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A Variational Adjoint Approach on Wide-Angle
Parabolic Equation for Refractivity Inversion

Uygar Karabaş, Youssef Diouane, and Rémi Douvenot

Abstract—Radar systems performance under anomalous prop-
agation conditions can be predicted if the atmosphere is prop-
erly known. This paper introduces a tomographic approach to
estimate refractivity in the troposphere with an adjoint-based
inversion method. A new adjoint model is developed for the
two-dimensional wide-angle parabolic equation using variational
adjoint approach, to invert refractivity from phaseless data mea-
sured with an array of radio receivers in open-sea environment.
The obtained adjoint model is validated considering propagation
through range-independent medium over flat perfectly-electric-
conducting surface at horizontal polarization. The ill-posedness
of the regarded inverse problem is shown with the optimization
landscapes. The parametric study indicates the potential use of
this method as a refractivity gradient retrieval system under
certain circumstances.

Index Terms—Refractivity inversion, inverse problem, wide-
angle parabolic equation, adjoint model.

I. INTRODUCTION

NON-STANDARD refractive index variations cause per-
formance anomalies for maritime communication and

surveillance platforms [1]. Prediction of tropospheric refrac-
tivity in abnormal propagation conditions is crucial for survey
radars because these conditions create blind zones, increase
clutter level, alter detection range and cause range-altitude
errors [2]. Although accurate radar coverage estimation meth-
ods exist taking refractivity as input [3]–[7], abnormal con-
ditions are poorly quantified in practical sense [8]. It is
necessary to quantify the refractivity over spatial extent of
the platform for the entire operation time dynamically with
robust, cost-effective methods [9]. Refractivity-from-clutter
(RFC) is proposed to address these requirements in near-real
time [10]–[12]. It is a self-contained remote sensing method
for refractivity inversion which potentially outperforms other
refractivity estimation techniques [13], [14].

The current objective of RFC is to invert refractivity from
sea-surface reflected radar clutter typically under 10 minutes
with high reliability in realistic high-dimensional scenarios
[15], [16]. Commonly, the inversion problem is formulated
as a simulation-driven nonlinear optimization problem [13].
Computationally-efficient simulation methods exist solving
parabolic equations with split-step techniques [17], [18]. The
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Fig. 1. An illustration of the bistatic configuration.

inversion technique [13] and the clutter model [19] are
scenario-dependent open questions, however.

Inversion of refractivity from sea-reflected radar clutter
or array antenna measurements, as illustrated in Figure 1,
is a complex nonlinear, ill-posed problem [20]. Historically,
the inversion complexity has been reduced thanks to coarse
parametrization with functional representations in altitude
[21], [22]. In parallel, range-independent medium is assumed
[23]. Until the end of 2000s, several RFC techniques have been
proposed with varying degrees of simplification on the spatial
variability of refractive index (e.g., [24]–[31]). However, these
techniques are not applicable for high-dimensional problems
since the computational cost of inversion increases with the
number of parameters to invert. Therefore, they are not effi-
cient for problems at high frequencies when the propagation
becomes increasingly sensitive to the spatial details of the
medium inhomogeneities [13]. That is why some recent works
have investigated the inversion of refractivity profiles defined
using high-dimensional nonparametric functional models.

The first RFC technique whose computational cost does not
depend on the number of parameter to invert has been devel-
oped in [32] in the framework of variational adjoint approach
in 2010. The authors have derived the adjoint model (AM) for
two-dimensional narrow-angle parabolic equation (2-D NAPE)
which is solved using split-step Fourier (SSF) technique.
Following studies have confirmed the severity of ill-posedness
in high-dimensional scenarios despite regularization [33]–
[35]. Unfortunately, today’s adjoint-based RFC techniques still
require unrealistically good initial guess with additional apriori
information or need to incorporate dimensionality reduction
techniques [36], [37]. Thus, reliable inversions which are
purely driven by real-time data have not been realized yet in
high-dimensional realistic configurations in 2-D. Other recent
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efforts concentrate on improving RFC in low-dimensional
scenarios [38]–[42].

Despite the prominence of forward model (FM) accuracy
in inverse problems, no previous study has attempted to fuse
the adjoint-based approach with a wide-angle propagation
model in RFC community. In this work, we extend the adjoint
approach for 2-D wide angle parabolic equation (WAPE) by
identifying the adjoint of square-root propagation operator.
The proposed solution is validated numerically. Our main
motivation is to enrich the pool of available adjoint models
in radio and acoustic wave propagation communities with the
most accurate WAPE on which split-step technique is appli-
cable. We simulate the adjoint model with split-step wavelet
(SSW) technique [18], which is faster than SSF, to tend
towards a real-time accurate system. We aim at capturing any
refractive condition at the spatial resolution of FM simulations
by adopting point-by-point inversion approach in altitude [32].

