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keypoints

� The efficiency of a long-range propagation model, Split-Step-Wavelet,
is improved using wavelet translation properties and finite supports.

� The propagator generation is shown to not depend on geometry. Ef-
ficiency gains are assessed on tropospheric and radio-occultation sce-
narios.

� This improvement adds versatility since adaptative steps can be intro-
duced. This allows a possible generalization to 3D configurations.

Abstract

Modeling long-range propagation of electromagnetic waves is nec-
essary to study the performance of systems, for applications such as
radar or navigation. Such models generally rely on split-step Fourier
(SSF) because large mesh sizes can be used. The split-step wavelet
method (SSW) is a recently developed method allowing to perform the
same simulations as with SSF but in a shorter computation time. This
method requires the pre-computation of a free-space propagator. Up
to now, one limitation of SSW is that the steps must remain constant
during the propagation. In this paper, we propose an improvement of
SSW in terms of memory size and versatility. This improvement relies
on the use of a set of propagators, i.e., the propagation of elementary
wavelets. The limited support of wavelets renders the computation
of the set of propagators fast, approximately as fast as one step of
propagation with SSW. First, a numerical test shows the advantage in
terms of computation time. Second, a numerical experience shows the
advantage in terms of memory. Finally, the SSW method is applied as
the direct method for a radio occultation configuration.
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1 Introduction

Long-range propagation of electromagnetic waves is a topic of great interest
for a wide range of systems in telecommunications, navigation, and surveil-
lance. For these applications, propagation is typically studied in the presence
of relief and/or refraction. The most common method to handle such situa-
tions is the parabolic wave equation (PWE) which models the forward prop-
agation from a source based on the paraxial approximation of the Helmholtz
equation [1].

Our main goal is to obtain a fast and accurate method to model the
forward long-range propagation in 3D. For which the computation time and
memory size must be limited. In this article, we focus on the 2D case,
in order to obtain an improved method in both requirements. This is an
essential step toward an efficient 3D method.

In 2D, to compute the propagation with the PWE, two methods can be
used: the split-step Fourier method (SSF) [2] or the finite difference method
(FD) [3]. The FD has the advantage of a straightforward implementation of
complex relief and atmosphere conditions. However, it is not time-efficient
for large domains since the needed horizontal grid step is of order λ [1].
SSF has the advantage of a larger grid step, up to 100λ, which explains its
popularity for long-range propagation.

SSF takes into account a slowly varying refractivity index, relief, and
ground composition. The propagation on one step is divided into two terms.
The first one corresponds to the propagation in free space. It is accounted for
in the spectral domain (Fourier domain). The second one is a phase screen
taking into account the refraction in the spatial domain. The effect of relief
is also considered in the spatial domain with various methods [4, 5, 6]. An
impedant ground can be taken into account using the change of variable
given by the discrete mixed Fourier transform (DMFT) [2]. A discrete SSF
(DSSF) [7] has recently been developed to add self-consistency to this theory.
Deriving a complete method from discrete equations allows avoiding spurious
solutions.

Wavelets [8, 9] are widely used in signal theory and image processing
for denoising and compression, e.g., JPEG2000. Wavelets are short oscil-
lating functions localized in both space and frequency. In electromagnetics,
they are essentially used because of their compression property in integral
equations [10, 11] and time-domain methods [10, 12]. In the domain of
propagation modeling, [13, 14] have used wavelets as test and approxima-
tion functions for a finite-element implementation of the PWE.

Another advantage of the wavelets is the fast wavelet transform (FWT)
[9] of complexity O(N), with N the number of elements of the vector. This
complexity is better than the fast Fourier transform (FFT) which is in
O(N log(N)). Based on these considerations, the split-step wavelet method
(SSW) has recently been introduced [15, 16]. [15] have shown that the com-
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plexity of SSW is lower than SSF. The field is iteratively computed as with
SSF, the wavelet domain replacing the spectral domain. For the propaga-
tion step, a pre-computed propagator is needed. [15] use a matrix containing
all the wavelet-to-wavelet propagations on the domain. The filling of this
matrix requires computing few propagations of wavelets, and FWT that are
duplicated. Besides, this method has the advantage of a fast sparse matrix-
vector multiplication for modeling the propagation in the wavelet domain.

