gener-
alized dynamic programming) is a partial schedule, i.e., a sub-sequence of
aircraft with their corresponding take-off times. The dynamic programming
recursion that incrementally computes the take-off times is proven to com-
pute correctly all the non-dominated solutions for each state. Test instances
are artificially generated, so that they mimic real-traffic scenarios on Dal-
las/Forth Worth airport. These instances involve 6 to 40 aircraft. Results
show that this approach computes optimal departure schedules in very short
computation times (less than one second). This encourages the extension of
this work to the two (independent) runways case in [35]. In this latter work,
the authors also artificially generate instances involving only 8 to 25 aircraft,
which may be small given that they consider two runways. The computation
times to find optimal departure schedules (for two runways) are reasonable
for the instances involving 8 to 22 aircraft (less than one minute). However,
for the remaining instances, especially for the ones involving 25 aircraft, the
computation times may be long for a real-time application (more than 125
seconds).

The work of Montoya et al. [36] also addresses the ATP. The authors
consider the same constraints as in [34] and [35], but add the CPS con-
straints. Regarding the separation constraints, three scenarios are taken
into account: the WV separation between all pairs of aircraft (unlike [34]
and [35] that consider only successive separation), reduced WV separation if
the trailing aircraft is departing to a different metering fix4, and a minimum
separation due to runway crossings by arriving aircraft. The bi-objective
function aims at minimizing total delay and maximizing runway throughput.

4 Recall that a metering fix is a specific point along an established air route, over which
aircraft will be metered in the terminal airspace surrounding airports.
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The proposed multi-objective DP specifies the Pareto-optimal solutions, i.e.,
non-dominated solutions with respect to the two above-mentioned objectives.
A state in their DP is represented by a permutation of the subsets of air-
craft. The overall algorithm can be decomposed in two main blocks. The
branching block adds a new aircraft to the current partial solution, provided
that it does not violate any constraint. The Pruning block removes domi-
nated solutions. Tests are performed on some instances created by mimicking
real-traffic scenarios on runway 17R in Dallas/Forth Worth airport, involv-
ing 16 to 32 planes. The multi-objective DP algorithm is then compared
with a baseline algorithm, based on extreme solutions of the Pareto frontier
obtained by the two algorithms, and using two performance metrics: the av-
erage total delay (in minutes) and the runway usage rate (number of aircraft
per hour). Results show that their algorithm has performances similar to
those of the baseline algorithm in terms of the runway usage. However, the
multi-objective DP outperforms the basic algorithm in terms of total delays,
reaching 55% decrease in delay for some instances.

The last work we review that uses multi-objective DP is De Maere et
al. [37], which addresses an ATP that can be extended to incorporate ar-
rivals, according to the authors. They consider time windows and separation
constraints, without assuming that the triangular inequality holds. Unlike
the above-mentioned works, De Maere et al. consider a multi-objective, non-
convex piecewise linear function. This function is defined by two components:
the first component represents the landing of the last aircraft in the sequence,
while the second component is a weighted sum the delay and CTOT com-
pliance. This objective function was defined in collaboration with runway
controllers at London Heathrow airport. The authors propose six pruning
rules to reduce the search space, without compromising the optimality. These
pruning rules are incorporated in a dynamic program to find Pareto-optimal
solutions. For the numerical study, the authors use 36 real-world instances
from London Heathrow airport, that contain 55 aircraft each. Additional
tests are also conducted on the 12 instances of the OR-group Bologna. The
authors incorporate the CPS constraints in their algorithm, in order to com-
pare it with to two DP approaches from the literature: Balakrishnan and
Chandran [17] and Psaraftis [49]. Results show that their algorithm have
similar average computation times, for small values of the CPS. However, for
larger values of the CPS (especially: 8, 9, 10, and 55), their algorithm out-
performs the two above-mentioned works. Moreover, the algorithm succeeds
to solve all OR-group Bologna instances in 0.064 seconds. Remark that the
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OR-group Bologna instances are not very challenging for today’s high per-
formance computers and current versions of solvers, as one can solve all of
these 12 instances, with the MIP of Beasley [9] and CPLEX 12.8, in a total
time of 2.8 seconds, as we shall show in Subsection 5.3.

Recently, Bennell et al. [38] proposed - in addition to two stochastic ap-
proaches - a dynamic programming approach for the ALP, involving a single
runway dedicated to landings. They also consider a multi-objective function,
but opt for a weighted sum of the objectives, given the (NP-hard) complex-
ity of the problem. These objectives take into account the priorities of three
stakeholders: the airport, by maximizing punctuality; the airlines, by mini-
mizing fuel costs; and the air traffic control, by maximizing runway capacity.
The constraints considered are the separation and the time windows. The
state variable of the DP is similar in its definition to that of [27]. Their DP
algorithm can be decomposed in three main steps. The Next-Stage Gener-
ation step, adds an aircraft to the list of the already landed aircraft, and
assesses the cost of the new state if it is feasible. The second Next-Stage
Elimination step eliminates redundant states and keeps the one that min-
imizes the cost function. The last Select Solution step selects, among the
final states where all the aircraft have landed, the one with the lowest cost.
This algorithm is tested not only for the static case, where all parameters
are known in advance, but also for the dynamic case with a sliding-horizon
approach. The numerical tests are performed on instances generated from
real traffic at London Heathrow airport, involving 21, 42 and 84 aircraft.
Additional tests are also carried out on some artificially-generated instances.
The authors compare their algorithm with the performance of an air traffic
controller on the basis of five performance indices. The results show that, for
the static case, their algorithm have similar performances compared with an
air traffic controller in terms of runway capacity. However, the dynamic pro-
gramming (and their two other stochastic approaches) achieves better results
on the other performance indices, especially on fuel cost. A possible explana-
tion is that air traffic controllers mainly aim at maximizing runway capacity,
without considering the two other objectives (fuel cost and punctuality).

Even more recently, Faye [39] proposed a DP algorithm to solve a sub-
problem of the ALP, which consists in finding the landing times for a fixed
sequence of aircraft. The considered constraints are the time windows and
the safety separation only between successive pairs of aircraft, because he
also assumes that the triangular inequality holds. The objective function
minimizes total deviations from target times, given by a convex piecewise
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linear function. The proposed algorithm first tightens the time windows of
all aircraft in the sequence. Then, it recursively constructs the minimal cost
functions for increasing numbers of aircraft from the sequence. These cost
functions are proven to be piecewise linear, with multiples breakpoints. Op-
timal landing times are then obtained from these functions, by finding the
points that minimizes them. The dynamic programming part (which con-
structs the minimal cost functions) has a complexity O(N2), where N is
the total number of aircraft in the sequence. The construction of optimal
landing times are computed from these functions in O(N). To examine the
performance of his dynamic programming algorithm, Faye compares it with
a linear program solved by FICO-Xpress. The two algorithms (DP and linear
program + FICO-Xpress) are embedded in a simulated-annealing based algo-
rithm, to solve the complete aircraft landing problem (sequencing + landing
times). Tests are performed on the public instances of the OR-library , in-
volving 10 to 500 aircraft. He concluded that, when embedded in a simulated
annealing algorithm, his DP algorithm outperforms linear programming in
terms of quality of the solutions obtained within the predefined time lim-
its. Simulated annealing performs indeed more iterations (> 10 times) when
combined with his DP than with linear programming within the same time
limits, which allow a better exploration of the search space.

5.2. Mixed integer programming approaches

Beasley et al. [9] present the most cited MIP approach in the literature
for the ALP. First, they introduce a model for scheduling aircraft landings on
a single runway taking into consideration the WV separation, time-window
constraints, and additional constraints that may be redundant, but useful
to improve the linear programming relaxation. The objective is to minimize
total deviations from target landing times. The model is also extended to
multiple interdependent runways. It is solved using CPLEX, for increasing
numbers of runways (up to four runways). The approach is tested on prob-
lems from the OR-library [50], involving up to 50 aircraft and 4 runways.