Unlike previous work, the obtained gradient of the cost
function is computed and validated successfully using a finite
differences approximation. We also include the optimization
landscapes in our analysis in order to visualize the inversion
complexity and to explain how much the inversion is sensitive
to initial guess for a given setup [43]. The method is presented
for tomographic approach as an intermediate step towards a
full effective RFC system. Although regularization techniques
are kept out of scope of this work at this stage, our parametric
study still shows the potential of our proposed approach.

The outline of the paper is as follows. In Section II, the
formulations of our problem are presented. In Section III, the
numerical methods are explained. Numerical test results are
detailed in Section IV.

II. MODELING

In this section, we first give an overview of adjoint method
in generic sense. After defining the forward problem and the
inverse problem, the adjoint model is derived. The derivation
is done in continuous adjoint form, so the parametrization and
data are kept in functional forms. The recipe for the discrete
adjoint formulation and finite dimensional setting of data and
parametrization are explained in other appropriate sections.

A. Framework overview

In this section, the inverse problem framework is presented
following [44] to put forward the motivation. The inverse prob-
lem is seen as the minimization of a square error functional
over control parameter m in the bounded admissible space
Mad given by:

min
m∈Mad

J(m) =
1

2

∥∥dsim
m − dobs

∥∥2
D
. (1)

The cost function J(m) depends on the parameter m through
the simulated measurement dsim

m . The observation state dobs is
an experimental measurement function. We seek for a solution
using an efficient gradient-based optimization method. For that
reason, we choose to work with the square error functional
(1) as this norm is differentiable. We present the standard
formalism to obtain the gradient of the cost function below.

Consider the inverse problem (1) where D = L2(ΓR) and
ΓR forms a partition of the domain Ω. The map of misfit
quantification is given by:

K :D → R,

d 7→ K(d) =
1

2

∥∥d− dobs
∥∥2
D
.6

(2)

The simulated measurements dsim
m are taken via an observation

operator P that applies to the the state um ∈ U = L2(Ω), i.e.,
um 7→ dsim

m = P (um). The state u is uniquely defined for a
given parameter m with the state equation F (u,m) = 0 at
u = um. This latter is calculated from m using the forward
map S:

S :Mad → U,

6m 7→ um = S(m) such that F (um,m) = 0.
(3)

Note that the cost function J is a composite function given
by J(m) = K ◦ P ◦ S(m). The gradient of J with respect to
m is given by [44]:

∇mJ = φ′(m)∗∇um
J, (4)

where φ(m) = P ◦ S(m) and φ′(m) is the differential of
the mapping φ(m). The asterisk ∗ denotes its adjoint. The
function ∇um

J is the forcing function of the adjoint model
[45]. Since φ is implicitly defined with the solution of the state
equation, the implementation of (4) is not straightforward in
our case. Therefore, we cast (4) using the variational form in
order to obtain an explicit adjoint equation which allows the
gradient to be identified and to be calculated more simply. In
the following sections, the elements given in this section are
specified for our particular problem.

B. The forward problem

This section discusses the physical modeling part in the
adjoint formalism given by (3). In the context of propagation
at open-sea environment with azimuthal symmetry, modeling
of electromagnetic wave propagation considers solely forward
propagating part of the Helmholtz equation in cylindrical
coordinates:

∂ru− jk0 (1−Q)u = 0, (5)

which is also called the one-way equation. The square-root

operator Q is given by Q =
√
m2(z) + k−20 ∂2z with k0

the wave number in vacuum and m(z) ∈ R+ the modified
refractive index that accounts for earth roundness. Equation
(5) is exact for range-independent medium as long as the far
field approximation holds, and takes into consideration the
entire forward propagating wave field propagating at frequency
f = k0c/2π. The reduced field u(r, z) ∈ C is related to
the power at the receiver antenna by taking into account the
distance, antenna gain and medium impedance [46].