However, it requires the storage of all the duplicated wavelet propaga-
tions. Moreover, the filling of the matrix requires a significant time. For
this reason, the propagator must be calculated once for all, preventing from
using a non-uniform grid. This strategy is specifically problematic for huge
domains, as can be seen in radio occultation, and does not permit a 3D
generalization in its current state. This method [15] that requires a matrix,
is denoted by matrix SSW (mSSW).

In this article we propose an improved version of SSW, denoted by lo-
cal SSW (lSSW), using properties of the wavelets to add versatility to the
method and avoid large storage. Duplications of the matrix are avoided to
store only the essential information with few propagators. Besides, the lim-
ited support of the elementary wavelets is accounted to significantly speed
up the propagator computation.

The article is organized as follows. In Section 2, we briefly introduce the
SSW method. In Section 3 we present the computation of the propagators.
In Section 4, numerical experiments illustrate the interest of this work. First,
the improvement in terms of time efficiency using the wavelet support is
shown. Then, we show that the memory required with lSSW is better (lower)
than with mSSW. Finally, lSSW is used as the direct method to obtain the
propagation modeling in a radio occultation scenario.

2 The split-step wavelet method

For the article, an exp(jωt) time dependence is assumed. We aim at solving
iteratively the wide-angle PWE, equation (3.19) in [1], using a split-step
method based on the wavelet transform in place of the Fourier transform
usually used [2]. The PWE with x the direction of propagation is defined as

∂u

∂x
= −j

(
√

k0 +
∂2

∂z2
− k0

)

u− jk0(n− 1)u, (1)

where u corresponds to the reduced field as defined by [17], k0 to the wave
number and n to the slowly-varying refractive index.

2.1 Configuration and discretization

We only compute the 2D – assuming a y-axis invariance – forward, i.e., to-
wards x > 0, propagation over an impedance ground. The field is assumed
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to be known at x = 0 and the source is placed at x ≤ 0. The field can be
decomposed in transverse electric (TE) and transverse magnetic (TM) com-
ponents with respect to z. We only study the TE case, but the adaptation
to the TM case is straightforward.

The domain is of size [0, xmax] on x and [0, zmax] on z. On the z-axis,
the grid is given by

zpz = pz∆z with pz ∈ 0, · · · , Nz , (2)

with Nz =
zmax

∆z
the number of points. The x-axis is also discretized with

Nx points and a step ∆x. The discrete version of the field u(x, z) along z
is denoted by ux[pz]. From now on computations are done in this discrete
domain.

2.2 The multilevel discrete wavelet transform

In this section, we briefly present the multilevel discrete wavelet transform
that is used [9]. The transform is applied in this article to upx. Wavelets
are functions of zero mean. A wavelet family is constructed by dilating on
L levels and translating along the z-axis a mother wavelet ψ. Wavelets ψl,pz

are then obtained. L corresponds to the maximum level of decomposition.
Dilated wavelets cover different parts of the spectrum. With l increasing
lower frequencies of the spectrum are covered by the wavelets. Finally, a
scaling function φL,pz of non-zero mean is added and translated (index pz)
to obtain an orthonormal basis. This last function covers the lowest part of
the spectrum.

The discrete wavelet transform associates ux with a sequence of coeffi-
cients aL,p and dl,p, such that

ux[pz] =
∑

p∈Z

aL,pφL,p [pz] +
∑

l∈[1,L]

∑

p∈Z

dl,pψl,p [pz] . (3)

This decomposition is denoted by W .
In practice, the computation is performed in a finite domain of size

Nz. Therefore, the translation coefficients p are limited to [0, Nz/2
l − 1[ for

l ∈ [1, L], respectively. For the scaling function p ∈ [0, Nz/2
L − 1[.

For conciseness, the wavelet coefficients are from now on denoted by

Ul[p] =

{

aL,p, for l = 0, p ∈ [0, Nz/2
L − 1]

dl,p, for l ∈ [1, L] , p ∈ [0, Nz/2
l − 1].