Briskorn and Stolletz [27] adapt the model presented in [9] to objective
functions that depend on each aircraft class. They propose an approach that
uses the ELW rule in the model and they then solve it with CPLEX. This
yields better computation times than [9]. Ghoniem and Farhadi [40] adapt
the formulation presented in [9] to incorporate take offs (ASP), and enhance it
with valid inequalities. Their empirical tests show that valid inequalities and
pre-processing may be not sufficient to solve optimally the MIP formulation
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for even modest numbers of aircraft and runways (20 and 4, respectively).
For this reason, they propose a set-partitioning model, and solve it with a
column-generation approach, which allows them to solve larger instances in
manageable computation times.

The same model is used in [41] in a time-discretization approach. As-
suming integer-valued problem parameters, the author shows that the so-
lution is also integer valued. The planning horizon is then discretized in
time slots, so that no event occurs between two consecutive time slots, which
leads to a finite number of possible scenarios (landing time and runway as-
signment) for each aircraft. Based on these scenarios, the author presents
an alternative 0-1 linear problem. The proposed approach to solve exactly
the resulting problem is called dynamic constraints generation algorithm. It
can be decomposed in two main blocks: the first block solves a relaxed ver-
sion of the above-mentioned 0-1 linear problem, obtained by relaxing the
time-separation constraints. This relaxation relies on estimating each of the
separation matrices (longitudinal separation for aircraft landing on the same
runway, and diagonal separation for aircraft landing on different runways)
by a rank-2 matrix, such that each entry of the rank-2 matrices is less than
or equal to each entry of the corresponding separation matrix. In the second
block, the algorithm detects pairs of aircraft that may violate the separation
constraints due to the relaxation, then corrects them. It terminates with a
solution of the relaxed problem that satisfies all separation constraints, which
provides an optimal solution. By means of numerical tests on instances from
the OR-library , it is shown that this approach yields better results than [9]
in terms of computation times.

Hancerliogullari et al. [42] propose a MIP formulation for scheduling air-
craft operations (ASP) on multiple runways inspired from job-shop schedul-
ing on parallel machines. Their model differs from [9] in two aspects: first, the
runways are supposed to be independent, i.e., the separation requirements for
aircraft landing on different runways are supposed to be automatically sat-
isfied, while in [9], the model takes into consideration additional separation
requirements (diagonal separation) for aircraft landing on different runways.
The second aspect is related to balancing traffic on the available runways,
that [42] incorporates in the model, by adding lower- and upper-bound con-
straints on the number of aircraft assigned to a runway. The authors report
results in terms of computation times for solving their proposed MIP for-
mulation (solver not specified) on artificially-generated congested instances,
ranging from 15 to 25 aircraft, involving 2 to 5 runways. Their tests feature
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large computational times to obtain optimal solutions for almost all test in-
stances. This motivates the authors to propose metaheuristics and greedy
algorithms – that we shall review in Section 6 – to obtain good-quality solu-
tions in shorter computation times.

Kim et al. [43] propose a novel MIP approach to include – additionally to
runways – terminal-area entry fixes. Their model computes the runway and
TRACON-fixe 5 assignment of each aircraft, as well as a runway schedule for
landings, that minimizes total emissions in the TRACON, including airport
surface emissions. By means of numerical tests on data from Detroit interna-
tional airport, they show that their approach does not only reduce emissions
by 29.9% in the studied case, but also increases runway throughput, thanks
to inbound traffic balance among runways and TRACON fixes.

Salehipour et al. [51] consider the same problem as [9]. They propose a
MIP model similar to that of [9]. The two mathematical models are similar in
the definition of the decision variables, but the model of [51] simplifies some
redundant constraints. Results obtained with CPLEX show that instances
from the OR-library involving up to 50 aircraft and 3 runways can be solved
to optimality in reasonable computation times.

Furini et al. [44] present an alternative MIP formulation to schedule both
landings and take offs (ASP) on a single runway, so as to minimize total
weighted delay. In their model, continuous variables are used to indicate a
runway operation (landing or take off), and binary variables are used to indi-
cate the aircraft position in the runway sequence, which is the main difference
between their formulation and the model of [9]. The model is solved using
CPLEX within a rolling-horizon approach to find improved solutions (not
necessarily optimal), compared with the FCFS rule. Tests are performed on
instances from the OR-group Bologna, and feature small computation times
to solve instances of 60 aircraft. Later [10], this model is compared with
the formulation of [9], on some constructed instances, and imposing a time
limit for CPLEX. Results show that the formulation of [9] outperforms that
of [44], in terms of both computation times and quality of the solution ob-
tained within the predefined time limit. However, the tabu-search approach
that they develop outperforms the results obtained by CPLEX on the model
of [9].

Malik et al. [45] construct a runway scheduler for Charlotte Douglas

5Terminal Radar Approach CONtrol (TRACON): controlled airspace close to airports
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(CLT) airport, that schedules different operations (landings, take-offs, and
crossings) on multiple interdependent runways. The objective is to minimize
total delay. The particularity of this work is that it considers, additional
to classical constraints (CPS, time-window, separation), constraints that are
specific to the layout of CLT airport. An example of such specific constraints
is to fix an FCFS order for aircraft departing to (or arriving at) a same me-
tering fix, and specifying a special spacing between these aircraft. Another
particularity of this work, compared with other MIP-based approaches from
the literature, is that it uses the (reduced) separation matrix from the RE-
CAT projects [13], introduced in Subsection 2.1. For the numerical tests, the
authors generate instances based on real traffic on CLT airport, involving 10
to 35 aircraft in a 15-minute time period. Results show that this approach
leads to significant improvements in total delay, compared with the FCFS
order. However, the run time of the algorithm grows too large with increas-
ing numbers of aircraft for the value 3 of the maximum position-shifting
parameter.

Unlike the majority of MIP formulations from the literature, Avella et
al. [46] opt for a time-indexed formulation for the ASP. They motivate this
choice by the fact that time-index formulations represent a good trade-off
between the compactness of the formulation and the quality of the Linear-
Programming (LP) bounds. The authors take into consideration separation
constraints and time-window restrictions, with the objective of minimizing
total tardiness. The RSP is modeled as a Binary-Integer Linear Program
(BILP), enhanced with valid inequalities. The proposed exact algorithm to
solve their resulting BILP can be decomposed in three main steps. First, the
Presolve phase uses variable-fixing strategies, and tightens the time windows.
Then, the LP-relaxation step solves the LP relaxation of their BILP model,
which provides lower bounds on the optimal solution. Finally, a feasible
integer (upper bound) solution is then computed (using CPLEX) over only
a subset of variables generated from the previous step, and the optimality
of the algorithm is assessed by comparing these (upper and lower) bounds.
Extensive computational tests are conducted using: (i) Stockholm Arlanda
airport instances with 33 and 40 aircraft, (ii) Hamburg airport instances that
involve 57, 58, and 72 aircraft, and (iii) the OR-group Bologna instances with
60 aircraft. To examine the effectiveness of their formulation, they compare
it with the basic BILP model (without any valid inequalities or variable-
fixing strategies), in terms of the quality of the solutions provided by CPLEX
within a time limit of 600 seconds. Results show that the enhanced model
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is superior to the basic model, in terms of both computation times and the
number of instances solved within the predefined time limit. Moreover, 31 of
the 39 (Arlanda and Hamburg airports) instances are solved in less than 30
seconds. Their algorithm also solves all the OR-group Bologna instances in
less than 4 seconds.

