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CLIQUES AND A NEW MEASURE OF CLUSTERING

INTRODUCTION

One widely used measure of clustering is the overall clustering coefficient, or "transitivity", on three nodes:

C(3) =
3 × number of triangles in the network G number of connected triples of nodes in G , which quantifies the relative frequency with which two neighbours of a node are themselves neighbours.

Many real-world networks display higher levels of clustering than if those networks were random [START_REF] Albert | Statistical mechanics of complex networks[END_REF][START_REF] Strogatz | Exploring complex networks[END_REF].

Clustering related to cooperative social behaviour and beneficial information and reputation transfer [START_REF] Jackson | Social and Economic Networks[END_REF].

Significant topological structures, on more than three nodes, can be found in real-world networks, and may perform precise specialized functions [START_REF] Milo | Network motifs: Simple building blocks of complex networks[END_REF].

A generalized clustering coefficient could provide new insight into such higher-order network structure.

OBJECTIVES

a) Propose a higher-order generalization of C(3), to any number of nodes, that nests standard clustering.

b) Develop and test a fast, practical, implementation based on analytic subgraph enumeration formulae.

HIGHER-ORDER CLUSTERING

We define the generalized clustering coefficient as:

C(b) = a(b) × number of b-cliques K b in G number of b-spanning trees in G , b ≥ 3, where Cayley's formula a(b) = b b-2 gives the number of spanning trees in K b , ensuring that 0 ≤ C(b) ≤ 1.
We use analytic subgraph enumeration formulae to count cliques and spanning trees [START_REF] Agasse-Duval | Subgraphs and motifs in a dynamic airline network[END_REF][START_REF] Lawford | Counting five-node subgraphs[END_REF]: a | is the count of subgraphs of "type" a on b nodes. For example, the 5-arrow subgraph count is:
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An alternative measure was developed in 2018 by Yin-Benson-Leskovec (YBL), using clique expansion [START_REF] Yin | Higher-order clustering in networks[END_REF]: 

C b-1 = (b 2 -b) |K b | |L(b -1, 1)| , b ≥ 4,

THEORETICAL RESULTS ON RANDOM GRAPHS

(n, p) is E G [C b-1 ] -E G [C(b)] = p b-2 (1 -p (b-2)(b-3)/2
), with edge-formation probability p. 

EMPIRICAL RESULTS ON REAL-WORLD NETWORKS

Data on eight small, sparse, U.S. domestic airline route networks, 1999Q1 to 2013Q4 (most are small-world).

Heterogeneity in clustering dynamics across carriers.

Small values of b capture much of the higher-order clustering present in these real-world networks. Some higher-order clustering left if control for lower-orders. 

DISCUSSION AND FUTURE DIRECTIONS

a) Our work complements YBL: (theory) with C(b), we develop the other natural generalization of C(3) to more nodes, (computational) we derive analytic higher-order clustering formulae, while YBL use numerical methods, (empirical) we apply C(b) to airline networks, a classical example that is not covered by YBL. Our statistic avoids several undesirable properties of YBL's statistic, namely its invariance on some graphs with vanishing density, and its lack of applicability (when undefined) to even some connected graphs.

b) It is hard to derive analytic count formulae for subgraphs as b increases e.g. C(8) has 23 denominator terms. There may be a role for computer-assisted (or automated) theorem proving in working towards this goal. c) Airline carriers are increasingly developing small groups of highly-connected airports. The concept of a "hub" (or central) node in real-world networks can be extended to "multi-node hubs" (or central groups of nodes).

  where L(•, •) is the lollipop graph formed by joining a (b -1)-clique by a bridge to a single node. Critical difference between C(b) and C b-1 is in their definitions of the "relative frequency" of cliques.
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 1 Figure 1: Theoretical difference in expectation for the Erd ős-Rényi random graph G(n, p) is E G [C b-1 ] -E G [C(b)] = p b-2 (1 -p (b-2)(b-3)/2), with edge-formation probability p.
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 2 Figure 2: Simulated expected clustering E G [C(b)] from 250 replications of a small-world graph with n = 50 nodes, each of which has degree 14, and edge-rewiring probability p.
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 3 Figure 3: Descriptive statistics for 2013Q4. The average path lengths (apl) for real-world networks are close to those from connected Erdős-Rényi random graphs (apl conn rand ). The clustering coefficients C(b) are typically higher than those from Erdős-Rényi random graphs (C(b) rand ). Connected % gives the percentage of connected realizations across 1,000 replications.