(4)

The decomposition (3) becomes

ux [pz] =

Nz/2L−1
∑

p=0

Ul[p]χ0 [pz − p]+
L
∑

l=1

Nz/2l−1
∑

p=0,

Ul[p]χl [pz − p] , for pz ∈ [0, Nz−1]

(5)
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with

χl[pz − p] =
{

φL,p[pz], for l = 0, p ∈ [0, Nz/2
L − 1], pz ∈ [0, Nz − 1]

ψl,p[pz], for l ∈ [1, L] , p ∈ [0, Nz/2
l − 1], pz ∈ [0, Nz − 1].

(6)
By choosing well the wavelet family and the maximum level of decom-

position lots of coefficients are close to 0 due to the fast decrease of the
coefficients. Thus, the coefficients below a certain threshold Vs are set to 0

U c
l [p] =

{

0 if |Ul[p]| ≤ Vs,
Ul[p] otherwise.

(7)

This compression, denoted by operator C, is called ”hard threshold” com-
pression [9]. This allows to speed-up the propagation by keeping only a
small numbers of coefficients.

2.3 Overview of the propagation method

SSW is an iterative method to compute the field at increasing distances from
the source, by going back and forth from the wavelet domain to the spatial
domain. The ground is supposed to be a PEC. The scheme in Figure 1 sums
up the SSW algorithm. A step of SSW on ∆x with ux known is computed
as follows:

1. The sparse vector of the wavelet coefficients of ux is obtained using a
FWT (operator W ) and a compression of threshold Vs (operator C)

Ux = CWux. (8)

2. The propagated non-zero coefficients Ux+∆x are obtained using the
propagator P

Ux+∆x = PUx. (9)

The propagator P corresponds to a scattering matrix. In [15] this
propagator is a pre-computed matrix denoted by Pm. This latter stores
all the wavelet-to-wavelet propagations such that the propagation is a
matrix-vector product. In this article we propose the use of a minimal
size set of local propagators, denoted by P , and described in Section
3.

3. The free space propagated field ufsx+∆x is obtained by applying an
inverse FWT

ufsx+∆x =W−1Ux+∆x. (10)

ufsx+∆x is expressed in the space domain.
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4. To take into account a slowly varying refractive index, the phase-screen
method [17] is applied

ux+∆x = Rufsx+∆x, (11)

where R is a diagonal operator, with diagonal elements given by

R[pz, pz] = exp (−jk0 (nx[pz]− 1)∆x) . (12)

To take into account the ground, as in [15], the local image method is
used. It is based on a local replica of the field on few additional points
that simulates a reflection coefficient of value −1. By clearing and updating
this additional field at each step, the reflection is accurately accounted and
spurious fields are avoided [15]. To account for an impedance boundary on
the ground, the propagation in the wavelet domain is applied to w, obtained
after applying the DMFT on u [2].

The relief is modeled with a staircase model [1], i.e., as a sequence of
horizontal steps. The field is translated for increasing relief. Then the field
is propagated as over a planar ground if outside the relief and set to 0 inside
the relief. This operator is denoted by L. Other methods can be used as for
DSSF [18, 4, 5].

TF

Propa

IFT

un

uxdx

Uxdx

Ux

ui

n

uf

non

oui

x

Initial Field

Ux

Ux+�x

ufs
x+�x

ux+�x

NO

YES

Final Field

FWT and 

compression

wavelet-to-wavelet

propagation

IFWT

refraction and relief

x=xfinal

Figure 1: Overview of SSW.

Finally, the domain is limited to zmax. At the top the energy must
propagate towards infinity and the boundary condition must be transparent.
In this work an absorbing apodization layer, denoted by H is applied in the
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spatial domain. The Hanning window is chosen, for which the diagonal
elements are defined by

H[pz, pz] =







1 if pz ∈ [0, Nz ],
1

2

(

1 + cos

(

π

(

pz∆z

zmax
− 1

)))

if pz ∈ [Nz, Nz +Napo].

(13)

3 Propagation with the local propagators

In this section, the local propagation is introduced. First, a set of propa-
gators, denoted by P , is computed in order to store the wavelet-to-wavelet
propagations. Second, a method to propagate all the non-zero wavelet co-
efficients of the field using this set is described.