Prakash et al. [4] present a MIP-based approach for scheduling both land-
ings and take offs (ASP) on a single runway, in which they incorporate the
CPS constraint explicitly. The MIP formulation is enhanced with variable-
fixing strategies, based on the CPS and on the ELW rule. The objective is
to minimize the completion time of the sequence (makespan). They propose
a data-splitting method that makes use of the CPS to split the original se-
quence into all possible pairs of leading and trailing aircraft sub-sequences,
and then solve independently each pair of sub-sequences using GuRoBi, while
ensuring global optimality. For the numerical tests, they artificially generate
congested instances (30 to 40 aircraft), mimicking peak traffic conditions, and
show that this approach outperforms state-of-the-art DP methods in terms
of computation times, especially for values of the maximum position-shift
parameter larger than 3.

Pohl et al. [47] also opt for a MIP approach for the integrated problem
of scheduling simultaneously landings, take-offs, and snow removals during
winter times. They take into consideration the time-window constraints,
the separation requirements between aircraft, and the separation require-
ments between snow removals and next aircraft operations, to guarantee the
safety of operations on the runway. The objective function minimizes the
total weighted delay. Solving directly their MIP model leads to prohibitory
computation times (beyond one hour). For this reason, they perform some
preprocessing and add valid inequalities to the MIP formulation to reduce
the search space and tighten the LP relaxations. Moreover, they construct
a feasible-heuristic solution that they feed to GuRoBi solver as a starting
solution. Numerical tests are performed on real-traffic instances from Mu-
nich airport, involving 30, 45, 60, and 75 aircraft, and 2 or 3 runways. Re-
sults show that preprocessing, valid inequalities, and the starting solution for
GuRoBi significantly reduce the computation times, and yield optimal solu-
tions obtained within 60 seconds for most of the Munich-airport instances.
Moreover, the proposed algorithm performs better (in terms of total delay)
than the heuristic solution used by controllers and runway planers to schedule
aircraft and snow removals on runways. Additional tests are also performed
on the very large instances (100 to 500 aircraft) from the OR-library , and
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show that their MIP approach succeeds to solve to optimality 9 out of the
14 instances within 60 seconds. However, for the three instances of the OR-
library : airland10, airland11, and airland13, all with 3 runways, the
computation times may be considered too long (beyond one hour) for a real-
time application.

5.3. Numerical tests

In this part, we present results obtained after implementing three different
MIP models from the literature, namely Beasley et al. [9], Salehipour et
al. [51], and Furini et al. [10], to which we shall refer to in the sequel with
the author acronyms: BKSA, SMM and FKPT, respectively. We test the
three models on the benchmark instances that are the most used in the
literature:

• The OR-library instances [50]. Available on line: http://people.

brunel.ac.uk/~mastjjb/jeb/info.html.

• The OR-group Bologna instances [10]. Available on line: http://or.

dei.unibo.it/.

All the numerical tests are performed on a personal computer under
GNU/Linux operating system, processor Intel(R) Core(TM) i7-4700M with
8 GB of RAM, and implemented using Docplex, the Python API of the
CPLEX solver, version 12.8.

In Table 3, the first column reports the benchmark instance origin, and
the second column presents the name of the instances. The third and fourth
columns display the total number of aircraft, |A|, and runways, |K|, respec-
tively. The remaining columns present the computation time, in seconds,
to find an optimal solution for each of the three above-mentioned formula-
tions. We impose a time limit of 300 seconds (5 minutes) for each test. For
the FKPT formulation, the symbol “-” simply indicates that tests involving
multiple runways are not relevant, since this model is not suited to this case.

It can be seen from Table 3 that, for the OR-library instances involving
up to 50 aircraft, and for the OR-group Bologna instances, the two models
BKSA and SMM succeed to find optimal solutions in very short computation
times, whereas the model FKPT requires long computation time, even for
small instances of |A| = 15 aircraft. We can deduce that, with a good MIP
formulation, and current versions of solvers (e.g., CPLEX 12.8), even large
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Table 3: Numerical tests

Instance |A| |K| CPU time (s)
BKSA [9] SMM [51] FKPT [10]

OR-library

airland1 10
1 0.05 0.03 43.05
2 0.03 0.04 -

airland2 15
1 0.16 0.07 63.05
2 0.07 0.09 -

airland3 20
1 0.07 0.03 > 300.00
2 0.12 0.14 -

airland4 20
1 6.69 0.54 > 300.00
2 154.90 2.14 -

airland5 20
1 20.38 4.04 > 300.00
2 67.36 3.20 -

airland6 30
1 0.03 0.01 > 300.00
2 29.16 0.17 -

airland7 44
1 1.46 0.11 > 300.00
2 1.08 0.04 -

airland8 50
1 0.90 0.25 > 300.00
2 3.66 5.65 -

airland9 100
1 > 300.00 > 300.00 > 300.00
2 > 300.00 63.00 -

OR-group
Bologna

FPT01 60 1 0.23 0.24 > 300.00
FPT02 60 1 0.27 0.27 > 300.00
FPT03 60 1 0.24 0.28 > 300.00
FPT04 60 1 0.45 0.44 > 300.00
FPT05 60 1 0.20 0.29 > 300.00
FPT06 60 1 0.20 0.15 > 300.00
FPT07 60 1 0.33 0.35 > 300.00
FPT08 60 1 0.33 0.39 > 300.00
FPT09 60 1 0.28 0.41 > 300.00
FPT10 60 1 0.28 0.39 > 300.00
FPT11 60 1 0.13 0.12 > 300.00
FPT12 60 1 0.06 0.07 > 300.00

Ikli

alp 7 30 30
1 > 300.00 > 300.00 > 300.00
2 126.00 > 300.00 -

alp 7 40 40
1 > 300.00 > 300.00 > 300.00
2 > 286.00 > 300.00 -

alp 7 50 50
1 > 300.00 > 300.00 > 300.00
2 > 300.00 > 300.00 -

alp 11 30 30
1 > 300.00 > 300.00 > 300.00
2 8.00 214.00 -

alp 11 40 40
1 > 300.00 > 300.00 > 300.00
2 > 300.00 > 300.00 -

alp 11 50 50
1 > 300.00 > 300.00 > 300.00
2 > 300.00 > 300.00 -

alp 15 30 30
1 > 300.00 > 300.00 > 300.00
2 189.00 > 185.00 -

alp 15 40 40
1 > 300.00 > 300.00 > 300.00
2 117.00 > 300.00 -

alp 15 50 50
1 > 300.00 > 300.00 > 300.00
2 > 300.00 > 300.00 -

alp 19 30 30
1 7.00 5.00 > 300.00
2 2.00 2.00 -

alp 19 40 40
1 > 300.00 > 300.00 > 300.00
2 3.00 290.00 -

alp 19 50 50
1 > 300.00 > 300.00 > 300.00
2 > 300.00 > 300.00 -
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instances from the literature involving up to 60 aircraft, can be solved to
optimality within very short CPU times. The only difficult instances that
remain from the literature are the very large ones, involving 100 to 500
aircraft.

For this reason, we construct four new data sets as a basis for generating
12 novel test instances for the ALP. These data sets, together with the test
instances and implementations from this subsection, are publicly available
from http://data.recherche.enac.fr/ikli-alp/.

The construction of these instances is explained in Appendix B which
also provides some important information on each instance, as well as on the
four data sets that serve as a basis to create new ALP instances. Results of
the three formulations BKSA, SMM and FKPT on these new test instances
are presented in Table 3. Observe from this table that only few instances are
solved to optimality within short computational times, namely: alp_11_30

with two runways, alp_19_30 with one and two runways, and alp_19_40

with two runways. None of the tree models BKSA, SMM and FKPT succeed
to solve the remaining instances within reasonable computation times.