There are numerous choices to model the propagation in the
lower troposphere depending on how accurate Q is approxi-
mated in (5) [46], [47]. The standard parabolic approximation
(NAPE) is the first order approximation of Q [48], it has
limited accuracy [49] and it is the only model used in adjoint-
based RFC systems so far [32]–[37]. In this paper, we use the
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wider angle approximation (WAPE) as forward model, which
is introduced by Thomson and Chapman [50] for underwater
acoustics according to the splitting of Q as proposed by Feit
and Fleck [51]:

∂ru+ j

[
k0(m(z)− 1) +

(√
k20 + ∂2z − k0

)]
u = 0, (6a)

u(0, z) = φ(z), (6b)
u(r, 0) = 0. (6c)

This model considers the boundary condition of a flat
perfectly-electric-conducting surface at z = 0 with source term
φ(z) modeling the initial field of emitted radio waves at hori-
zontal polarization. Note that the state equation (6a) could also
take into account a dielectric ground using a variable change
proposed by [17]. However, reflection coefficient cR = −1 is
a good approximation for both polarizations at very grazing
angles.

To sum up, the forward problem is to determine the state
um for a given parameter model m by solving (6).

C. The inverse problem

In our inverse problem, we target to determine the parameter
model m that minimizes the following cost function:

min
m∈Mad

J(m) =
1

2

∫ Z

0

∣∣dsim
m − dobs

∣∣2 dz. (7)

The problem (7) is designed with some idealizations which
help the validation of the inversion process. Namely, for
an objective refractivity model mOBJ, the experimental mea-
surements will be synthetically generated using the forward
model (6). According to the tomographic approach given in
Figure 1, the measurements are taken at the range r = R
such that P : u(r, z) 7→ |u(R, z)|2 and data space D is
such that ΓR = {R} × [0, Z]. Therefore, the observed data
obey dobs = {|u(R, z)|2 : F (u,mOBJ) = 0}. In our study,
the parameter model m is function of altitude z only. Note
that dobs ∈ Im(P ◦ S) so the existence of global minimum is
guaranteed for (7). But some other solutions become indistin-
guishable from mOBJ since phase is immeasurable.

In a realistic scenario, simulated measurement with (6)
would not perfectly produce the experimental measurement.
The ground is modeled better as dielectric ground. The refrac-
tivity varies with range. In addition, measurements are time-
averaged, contain noise and cannot be pointwised in practice.
Modelling and measurement errors will add to the complexity
of the idealized inverse problem. Therefore, it is of interest
to avoid real-world data during validation of the inversion
routine.

We note also that noise needs to be added to synthetic
measurements in order to assess the robustness of the inversion
algorithm against instabilities. Here, the noise modeling does
not aim to be realistic and the inversion results from noisy
data are neither an indicator of performance in real operation
nor conclusive. Instead, the aim is to deduce the sensitivity
of solver of (7) to perturbations. In order to be able to draw
conclusion from inversion of noise-free synthetic data, it is
necessary to show a certain level of robustness to noise. In that

context, additive Gaussian noise can be added to the simulated
measurements, i.e.,

dobs
noisy = dobs + ζ (8)

where ζ follows a centered normal Gaussian distribution with
a standard deviation of τ× rms

(√
dobs
)

. The function rms(x)

is root-mean-square of function x ∈ R and τ is termed as the
level of noise in this work.

D. The tangent linear model

Let us denote F (um,m) = Fm for brevity. Assume a linear
perturbation on the parameter model in the direction m̂ such
that Fm+αm̂ = 0. We seek for the operator F ′ which fulfills
the following relation:

lim
α→0

‖Fm+αm̂ − Fm − F ′(ûm,m; m̂)αm̂‖
‖αm̂‖

= 0. (9)

Here, the operator F ′ is referred to as the Fréchet derivative
of operator F . The function ûm ∈ L2(Ω) satisfies the tangent
linear model (TLM) F ′(ûm,m; m̂) = 0 and it is referred to
as the Gâteaux differential of um with respect to m̂:

lim
α→0

um+αm̂ − um
α

= ûm. (10)

Substituting the operator F with (6) in (9), one deduces that
the TLM satisfies the following property:

∂rûm + j

[
k0(m− 1) +

(√
k20 + ∂2z − k0

)]̂
um

+ jk0m̂um = 0 on Ω, (11a)
ûm(0, z) = 0, (11b)
ûm(r, 0) = 0. (11c)

In what comes next, for two given functions f and h, we will
make use of the following inner products:

〈〈f, h〉〉 =

∫ Z

0

∫ R

0

f(r, z) · h(r, z) drdz,

〈f, h〉Z =

∫ Z

0

f(r, z) · h(r, z) dz,

〈f, h〉R =

∫ R

0

f(r, z) · h(r, z) dr,

(12)

where h̄ is the complex conjugate of h. We also note that

〈〈f, h〉〉 =

∫ R

0

〈f, h〉Z(r) dr =

∫ Z

0

〈f, h〉R(z) dz. (13)