6. Stochastic solution approaches

The dynamic nature of the runway scheduling problem motivates the
recourse to solution approaches with low computation times that allow the
update of solutions whenever a new event occurs. Several researchers thereby
favor heuristic approaches and metaheuristics.

In the literature prior to 2010, Genetic Algorithms (GA) were the mostly-
used metaheuristic [52, 53, 54, 55, 56]). Recently, Tabu Search (TS) and Sim-
ulated Annealing (SA) gained much more attention, and became the most-
used metaheuristics [10, 19, 42, 51, 57, 58, 59]. Other metaheuristics are also
used in the literature, such as Ant Colony Optimization (ACO) [60, 61, 62],
and Variable Neighborhood Descent (VND) [51, 63]. Table 4 summarizes the
most relevant stochastic approaches surveyed in this section, including meta-
heuristics, heuristics, and novel approaches based on reinforcement learning.

6.1. Ant colony optimization

A number of ACO frameworks are proposed in the literature for the ALP.
For the single runway case, Zhan et al. [60] consider the objective of min-
imizing total delay. They present, for the first time, an ant colony system
incorporated in a Receding Horizon (RH) algorithm named RHC-ACS-ASS
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(Receding Horizon Control with ant colony system for aircraft sequencing and
scheduling), controlled by two parameters: the time interval of a scheduling
window, and the total width of the RH. In their proposed ant colony system,
the FCFS heuristic is used to compute the initial pheromone. Then, local
and global updates are performed to increase population diversity (diversifi-
cation), and increase the desirability of best found solutions (intensification).
Their numerical studies artificially generate congested instances, involving
30 and 60 aircraft and consider as well data from [64], in order to compare
their approach with the GA introduced in [54] that use the same instances.
They show that, when incorporated in a rolling-horizon approach, the ACO
performs better than the GA.

For the multiple runway case, and the more general objective of min-
imizing the total deviation cost, Bencheikh et al. [61] present an adapted
ACO framework for runway and landing-time assignment. Unlike the model
of [60], based on permutations, Bencheikh et al. propose a bi-level graph to
model the ALP. The first level chooses an available runway, and the second
sets the aircraft to land on this runway. In their proposed ACO algorithm,
ants start from a dummy initial node, select a runway, then an aircraft to
insert in this runway, based on the priority of the aircraft and the memory
of the ant colony. The selection process is repeated until the list of aircraft
available to land is empty. Global pheromone updates are then performed,
and the overall algorithm ends when a stopping criterion is met. Numerical
tests are performed on the public instances of the OR-library, involving 10
to 50 aircraft, and 1 to 5 runways. Results show that their ACO enhanced
with the improvement heuristic has short computation times, and is capable
of finding optimal solutions for 80% of the test instances.
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An ant-colony based algorithm is also proposed for the ALP, with the
objective of minimizing the makespan in [65]. The considered constraints
are the time windows and the WV separation, which is assumed to satisfy
the triangular inequality. The proposed solution approach has two main
steps. In the first step, the separation matrix is approximated by a rank-2
matrix, similar to [41] discussed in Subsection 5.2. This new matrix ren-
ders the problem sequence independent, and hence easier to solve. Then,
an ant colony algorithm is used to compensate the loss in precision due to
the separation matrix approximation. The overall algorithm stops when a
time limit is reached. For the numerical study, the author uses an instance
borrowed from [54]. He also generates other instances involving 20 to 260
aircraft, with an increment of 30. The comparison with the ACO algorithm
of [77] on the instance of [54] shows that his algorithm succeeds to find the
optimal solution within 15 seconds, whereas the algorithm of [77] finds only
a good-quality solution, but in less than one second. For the large gener-
ated instances, the algorithm of [65] finds better solutions – in terms of the
makespan of the sequence – than CPLEX within the predefined time limits
that are questionable for a real-time application (120 and 3600 seconds).

6.2. Genetic algorithm

Hu and Paolo [52] consider the problem of scheduling aircraft landings on
a single runway, in order to minimize total airborne delay. They introduce a
novel GA framework, in which the representation of chromosomes differ from
the classical representations based on aircraft permutations [54, 68]. The ap-
proach is called Ripple-Spreading Genetic Algorithm (RSGA), inspired from
the ripple spreading on a liquid surface. It consists in projecting a candi-
date sequence onto an artificial space, where the representation of a solution
is based on numerical values (points) rather than on a permutation, then
connect all these points by the ripple-spreading process, to form a landing
sequence. In this work, the chosen artificial space is a two-dimensional space:
the x axis represents time and the y axis displays the aircraft WV categories,
converted in the same time unit as the x axis, using WV time separation re-
quirements. Traditional GAs are then used to optimize the ripple-spreading
parameters. Extensive computational tests are performed on generated data
involving up to 60 aircraft, considering under-congested instances, normal
instances, and very congested instances. The authors of [52] claim similar
performance in terms of total airborne delay compared with other GA-based
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approaches from the literature for the normal and the under-congested in-
stances, and smaller delays for the congested instances.

Shohel et al. [66] also opt for a GA-based approach to solve the ASP. The
novelty in this work is that it considers, in addition to the ASP, the problem
of finding the best-fit runway configuration6, i.e., a runway configuration that
maximizes runway throughput. It is the first time such an integrated problem
is tackled in the literature of the RSP, according to the authors. The con-
sidered constraints are the final-approach separation (WV separation) and
the CPS constraints. The later constraints are integrated in their genetic
algorithm. The chosen solution approach relies on a cooperative GA, where
a population of candidate aircraft sequences and candidate runway config-
urations co-evolve to find the best-fit sequence and a runway configuration
that maximizes the runway throughput. Numerical tests are conducted on
generated instances, mimicking peak traffic hours in Chicago O’Hare airport,
that contains 8 runways. The possible runway configurations are also based
on this airport. The authors observe that, with their integrated model, they
achieve a better runway utilization compared with the baseline capacity of
the above-mentioned airport. Indeed, the baseline capacity is 168 operations
(landings and take-offs) per hour, while their model achieves a capacity of
170 operations per hour.

6.3. Tabu search

Furini et al. [10] consider the problem of scheduling aircraft operations on
a single runway (ASP). Two types of constraints are considered: WV separa-
tion and time windows, with the objective of minimizing the total weighted
delay. They propose a rolling-horizon approach that consists in subdivid-
ing the initial instance into a set of sub-instances, called chunks, according
to some chunking rules. Then, they sequentially solve each individual sub-
instance using either their MIP approach (reviewed in Subsection 5.2), or a
TS method. In their proposed TS, a candidate solution is defined by a per-
mutation of the set of aircraft. Neighborhood solutions are obtained either by
swapping two aircraft positions, or by shifting an aircraft to a new position,
if the new candidate solution is not forbidden by the tabu list. The TS con-
tinues improving the candidate solution until a stopping criterion (maximal

6Recall that a runway configuration represents the number of runways and their layout,
e.g., single runway, multiple parallel runways, multiple crossing runways, etc.
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number of iterations or time limit) is met. Numerical tests on the OR-group
Bologna instances show that their TS outperforms the MIP approach to solve
the small chunks, within the predefined time limit of 15 seconds.

Soykan and Rabadi [57] propose a TS approach for the more general
problem of scheduling aircraft operations on multiple independent runways.
Their approach is decomposed in two main steps. The first step is similar to
the FCFS sequence; it computes an initial solution using a greedy approach,
called Target Time First Greedy Algorithm (TTFGA), which consists in mak-
ing aircraft land / take off according to their ascending order of target times,
and on the runway on which the (weighted) delay is minimal. The second
step is a TS that improves the initial solution. Candidate solutions are gen-
erated either by swapping two aircraft on the same runway, or on different
runways, or by deleting/inserting aircraft off/in the sequences. When a best-
to-date value of the objective function is found, an aspiration mechanism
is employed to ignore the tabu restrictions. When no improvement occurs
after a given number of iterations, then the algorithm stops. Tests are per-
formed on instances from [67] involving 15, 20, and 25 aircraft, and up to
5 runways. Theirs results feature very short computation times (less than
1 second), and an average gap to the optimal solution of 10.15%. However,
the gap may be large for some instances, in particular for instance 48, which
involves 25 aircraft and 4 runways, where the gap is 91.75%.

6.4. Variable Neighborhood Descent

VND is a metaheuristic that belongs to the family of Variable Neighbor-
hood Search (VNS) algorithms, introduced by Mladenovic and Hansen [78].
It is used by Salehipour et al. [63] to tackle the problem of scheduling air-
craft landing on multiple independent runways, in order to minimize total
schedule delay. The safety separation between pairs of aircraft landing on
the same runway are assumed constant (2 units of time), contrarily to the
classical WV separation that depends on the leading and the trailing aircraft
types. The separations between pairs of aircraft landing on different runways
are also constant (1 unit of time). The proposed VND computes an initial
guess based on a genetic algorithm introduced in [68]. Four neighborhood
structures are proposed: swapping aircraft on a same runway, on different
runways, or swapping runway sequences; the fourth neighborhood removes
an aircraft from one runway to insert it on another runway. Their numer-
ical tests rely on generated instances from [68], involving up to 20 aircraft
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and 5 runways. Their approach improves the first guess, but requires high
computation times, compared with state-of-the-art heuristics.

Salehipour et al. [51] use the VND in a hybrid algorithm to improve can-
didate solutions within an SA. The algorithm, called SA+VND, relies on 3
out of the 4 neighborhood structures defined above: swapping two aircraft
landing on a same runway or on different runways, and the remove/insert
technique. The VND chooses one neighborhood structure, and attempts
at improving the current incumbent solution. When no more improvement
is possible, then the neighborhood structure is changed. When the search
reaches the last neighborhood, the process is repeated until a stopping crite-
rion is met. Computation results on the OR-library instances show that their
hybrid metaheuristic is able to find the optimal solution for instances involv-
ing up to 50 aircraft, and good-quality solutions – in terms of optimality gap
– for the very large instances involving up to 500 aircraft.

VND was also used in Sabar and Kendall [69], within an iterative local
search algorithm, to tackle the multiple-runway ALP. the considered con-
straints are the time windows and the WV separation. The chosen objec-
tive function minimizes the total deviations from target landing times. The
local-search phase in their algorithm is based on a VND that relies on four
neighborhood structures, similar to those introduced in [63]. The VND stops
if the local optimum found by the last neighborhood cannot be improved any
further. Computational tests are conducted on the OR-library instances, in-
volving 10 to 500 aircraft, and 1 to 5 runways. The authors compare different
set-ups of their algorithm with several heuristics from the literature: the hy-
brid metaheuristics of [51], the Scatter search and the Bionomic algorithm
of [79]. Although their algorithm could not find the best-known solutions for
some instances, it was able to find new best solutions for 16 out of the 49
instances. Moreover, from a computational time perspective, the approach
of [69] has the smallest run times compared with the above-mentioned heuris-
tics, for all the OR-library instances.

6.5. Simulated annealing

Hancerliogullari et al. [42] present several heuristics to address their model
described in Subsection 5.2, including an SA framework, whose initial guess is
constructed using three types of greedy algorithms. The Earliest Ready Time
(ERT) greedy algorithm consists in landing aircraft according to their arrival
order, on the runway where it can start its operation (landing or take off) the
earliest (similar to Soykan and Rabadi [57] greedy algorithm). The Adapted
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Apparent Tardiness Cost with Separation and Ready Times (AATCSR), and
the Fast Priority Index (FPI) greedy algorithms inspired from the job-shop
scheduling literature, that land aircraft according to a priority index. Gen-
erating candidate solutions for the SA is performed by randomly choosing
two aircraft and swapping their positions, provided that their time-window
constraints are not violated. Several tests performed on generated instances
of 15, 20, and 25 aircraft show that their SA framework requires short com-
putation times, and significantly improves the initial solutions provided by
their three greedy algorithms AATCSR, ERT and FPI.

Rodriguez-Diaz et al. [19] consider the problem of scheduling aircraft
operations on a single runway (ASP), taking into consideration the WV sep-
aration and the CPS constraints. The objective is to propose near-optimal
solutions that significantly improve the FCFS order, without deviating too
much from it. Similarly to [51], they opt for an SA framework. candidate so-
lutions are generated by swapping aircraft so as to fulfill the CPS and the WV
separation constraints. Numerical tests performed on generated instances for
which the exact solutions are known a priori show that their approach is able
to find an optimal solution for 828 out of the 2000 instances (41.4%). Fur-
ther tests on the OR-library instances are performed to compare their SA
approach with the heuristics of [51] and [79]. Results show that their SA out-
performs the hybrid metaheuristic VNS+SA of [51], in terms of computation
times for all the 12 instances in OR-library, whereas the results of [51] and
those of [79] are better in terms of percentage improvement (but the later
allow earliest landings, i.e., landings before target times). Additional tests
performed on real data from Gatwick airport, show that the SA approach
of [19] can reach a 30% of improvement on real data, for large values of the
maximum number of position shifts.

Recently, Hammouri et al. [58] proposed a hybrid method that uses sim-
ulated annealing and iterated local search to tackle the ALP, involving one
or multiple runways, and taking into consideration time-window restrictions
and safety separation constraints. The proposed approach contains two main
loops. The inner loop uses simulated annealing to improve current solutions
through a cooling schedule, using the same neighborhood structures as in [63].
The outer loop relies on an iterated local search approach to perturb the so-
lution or restart the search, so as to explore other solution space regions,
and escape local minima. The perturbation process is performed using the
same above-mentioned neighborhood structures, but without guidance from
the objective function. Extensive computational tests are conducted on in-
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stances from the OR-library to compare their proposed approach with state-
of-the-art methaheuristics, such as the hybrid method of [72] and the scatter
search of [79]. Results are reported in terms of required computational time
and the gap to the best-known solutions, and show that their algorithm is
able to find the best-known solutions for all the small instances (up to 50
aircraft) in very short computation times. For some of the remaining large
instances, this algorithm does not find the best-known solutions. However,
it reaches new best results on four large instances, and has the best mean
computational time, when compared with the other methods.

6.6. Matheuristics

Matheuristics are hybrid optimization methods obtained by the interpo-
lation of mathematical programming and metaheuristics [80]. Some works
from the literature have used these methods. In particular, Vadlamani and
Seyedmohsen [70], Salehipour and Ahmadian [72], and the very recent work
of Salehipour [73].

Vadlamani and Seyedmohsen [70] consider the ALP involving a single run-
way, with the objective of minimizing total weighted deviations from target
times. They propose a heuristic approach, based on Adapted Large Neigh-
borhood Search (ALNS), which can be decomposed in two steps. First a
scheduling problem finds a near-optimal landing sequence. Then, a feasibility
problem finds landing times satisfying the constraints via a linear program
solved with CPLEX. The approach is tested on the OR-library instances,
and compared with the SA and the SA+VNS metaheuristic of [51]. Their
approach finds optimal solutions for instances involving 10 to 150 aircraft,
outperforming SA+VNS that could not find optimal solutions for instances
with 50 and 100 aircraft. However, the computation times for the instance
of 150 aircraft are long (234 seconds) for a real-time application context.