E. Gradient of the cost function

The gradient ∇mJ of the cost function J , at the parameter
model m, can be obtained using the fact that:

J ′(m; m̂) = 〈∇mJ, m̂〉Z , (14)

where J ′(m; m̂) is the Gâteaux differential of J(m) with
respect to m̂, i.e.,

J ′(m; m̂) = lim
α→0

J(m+ αm̂)− J(m)

α
. (15)
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Then, the gradient of the cost function (7) is given by the
following:

〈∇mJ, m̂〉Z = J ′(m; m̂)

= 2

Z∫
0

<
{(
|um(R, z)|2 − dobs

)
um(R, z) · ûm(R, z)

}
dz

= 2<
{〈(
|um(R, z)|2 − dobs

)
um(R, z), ûm(R, z)

〉
Z

}
,

(16)

where <{x} denotes the real part of x ∈ C.

F. The adjoint model

The gradient ∇mJ is defined by deriving the adjoint state
equation F ′∗ from the variational form of F ′. A unique adjoint
state wm(r, z) ∈ C exists such that 〈〈wm, F ′(ûm,m; m̂)〉〉 = 0
which (16) is subject to. Let us drop index m from the function
wm, um and ûm for brevity. The variational form is:

〈〈w, ∂rû〉〉+ 〈〈w, jk0(m− 1)û〉〉
+ 〈〈w, j((k20 + ∂2z )1/2 − k0)û〉〉+ 〈〈w, jk0m̂u〉〉 = 0.

(17)

Applying the rule of partial integration considering (11b)
and (11c) leads to the following variational problem:

− 〈〈∂rw, û〉〉+ 〈w, û〉Z |r=R − 〈〈jk0(m− 1)w, û〉〉
− 〈〈j((k20 + ∂2z )1/2 − k0)∗w, û〉〉 − 〈〈jk0wu, m̂〉〉 = 0.

(18)

Let A = k20+∂2z , then according to [52, Theorem 1], for any
positive self-adjoint operator A ∈ L(HD, HR) where HD, HR

are two Hilbert spaces, there exists a self-adjoint square root
operator

√
A =

√
A
∗
. In our context, self-adjointness A = A∗

always holds but positiveness 〈〈Af, f〉〉 ≥ 0 is reserved for
when

〈〈
∂2zf, f

〉〉
≤
〈〈
k20f, f

〉〉
. The latter indeed holds for the

entire propagating modes of (6a) [46]. Thus,
√
A
∗

=
√
A

holds as far as the scope of resolution is restricted on the
propagating part of the field. Since we only measure the
propagating part of the field for refractivity inversion, self-
adjointness of the square-root operator can be asserted in the
context of RFC. Numerically this corresponds to ∆z ≥ λ/2
where ∆z is the step size in the axial direction of Ω and λ is
the wavelength. Consequently, we have:

− 〈〈∂rw, û〉〉+ 〈w, û〉Z |r=R − 〈〈jk0(m− 1)w, û〉〉
− 〈〈j((k20 + ∂2z )1/2 − k0)w, û〉〉 − 〈〈jk0wu, m̂〉〉 = 0.

(19)

Observing the self-adjointness of the operators in the varia-
tional form, the aim is to derive an adjoint state equation which
is the same as (6a) so that the FM solver can be inherited for
AM. Combine (16) and (19). Let wm be given by:

∂rwm + j

[
k0(m− 1) +

(√
k20 + ∂2z − k0

)]
wm = 0, (20a)

wm(R, z) = 2
(
|um(R, z)|2 − dobs

)
um(R, z), (20b)

wm(r, 0) = 0, (20c)

such that (21) holds

∇mJ = <

{
jk0

∫ R

0

wm(r, z) · um(r, z) dr

}
. (21)

The estimation of such gradient will now enable us to
use gradient-based optimization methods (e.g., Quasi-Newton

methods) which are suitable for large-scale inversion prob-
lems. In the next section, we give the implementation details
for (20) and (21) and present an approach to validate both the
derivation and the implementation.

III. NUMERICAL METHODS

A. Inversion strategy
The inversion process starts from an initial guess mIG which

gives simulated measurement data dsim
m using propagation

model (6). Next, the adjoint equation (20a) is solved in order
to estimate the gradient using (21). The iteration parameters
are estimated with a gradient-based minimization algorithm,
which may include inner cost function estimations using
the propagation model. The same process continues until a
convergence criteria is met. In our study, we do not have access
to measurements. Therefore, we generate the measurements
dobs synthetically using the forward model given by (6) for a
known objective refractivity profile mOBJ. The workflow given
in Figure 2 summarizes the inversion strategy and the used
notations. Next section presents the numerical methods which
we use.