Salehipour and Ahmadian [72] consider the same problem as in [70], and
opt for a heuristic approach that can be likewise decomposed into two steps.
A first step generates an initial sequence based on the target times in a FCFS
fashion. It is then improved using a local search algorithm that allows a per-
centage of aircraft to change their initial position, until a stopping criterion
is met. With the sequence fixed, the scheduling of landing times is finally
performed using CPLEX. Tests are performed on the OR-library instances,
and the approach is compared with two of the best existing heuristic in the
literature: the scatter search heuristic of Pinol and Beasley [79], and the
hybrid VNS+SA metaheuristic of Salehipour et al. [51]. Results show that
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their heuristic has the best gap for 10 out of the 13 instances from the OR-
library. This approach was recently extended to the multiple-runway case,
by Salehipour [73]. This recent work assumes that runways are independent,
i.e., no separation is required between aircraft landing on different runways.
Thus, the author constructs a feasible solution (in a FCFS-like oder) for each
runway, and then improves it using the above-discussed heuristic. Extensive
computational tests are conducted on the OR-library instances, with 1 to 5
runways, as well as on the 75 benchmark instances from [40] that contains 15
to 50 aircraft, and 2 to 5 runways. This approach is compared with GuRobi
and two other heuristics [69, 81] from the literature, in terms of percentage of
best solutions obtained within predefined time limits. Results show that this
heuristic outperforms the two other heuristic and GuRoBi on the Ghoniem
et al. [40] instances. On the other hand, for the OR-library instances, the
heuristic of [69] has the best score in terms of percentage of best solutions.

6.7. Other heuristics

Unlike most of the works in the literature that deal with the static RSP,
Xiao-Peng et al. [71] consider the dynamic scheduling of aircraft landings,
taking into consideration time-window and separation constraints. The cho-
sen objective function is the makespan of the sequence. The authors model
the ALP as a (constrained) permutation problem, and propose a population-
based heuristic algorithm, named Dynamic Sequence Searching and Evalu-
ation (DSSE), combined with a receding-horizon approach to solve it. The
scheduling horizon is divided into smaller intervals, and the ALP is gradually
solved on each interval, using the DSSE algorithm. Several test instances are
used in the numerical study: (i) an instance from Beijing capital interna-
tional airport with 50 aircraft, (ii) 12 generated instances involving 20 to 50
aircraft, and (iii) some other instances from Zhan et al. [60] with 20 and 30
aircraft. The DSSE algorithm is then compared with several heuristics from
the literature, including that of Vadlamani and Seyedmohsen [70] reviewed
above. Results show that the algorithm of [71] is very competitive in terms of
computation times. Moreover, it reaches the best objective value on average,
on the 12 generated instances.

Ikli et al. [74] also consider the ALP involving a single runway, with
the objective of minimizing the total weighted delay. They propose a novel
heuristic-search approach based on Optimistic Planning [82, 83]. It models
the ALP as an environment composed of states, actions, transitions and costs
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inspired from Markov decision process. The heuristic search starts at the
initial state where all aircraft are available to land, and tries to identify which
sequence of actions are the best to take (i.e., which sequence of aircraft to
land) within a limited time budget. Tests are performed on realistic instances
involving 18 to 40 aircraft, available at [75], imposing for each instance a time
limit of 3, 5 and 15 seconds. Results show that their approach can reach,
for some instances, a percentage of objective-function value improvement of
37% with respect to the FCFS heuristic.

6.8. Reinforcement learning

Reinforcement learning [84] is used to tackle a wide variety of problems;
this includes the problem of sequencing and scheduling aircraft operations.

Soares et al. [24] consider the problem of scheduling aircraft take-offs
on a single runway, with the objective of respecting the assigned take-off
time windows. The problem is modeled as an MDP, and solved using a
popular RL algorithm, called Q-learning [85]. In their proposed MDP, agents
correspond to aircraft, states correspond to the position of the aircraft on
the ground, depending on its phase (parked, taxiing, taken-off). Actions
consist in delaying aircraft, and the reward is defined so as to minimize delay
during taxiing, in order to respect aircraft assigned time windows. Tests are
performed on real data from John F. Kennedy international airport, that
feature 698 departure flights, which corresponds to two days of operations in
this airport. They generate 42 learning scenarios from these data. Results
show that their algorithm has similar performance in terms of percentage of
time windows respected compared with human ground controllers. However,
when facing disturbance (stochastic case), their algorithm performs better.

Brittain and Wei [25] propose another framework to model the problem of
sequencing and separating aircraft, so that the model fits the NASA sector-33
environment [76], which is an air traffic control application that contains 35
problem instances involving up to five aircraft. They involve providing speed
and route control to aircraft so as to sequence and separate them. Their
proposed model (similar to an MDP) is composed of agents, states, actions,
and rewards. This model features two types of agents: parent agents and
child agents. The state of a parent agent contains a screen-shot of the game
screen. The state of a child agent contains information about the metering
fix goal, aircraft speed and acceleration, a route identifier, additionally to
information about the N -closest agents in order to permit communication
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between agents. Actions for a parent/child agent consist in changing or
maintaining the route/speed of aircraft. The reward is designed so as to
penalize agents in conflict (separated by less that 3 nm). A hierarchical
deep reinforcement learning algorithm is then used to solve the model. This
algorithm combines Q-learning [85] algorithm and neural networks [86]. It
is called hierarchical because actions are taken at two levels: the parent-
state level chooses the route, then child-state level selects the speed for the
aircraft. Tests performed on the above NASA environment (involving only
2 to 5 flights) show the viability of their approach to sequence properly and
separate aircraft from and to given metering fixes.

7. Conclusion and future directions

Making the best use of Air Traffic Management infrastructures, especially
the runway, which is considered to be the major bottleneck, is the motivation
behind runway scheduling problems ALP, ATP, and the integrated problem
ASP.

Several models and solution approaches are proposed in the literature,
ranging from exact approaches, mainly dynamic programming and mixed-
integer programming, to stochastic approaches including metaheuristics such
as genetic algorithms, simulated annealing, tabu search, and ant colony op-
timization. Reinforcement learning techniques are also used in the literature
to tackle the ALP and the ATP. Hybrids of metaheuristics and mathematical
programming, termed matheuristics, are becoming more and more frequent
in the recent literature. Notable examples of such methods are the hybrids
of mathematical programming and local search of [70, 72].

Very efficient DP algorithms are proposed in the literature for the single
runway case, considering different objectives (makespan, delays, etc.), and
even multi-objective functions. However, for the multiple-runway case, DP
struggles to find optimal solutions in reasonable computation times, except if
one assumes additional restrictions that reduce the search space (e.g., prece-
dence order, CPS constraints, time windows, and the triangular-inequality
assumption). Mixed-integer programming approaches are very flexible, and
allow one to incorporate different operational constraints, and different types
of the separation requirements that may arise when considering multiple run-
ways or multiple operations on the runway (e.g., landings, take-offs, crossings,
snow removals). Moreover, they yield optimal solutions in short computation
times for the OR-group Bologna instances, and for the benchmark problems
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from the literature (OR-library instances) that involve up to 50 aircraft and 4
runways. However, for the very large instances (≥ 100 aircraft), MIP suggers
from the NP-hard complexity of the RSP.

If constrained position-shifting restrictions are taken into consideration,
the data-splitting method of [4], and stochastic solution approaches such as
the simulated annealing of [19] seems to be efficient approaches to solve the
RSP for small values of the maximum number of position shifts. The first
one yields optimal solutions in short computation times for some generated
instances, outperforming the state-of-the-art dynamic-programming method
of [17]. The second approach provides good-quality solutions for all the OR-
library instances – including the very large ones – within a few seconds (less
than 5 seconds).

If the CPS restrictions are not considered in the RSP however, then exact
methods do not solve large instances in reasonable computation times. The
scatter search of [79], the hybrid metaheuristic VND+SA of [51], the hybrid
iterated local search / simulated annealing of [58], and the hybrid iterated
local search / VND of [69] appear to be good candidate approaches to solve
the RSP with one or multiple runways, and with the more general objective
of minimizing deviations from target times. They provide good-quality so-
lutions in terms of the gap to the best-known solutions, within reasonable
computation times on the OR-library test problems.

After reviewing the state-of-the art methods proposed in the literature,
we derive some concluding remarks, and suggest promising future directions.

• Refining aircraft categories : Researchers in the literature usually use
the classical three ICAO (International Civil Aviation Organization)
wake-turbulence categories introduced in Subsection 2.1, and their cor-
responding separation requirements. However, this categorization is
rough and often leads to over-separation. A better understanding of
the wake-turbulence phenomenon and the improvement of support tools
assisting controllers have lead to refining the classical three categories
into six new categories, as in RECAT projects [13]. Hence, a more accu-
rate approach would consider the above-mentioned six wake-turbulence
categories. In addition to being more accurate, the use of RECAT cat-
egories results in a non-negligible delay saving, as shown in the work
of [87].

• Integrating scheduling and air traffic control : Most approaches consider
only the scheduling problem to propose a landing (or take-off) time slot
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for each aircraft, resulting in a better utilization of the runway system
with the proposed time slots. However, the air traffic control problem
of guiding aircraft so as to respect the scheduling solution is rarely
considered. A more realistic approach could integrate the air traffic
control problem, for instance by adding explicit altitude, speed, and
heading control decisions to the optimization variables. These control
actions (altitude, speed and heading) will allow air traffic controllers
to judge whether a schedule is feasible in practice or not.

• Enlarging the air traffic environment : Works in the literature usually
focus on optimizing solely the runway throughput, ignoring other as-
pects of the airspace close to the airport that are specific to each airport,
which also contribute to the congestion. Indeed, during periods of con-
gestion, bottlenecks may occur elsewhere in the terminal airspace close
to airports, resulting in significant delays, not only at runways, but also
at other points in this area [88]. More realistic approaches therefore
consider for instance the specific (approach and departure) route struc-
ture of the airport, as addressed in [89, 90, 91, 92]. These examples
consider not only the runway, but also approach and departure route
segments and holding circles in the optimization.

• Enlarging further to surface operations : The ALP, ATP, and the man-
agement of surface operations (i.e., taxiing) are often addressed sep-
arately in the literature, and handled independently in the airports.
However, these three problems are linked and should ideally be treated
at once. Indeed, if one considers each problem independently, the so-
lutions found may not be feasible in practice, since the three prob-
lems are linked. Another alternative consists in considering these (sub-
)problems sequentially. This may require less computation times com-
pared to the complete integrated problem, but may lead to sub-optimal
solutions. Examples from the literature that consider the integrated
problem are [59, 93, 94]. However, the proposed approaches in these
works solve the integrated sub-problems sequentially.

• Matheuristics : A few works from the literature use matheuristics [80],
which are hybrid methods of mathematical programming and meta-
heuristics. Notable examples are [70, 72], which hybridize mathemati-
cal programming with a local search method. These approaches have
shown their effectiveness in solving the very large instances from the
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OR-library. Investigating further these hybrid methods for other prob-
lem instances, and for more realistic runway scheduling problems is
therefore a promising future direction.

• Addressing uncertainty : The sources of uncertainty in air transporta-
tion are numerous, e.g., weather change, human factors involved in air
traffic management, and delay propagation, which result in a consider-
able uncertainty in the input data of the runway scheduling problem,
which are commonly assumed to be known in a deterministic way. Only
few authors address the uncertainty issue. Recently, [95] proposed a
robust optimization framework for the ASP. Even more recently, [96]
introduced a two-stage stochastic programming approach for the ALP.
However, there is still a need for approaches that consider different
sources of uncertainty, such as the time aircraft appear in the radar
range, and the availability of runways.
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Appendix A. Final-approach separation-matrix conversion

The wake-vortex separation matrix between landings – called final-approach
separation matrix – is given in terms of distance, and expressed in nautical
miles (nm) as shown in Table A.5. Since scheduling models are usually based
on time, the separation matrix must be converted into an equivalent time-
based matrix.

Following aircraft
H M L

H 4 5 6
Leading aircraft M 2.5 2.5 4

L 2.5 2.5 2.5

Table A.5: Final-approach separation matrix (nm) according to the ICAO’s basic WV
categories (Khassiba et al. [96])

The conversion process is complex, since it involves modeling the airspeed
profile of each aircraft type, the wind speed, and the equation of motion on
the final approach path. We present here a simplified model to convert
the above distance matrix into a time matrix, based on the approach of de
Neufville et al. [97] for computing the capacity of a single runway.

Appendix A.1. Definitions

Consider a single runway used solely for landings, and a meter fix (the
Final Approach Fix (FAF) for instance) where arriving aircraft are merged
to the final-approach segment, and must maintain the minimum required
separation from each other, as shown in Figure A.4. Consider two aircraft i
and j, where i is the leading aircraft, and j is the following aircraft.

We define the following quantities (we use the same notation as in [97]):

• r: distance (in nm) between the meter fix (FAF) and the runway thresh-
old.

• Sij: minimum WV separation (in nm) between aircraft i and j.

• vi and vj: an approximation of the final approach speed (in knots (kts),
1 kts = 1 nm/h or 1.852 km/h) of aircraft i and j respectively, supposed
fixed, and depend on the aircraft WV category.
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Figure A.4: A runway and the final-approach path

• oi and oj: runway occupancy time (in seconds) of aircraft i and j
respectively, from the touch down to the instant when the aircraft leaves
the runway.

• Tij: minimum WV separation (in seconds) between two aircraft i and
j.

Appendix A.2. Conversion formula

To determine the time separation Tij, two cases can be distinguished
depending on the speed of the leading and the trailing aircraft i and j re-
spectively:

• The opening case : when vi > vj. In this case, it is sufficient to verify
the separation only at the meter fix to ensure that the two aircraft
remain separated up to the runway threshold. Suppose that aircraft i
starts its final approach, aircraft j must be at least at distance Sij from
aircraft i; since the final-approach path length is r, aircraft i and j will
arrive at the runway threshold after r

vi
and

r+Sij

vj
respectively. Thus,

the time separation between the two aircraft must satisfy:

Tij ≥
r + Sij
vj

− r

vi
(A.1)

In addition, a runway safety constraint imposes that aircraft j cannot
proceed to land before the leading aircraft j clears the runway, i.e.,

Tij ≥ oi (A.2)
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The time separation in the opening case is therefore:

Tij = max{r + Sij
vj

− r

vi
, oi} (A.3)

• The closing case : when vi ≤ vj. The separation in this case must be
satisfied on the runway threshold. When aircraft i arrives at the runway
threshold, aircraft j must be at least at distance Sij from i, and hence

will land not earlier than
Sij

vi
later. Taking into consideration the same

runway safety constraint, the required time separation is then:

Tij = max{Sij
vj
−, oi} (A.4)

Appendix A.3. Example of computation

Table A.6 gives numerical values of the quantities defined in Appendix A.1,
according to the WV categories. For the length of the final-approach path,
i.e., from the FAF to the runway threshold, we take r = 5 nm. The distance
separation matrix is the ICAO WV separation matrix, given in Table A.5.

WV categories
H M L

vi (kts) 150 130 110
oi (s) 70 60 55

Table A.6: Numerical values of the approach speed and runway occupancy time according
to the WV categories [97]

Numerical application example: H-M
Consider two aircraft types H and M from the three WV categories. Suppose
that the leading aircraft, i, is in the category H, while the following aircraft,
j, is in the category M. From Table A.6, we have vi > vj, which corresponds
to the opening case. The time separation is therefore, according to A.3 (using
the category indices “H” and “M” instead of the aircraft indices “i” and “j”):
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THM = max{r + SHM
vM

− r

vH
, oH}

= max{5 + 5
130
3600

− 5
150
3600

, 70}

≈ 157 seconds

If we apply the same process to all possible pairs of successive aircraft
types, from Table A.5, we get the WV separation matrix given in Table A.7.