Objective Refractivity Forward Model

Forward Model

Successful ?

Yes

Quasi-Newton
update

No

START

INITIALIZE

START

END

Measurement

Adjoint Model

Eq. (6) Eq. (20) Eq. (21)

Eq. (6)

SYNTHETIC EXPERIMENTAL MEASUREMENT
END

Fig. 2. Schematic of inversion workflow. The algorithm corresponding to the
red boxes will be validated.

B. Numerical Methods
The forward problem (6) is modeled using SSW technique.

This forward solver implementation has been validated [18].
The adjoint model solver is derived from the forward model
solver where the adjoint initial condition is achieved by
replacing (6b) with (20b) in the FM solver. Adjoint backprop-
agation is achieved by changing sign of range step from ∆r
to −∆r and 180◦ rotation of computational domain around
axial direction in the FM solver. This change of sign occurs
in the free-space propagator, boundary condition and phase
screen operators in [18]. The cost function (7) and its gradient
(21) are computed using Simpson’s rule of integration. The
optimization algorithm is the well-known BFGS quasi-Newton
method [53].
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C. Validation of the gradient estimation

The problem (7) is difficult to solve accurately. The inver-
sion results cannot be used for validating the quality of the
work except for oversimplified cases (e.g., [54]). Therefore,
it is necessary to perform a validation process starting from
checking the gradient computation. This process can be seen
as an intermediate step towards understanding why RFC may
fail. In fact, ill-posedness in RFC can be incriminated only
after running the validation process of the gradient.

The part of the inversion algorithm lacking validation is
shown in the workflow in Figure 2 in red. Typically, for
inverse problems, the adjoint model can be validated with dot-
product test or by comparison of∇mJAM (i.e.,∇mJ estimated
using (21)) with a reference estimation of the gradient. In the
context of inverse problems, the validation scope of the latter
is slightly wider than that of dot-product test. If the adjoint
state wm is formulated and simulated properly, ∇mJAM would
match the gradient computed with a reference method. The
reference estimation of the gradient can be obtained using
a finite differences (FD) scheme. Typically, for a number
n of inversion parameters, the ith component of the FD
approximation of the gradient is given by

[∇mJFD]i =
J(m+ εeeei)− J(m)

ε
, (22)

where eeei is the n-sized column vector whose ith component
is one while all the others are zeros, and ε is chosen as 10−6.
Note that the estimation of the gradient with a finite differences
scheme requires n+ 1 evaluations of the cost function, while
∇mJAM is computed at the cost of 2 FM runs [44].

To sum up, the gradients ∇mJFD and ∇mJAM should
follow each other if the adjoint field is formulated properly
in (20a) and simulated properly and the numerical integration
of (21) is done properly. The baseline computational setup
of the validation process is given in Section IV-A which also
contains some notes on the validation methodology. Numerical
validation is given in Section IV-C.

D. Landscapes of the cost function

There is no general technique to tackle a nonlinear inverse
problem [44], [55]. Solving such a problem requires the
development of a special strategy tailored for the specificity
of the regarded problem.

We are asked to find the global minimum of an error
functional. Some of the difficulties in adjoint-based RFC are
listed as sensitivity to initial guess [35], loss of signal at long
ranges [32], failure of some regularization techniques [33],
insufficiency of measurement data [32], high-dimensionality
[36]. The difficulties are commonly seen as a consequence of
nonlinearity and ill-posedness. In practice, the two attributes
reflect on the problem (7) as nonconvexity and nonsmoothness
of the optimization landscape. Therefore, from our perspective,
looking at the cost function landscape [43] can guide the
community to build the right strategy. RFC is much more
complex than (7), so optimization landscape analysis of (7) is
valuable as an intermediate step for understanding why RFC
is still an open problem.

In this work, we limit our analysis to two different one-
dimensional optimization landscapes of the high-dimensional
problem. They allow to visualize the cost function around
some given solutions with a one-dimensional variation. Firstly,
we define:

α 7→ J(m1(α)), α ∈ [−2, 2],

with m1(α) = mOBJ + α(m0 −mOBJ).
(23)

By varying the parameter model using m1, we construct
the cost function landscape around the objective refractivity
profile. Secondly, we define:

α 7→ J(m2(α)), α ∈ [−1, 1],

with m2(α) = m0 + α ‖mmax −m0‖∞
∇m0J

‖∇m0
J‖∞

,
(24)

where mmax is the maximum bound in the admissible space.
The landscape using the parameter model m2 is constructed
around the initial guess in the direction of the gradient.
The two landscapes will be plotted and commented in Sec-
tion IV-D.