Following aircraft
H M L

H 96 157 240
Leading aircraft M 60 69 156

L 60 69 82

Table A.7: The WV separation matrix in seconds
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Appendix B. The new ALP instances

This appendix is organized as follows. We first explain the construction
process of the 12 test instances used in Subsection 5.3. Then, we report
some important features and statistics on each instance, such as the number
of aircraft from each WV category, which reflects the mix of aircraft in the
instance, and the number of aircraft per hour, which captures its congestion
level.

Appendix B.1. Construction details

The raw data comes from two traffic days on Paris-Orly airport, obtained
from the OpenSky Network [98]: one day in July 2018 (322 scheduled air-
craft), and one day in April 2019 (294 scheduled aircraft). In order to obtain
a larger and more congested set, we merge these two traffic days. Then, we
remove duplicate aircraft to avoid redundancy. Next, we divide this data
set into the following 4-hour intervals: 07:00 – 11:00 , 11:00 – 15:00, 15:00 –
19:00, and 19:00 – 23:00. This subdivision leads to the four data sets named
data_7_11.csv, data_11_15.csv, data_15_19.csv, and data_19_23.csv

in [99]. Finally, we artificially add light aircraft to each of the four data sets,
so as to obtain a mix of 40% heavy, 40% medium, and 20% light aircraft,
mimicking realistic peak traffic hours, as suggested in Prakash et al. [4].

These four data sets serve as a basis to generate test-bed instances for the
aircraft landing problem. Indeed, the 12 test instances used as a benchmark
in Subsection 5.3 are generated from these data sets, by simply considering
the first |A| lines of data (|A| ∈ {30, 40, 50}) of each of the four data sets.
These 12 instances may therefore serve as a benchmark for future studies,
and further test instances may also be generated from the four basis data
sets.

The basis data sets, test instances, and implementations from Subsec-
tion 5.3 are publicly available at http://data.recherche.enac.fr/ikli-alp/.
The information provided for each aircraft includes: the model of the air-
craft (mdl), sometimes called aircraft type in the literature, the WV cat-
egory (category), the target landing time (sta), and the actual landing
time (ata) in HH:MM:SS format and in seconds. We also provide realis-
tic delay costs for each aircraft, based on the work of Cook et al. [100],
and of Cook and Tanner [101]. These two reports conduct detailed delay
cost analysis, taking into account several factors: fuel consumption, num-
ber of passengers, maintenance, cabin crew, etc. Another particularity of
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these reports is that they provide a piecewise linear cost function, which is
more realistic than the linear cost given in the benchmark instances from
the literature. However, these reports present delay costs only for some
aircraft models (15 aircraft models in the latest report [101]). In order
to extrapolate the costs for other aircraft types, we construct a linear re-
gression fit-function on the aircraft of [101]. Details about this regression
(variables, parameters, implementation, and r2 score) are also available from
http://data.recherche.enac.fr/ikli-alp/, in the folder ikli_codes.

Figure B.5 displays the delay cost variation for all the 26 aircraft mod-
els/types available in our data sets. The abscissas 300, 900, 1800, and 3600
are the (delay) breakpoints of the piecewise linear cost function, in seconds
(corresponding to: 5, 15, 30, and 60 minutes, respectively). To the best of
our knowledge, this is the first time such a detailed and realistic piecewise
linear cost function is provided in a publicly available data set for the ALP.

Figure B.5: Variation in the delay cost, in euros, for all aircraft types in our data sets

Appendix B.2. Data sets and instances description

Table B.8 summarizes some characteristics of the data sets. Through-
out this table, the first and second columns present the name and the time
interval of each data set. The third and fourth columns report the total
number of aircraft “|A|”, and the average number of aircraft per hour “Av-
erage ac/hour”, in each data set. The last column “Mix of ac” shows the
mix of aircraft on each set, in terms of the three WV categories: H, M, and
L, introduced in Section 2.
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Data-set name Time interval |A| Average Mix of ac
ac/hour H M L

data 7 11.csv 07:00 - 11:00 185 46.25 74 74 37
data 11 15.csv 11:00 - 15:00 207 51.75 83 83 41
data 15 19.csv 15:00 - 19:00 203 50.75 80 82 41
data 19 23.csv 19:00 - 23:00 167 41.75 67 67 33

Table B.8: Description of Ikli data sets.

Characteristics of the 12 benchmark instances are displayed in table B.9.
We also report the number of aircraft per hour “Number ac/hour” for these
instances: it is the number of aircraft in the instance (|A|) divided by the
time length of the instance (time interval), in hours. This number is an
important characteristic, because it captures how congested the instance is.

From Table B.9, it can be seen that the most congested instances among
the 12 proposed instances are alp_15_30.csv and alp_15_40.csv. They
both have a number of aircraft per hour equal to 60, which corresponds to
realistic scenarios of peak demand. Indeed, considering a scheduling horizon
of one hour and peak traffic conditions, aircraft may appear in the scheduling
horizon every 50 or 60 seconds [4]. On the other hand, the least congested
instances are alp_19_30.csv and alp_19_40.csv, which both have a sim-
ilar number of aircraft per hour (∼ 36). This may explain why they are
solved to optimality by CPLEX, in short computation times, using the MIP
formulation of [9] (Table 3).

Instance origin Instance name Time interval |A| Number Mix of ac
ac/hour H M L

data 7 11.csv
alp 7 30.csv 07:00 - 07:40 30 45.0 13 11 6
alp 7 40.csv 07:00 - 07:59 40 40.68 17 14 9
alp 7 50.csv 07:00 - 08:10 50 42.86 22 17 11

data 11 15.csv
alp 11 30.csv 11:00 - 11:45 30 40.0 7 16 7
alp 11 40.csv 11:00 - 11:51 40 47.06 11 18 11
alp 11 50.csv 11:00 - 11:58 50 51.72 17 21 12

data 15 19.csv
alp 15 30.csv 15:00 - 15:30 30 60.0 15 11 4
alp 15 40.csv 15:00 - 15:40 40 60.0 19 14 7
alp 15 50.csv 15:00 - 15:51 50 58.82 22 19 9

data 19 23.csv
alp 19 30.csv 19:00 - 19:50 30 36.0 8 17 5
alp 19 40.csv 19:00 - 20:05 40 36.92 9 21 10
alp 19 50.csv 19:00 - 20:15 50 40.0 15 25 10

Table B.9: Description of Ikli-instances.
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Appendix C. Acronyms

Acronym Meaning
ACO Ant Colony Optimization
ALP Aircraft Landing Problem
AMAN Arrival MANager
ASP Aircraft Scheduling Problem
ATC Air Traffic Control
ATM Air Traffic Management
ATP Aircraft Take-off Problem
CPS Constrained Position Shifting
DMAN Departure MANager
DP Dynamic Programming
ELW Earliest Landing-time Windows
FCFS First-Come First-Served
GA Genetic Algorithms
ICAO International Civil Aviation Organization
MDP Markov Decision Process
MIP Mixed Integer Programming
RSP Runway Scheduling Problem
SA Simulated Annealing
SMAN Surface MANager
TS Tabu Search
VNS Variable Neighborhood Search
WV Wake Vortex

Table C.10: Table of acronyms
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deviation from scheduled times in a single mixed-operation runway,
Computers & Operations Research 78 (2017) 193–202.

[20] K. Artiouchine, P. Baptiste, C. Dürr, Runway sequencing with holding
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