IV. NUMERICAL ANALYSIS

In this section, firstly, the baseline computational setup
is presented. Next, a parametric study is performed. After
validation of the method, the inversion difficulty is explained
with the directional cost function landscapes. The analysis
ends with displaying the impact of initial guess on inversion
and perturbation robustness tests.

A. Computational setup

In the baseline computational setup, the geometry of the
computational domain Ω is a two dimensional plane con-
structed on axial and radial directions as given in Figure 1. The
geometry is truncated such that Ω = [0, R] × [0, Z]. Altitude
of interest Z is limited to 150 m. Range of propagation R is
considered at different values ∈ {1, 5, 10, 30, 60} km.

The mesh of discretized domain ΩNr,Nz is a uniform grid.
The parameter Nr and Nz are the number of grid points along
the directions r̂ and ẑ, respectively. The cell size in altitude
is set to ∆z = 1 m for all cases. The cell size in range ∆r is
determined such that Nr = 101 is satisfied when ∆r < 100 m,
otherwise the cell size is fixed at ∆r = 100 m for the control
of numerical error.

The initial condition φ(z) is obtained from a complex-point
source positioned at (rs, zs) = (−100 km, 25 m). It has width
of 5 m and emission frequency fs = 2 GHz at horizontal
polarization. This setting yields a φ(z) profile with full shape,
which is useful for validation [54]. The ground is accounted
with the local image method [18] and a Hanning absorbing
window is applied on the top of the domain.

The refractivity is given with the modified parameter
M(z) = (m(z) − 1) × 106. The parameter M which cor-
responds to dobs is called the objective of the inversion and
denoted by MOBJ. Similarly, the initial guess and the inversion
result parameters are denoted by M0 and MINV, respectively.
There is no variation of M with range. The simulations take
into account the discretized parameter vector with dimension
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M ∈ RNz using linear projection of M at grid nodes. To be
clear, the aim is to invert Nz = 151 refractivity parameters
with 151 simulated data sample from 151 experimental data
sample. In this scenario, there are 151 receivers on the receiver
array extending from ground level to the altitude of interest
Z = 150 m, with the receiver spacing of ∆z.

The objective refractivity MOBJ(z) has a trilinear struc-
ture of surface based ducts [22]. The duct is given by
the following altitude-refractivity tuple: (z,MOBJ(z)) =
{(0, 330.0), (50, 350.0), (100, 330.0), (150, 335.90)}. The ini-
tial guess is constant at M0 = 330.0 in the baseline setup.

In the next section, we give the inversion results of the
workflow given in Figure 2 at different ranges for the baseline
computational setup. The objective and initial guess fields are
given in Figure 3 with their difference.

B. Results: inversion

The inversion routine given in Figure 2 is tested for its capa-
bility to retrieve MOBJ from the corresponding measurement.

Measurement range R has an influence on inversion. The
dependence of MINV (the inverted refractivity model) on
varying range R is given in Figure 4. One can see that it
may not be possible to retrieve MOBJ but MINV captures
the synoptic structure of MOBJ at R = 1, 5, and 10 km
with varying degrees of success. The refractivity gradient is
retrieved thanks to the fact that the solution of (7) is not unique
but with some dispersion in MINV due to ill-posedness of (7).
For R = 30 and 60 km, MINV stays closer to the initial guess
MIG for increasing R. As failure of the inversion and stocking
of MINV around MIG are progressive with the increase of R,
we conclude that (7) gets more nonlinear with R.

The mechanisms of nonlinearity are the propagation model,
ground reflections and dimensionality of the problem. Firstly,
(7) is driven by the simulations of (6a) in which the relation
between m and um(R, z) is nonlinear. Secondly, range R
matters due to multipath interference of ducted and reflected
field which increasingly complicates the shape of um(R, z) at
long distances. Thirdly, nonlinearity of the problem increases
with the number of parameters to invert. Thus, the number
of local minima on the optimization landscape increases. The
problem (7) becomes such that a local minima can be found
in the neighbourhood of initial guess for R = 60 km with 151
optimization parameters.

Even so, we need to verify that the gradient is computed
successfully and this complexity phenomenon is driven by the
cost function landscape. To achieve this, firstly, we perform
the validation with finite differences at different ranges as
described in Section III.

C. Results: validation of the gradient

Since the inversion could not retrieve MOBJ, we first put
into question the validity of adjoint model. In this section, the
adjoint model (20) presented in Section II-F is validated with
the comparison of ∇mJFD and ∇mJAM.

We validate over the gradient of the first descent iteration.
AM estimates the gradient that would otherwise have to be
computed using FD at higher cost. In Figure 5, the gradient

calculated with the AM and with FD are plotted with respect to
altitude for the different values of R. Both gradients perfectly
match, except that at R = 1 km there exists some differences
due to the very low value of the gradient. Thus the gradient
estimation is more robust for long range applications.

Numerical issues become prominent in the computation of
the gradient when the gradient is low as in Figure 5a. For
AM, this occurs when w approaches to null and gradient is
estimated near a stationary point according to (20b) and (21).
For FD this corresponds to the case where field bending effect
of different m is not significant on |u|, according to (22),
which is expected at short ranges. Thus, stationarity check is
recommended for RFC applications at the end of inversion.

Consequently, the adjoint model is validated with the com-
parison of the gradient with FD. Failure to invert is not due
to the adjoint model. Problem (7) is ill-posed within its nature
even without measurement noise, modeling and theoretical
errors. Potentially, the ill-posedness could be combined with
convergence issues which could be included in a future work.

We have proven that the inversion does not fail due to
miscomputation of the gradient. Indeed, the gradients may
indicate higher ill-posedness due to removal of the phase
from synthetic data [54]. Therefore, we are interested in
visualizing the extent of non-convexity in the inverse problem.
In the next section, this is performed for two different 1-
D parametrizations to give an idea about the complexity of
inversion, which may give an idea about the sensitivity to
initial guess with increasing range of propagation.

D. Results: cost function landscape

Since the method is validated, we suspect that the difficulty
to invert originates from the problem (7) itself. We have
evidence that the difficulty increases with range according
to Figure 4 so sensitivity to initial guess must also increase
and more local minima are expected to appear on a rougher
optimization landscape.

In Figure 6, we plot the directional cost function landscape
for M1 ((7) for model (23)) for three ranges. The increasing
complexity with range can be observed as the convexity of
the landscapes decreases with R. Note that MOBJ is located
at α = 0 and MIG at α = 1 on this landscape. The functional
(7) between MIG and MOBJ becomes nonconvex with R. Thus
MIG is more likely to be attracted to emerging local minima in
its neighbourhood with gradient based optimization method.

Attention must be paid to the dimensionality of the prob-
lem when interpreting Figure 6 and 7. There are infinitely
many 1-D line cuts in 151-D hypercube and indications of
nonlinearity and ill-posedness can be hidden at some other
line cuts. For example at 10 km, ill-posedness of (7) is
obvious in MINV of Figure 4c but J is quasiconvex in 6b
for α ∈ [0, 1]. Nevertheless, one can deduce from Figure 6
that better initial guess is needed to successfully invert at long
ranges. Otherwise, the optimization gets trapped at a local
minimum as landscape over 151-D hypercube is expectedly
more rough. Also note that the landscapes with the standard
atmosphere as the initial guess (not presented here) are similar
to Figure 6.
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1 5 10 30 60
Range (km)

0

25

50

75

100

125

150

Al
tit

ud
e 

(m
)

40

35

30

25

20

15

10

dsim m
0

 (d
BV

/m
)

(b) Simulated field for initial guess.
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Fig. 3. Propagating fields at different range R.
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Fig. 4. Inverted parameters at different range R.
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Fig. 5. Validation of the gradient for the first descend iteration. Comparison
of the gradient ∇m0JFD computed with finite differences (FD) method vs.
∇m0JAM computed with adjoint model (AM). Relative L2 error of these
estimations are 13.2%, 3.2% and 1.8% respectively.

The analysis is enriched with the landscape drawn at the
direction of the gradient according to (24) as given in Figure 7.
Note that MIG is located at α = 0 on this landscape. The
functional (7) has more local minima on this 1-D view when
compared to Figure 6. Again, it is more difficult to invert at
long ranges because the optimization landscape becomes more
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Fig. 6. Obtained landscape for the function α → J(m1(α)) at different
range R, see (23).
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Fig. 7. Obtained landscape for the function α → J(m2(α)) at different
range R, see (24).

nonconvex. In the next section, we expand our analysis with
inversions by using different initial guesses.
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E. Results: impact of initial guess

Sensitivity of optimization to initial guess may appear when
a nonlinear problem is solved with gradient-based methods.
A good initial guess can significantly improve inversions by
diminishing the undesirable effects of nonlinearity and ill-
posedness. In this section, the aim is to check if we can
observe some improvement with different initial guesses and
if the conclusions made in the results section are reasonable
for other initial guesses as well.

In Figure 8, we present the inverted parameters in altitude
for different initial guesses at R = 10 km, in order to show
examples of how an initial guess could improve or worsen
the inversion. Firstly in Figure 8a, MIG is set at closer to
MOBJ than in Figure 4c and the inversion improves. Without
showing more figures, we comment that a detailed study of
this case revealed that MINV exhibits further self-regularization
with the further improvement of MIG towards MOBJ and the
gradient information is retrieved more smoothly. Next, Figures
8b and 8d show that a ducting condition in the initial guess
significantly improves the inversion of a ducting condition,
even if both initial guesses are linear with altitude. Another
scenario is simulated in Figure 8c. It mimics conditions for
which short-time history or meteorological input is available
as initial guess. The inversion managed to track the assumed
temporal variation nearly-successfully. Note that MIG and
MOBJ have the same duct strength in in this example, Figure
8c.

F. Results: noise impact and robustness test

It is necessary to show that the inversions are robust to
noise (see II-C for details). The motivation is to see if the
conclusions made without noise are reasonable in the presence
of perturbations on data. If our system is robust, it should be
insensitive to small perturbations or precision errors on data;
this increases confidence in the inversion results. Robustness
test is performed at R = 10 km with different levels of noise
τ on measurements according to (8).

In Figure 9, we present the inverted parameters in altitude
for different noise level τ at R = 10 km. The inversions
naturally become more ill-posed with the addition of noise on
measurement data. The mean of the inversions seem to follow
MINV|τ=0 given in Figure 8a but dispersion of the parameters
grows with τ . In this example, the inversion is resilient to 10%
of perturbation on data as far as capturing of the gradient of
MOBJ is concerned. The inversion deviates progressively from
the attraction basin of MINV|τ=0 as τ > 10%.

V. CONCLUSION

This paper presents our attempts to predict the ambient
refractive index in the troposphere. The goal is to provide
real-time situational awareness for modern seaborne and air-
borne electromagnetic emitters under anomalous propagation
conditions. The adjoint method properly addresses the high-
dimensionality of the refractivity inversion for such modern
detection systems and it is the backbone method on which our
inversion strategy will be built. For this reason, its validation
has received emphasis at the initial stage of development [54].
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Fig. 8. Inversion at R = 10 km for different initial guesses.
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Fig. 9. Robustness at different noise level τ at R = 10 km.
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We attach importance to upgrade the forward model to
tighten the control on inversion accuracy for this ill-posed
inverse problem in real-world scenarios. Despite being hypo-
thetical for the implications, we advocate the use of the wide-
angle approximation of the parabolic equation for adjoint-
based refractivity inversions because the method is available
at no additional cost when compared to that of NAPE. In this
paper, we show how to derive the adjoint WAPE, explain how
to construct the adjoint code, and validate the adjoint model
by using a finite-difference approach. Thanks to the validation
of the gradient, we are sure that it is the ill-posedness of the
regarded inverse problem that leads to failure of inversion.
We explain this failure with nonconvexity of directional cost
function landscapes and high-dimensionality of the problem.
Since the gradient-based method which we use is prone to be
attracted to local minimum during iterations, the increasing
sensitivity to initial guess with range can be inferred from the
cost function landscape. This latter is seen to lose convexity
with distance, as the problem becomes more nonlinear.

The parameter study shows the potential use of this method
as a gradient retrieval system. In this study, we have obtained
acceptable results until around 10 km range. We have also
verified the validity of our assessments using different initial
guesses. The ducting initial conditions are found to work better
as initial guesses for the regarded objective refractivity profile.
The proposed method is shown to be robust for small Gaussian
perturbations in the measurements.

More detailed analyses are necessary to assess the perfor-
mance prediction quality of the emitters. Nevertheless, it is
inspiring to obtain some sort of gradient retrieval with our
validated basic strategy. We have to note that the problem
is expectedly more ill-posed in real world scenarios due to
measurement and modeling errors. Our next step will be
to investigate multiscaling strategies [56] and regularization
techniques [57] to deal with inversion at long-distance and
more realistic high-dimensional scenarios.
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