3.1 Computing the propagators

In this section, we introduce the efficient computation of the set of propa-
gators. Two important properties of wavelets are used. The invariance by
translation property to compute and store only the essential information.
The small size of the support of one wavelet, denoted by Nl, to reduce the
computation time. We note Np

l the support after propagation, i.e., the
subset of the domain where the propagated wavelet is localized.

The propagations of as few as possible elementary wavelets are stored and
used to propagate all the wavelet coefficients of the field. These propagations
are stored in a set denoted by P . Pl,plt

corresponds to a Np
l -size vector,

Np
l ≪ Nz, with the wavelet coefficients of a propagated wavelet of level l

at position plt. Then, for each coefficient of the wavelet decomposition of
the field, the associated propagator Pl,plt

returns the propagated coefficients.
The vector of wavelet coefficients of the propagated field is obtained by
summing all these elementary propagations. These steps amount to the
propagation, denoted by operator P .

3.1.1 Computing Pl,plt

The space grids of the wavelets are dilated by 2 at each level. Consequently,
the decomposition of a wavelet at position p of level l is 2L−l-periodic at each
level l. Considering this, the propagation operator in the wavelet domain is
2L-periodic. Therefore, only 1 period for each level is stored such that the
memory requirements are minimum, see Figure 2. We store no redundant
information, whereas the scattering matrix used in mSSW contains all the
propagations for all levels and positions. Considering two levels l and l′ we
have the translation property defined as follows:
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Figure 2: 1 period of the wavelet space grid with L = 3.

� if l = l′, then a translation of 1 on l corresponds to the same translation
on l′.

� if l′ < l, then there are 2l−l′ times as many wavelets on l′ than on l
and a translation 1 on l corresponds to a translation of 2l−l′ on level
l′.

� if l′ > l, then it is the inverse case, and on l′ there are 2l
′
−l times less

wavelets than on l. Thus, a translation of 2l
′
−lon l corresponds to a

translation of 1 on l′.

Algorithm 1 shows how to compute the set of propagators using this
property. The computation of this set can be decomposed into two steps.
First, for each level l, the wavelet χl,0[pz]∀pz ∈ [0, Nz − 1] at x = 0 is
propagated on a distance ∆x using DSSF. The wavelet χl,∆x[pz] is obtained.
Other methods can be used to compute the wavelet propagations, e.g., [13].
It could increase precision at the cost of increasing the computation time.

Secondly, the wavelet field χl,∆x[pz] is translated of plt ∈ [0, 2L−l[ to
obtain χl,∆x[pz + plt]∀pz + plt ∈ [0, Nz − 1] for all the needed translations.
Then, it is decomposed and compressed (with threshold Vp) to obtain Pl,pt.
These propagations are then stored for all levels l and translations plt as a

set of propagators
(

Pl,plt

)

l∈[0,L],plt∈[0,2
L−l[

. Using the translations we only

need to compute L + 1 propagations and to perform 2L FWT. Thus, only
2L propagators are stored. [15] use the translation property to efficiently fill
the matrix by duplicating the propagations, thus redundant information was
stored [7]. Here, the set of propagators corresponds to the minimal subset
of this matrix required for the propagation.
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Algorithm 1 Computing the propagators

1: Inputs: maximum level L, wavelet basis

2: Output: set of propagators
(

Pl,plt

)

l∈[0,L],plt∈[0,2
L−l[

3: \\ at each wavelet level
4: for l ∈ [1, L] do
5: χl,0[pz] ← wavelet at level l and position 0 .
6: χl,∆x[pz] ← propagated wavelet with DSSF.
7: \\ 2L−l periodicity of the decomposition
8: for plt ∈ [0, 2L−l[ do
9: χl,∆x[pz + plt] ← translate χl,∆x[pz] along p

l
t points.

10: Pl,plt
← apply FWT and compression to χl,∆x[pz + plt].

11: end for
12: end for

3.1.2 Reducing the computation time with the wavelet support

Now the small size of the support Nl of the wavelet is used to speed up the
computation of this set. Each wavelet at level l has a support of finite size
theoretically known [9]. In practice, the support is much smaller than the
size of the domain (Nl ≪ Nz). Therefore, propagation can be performed
on a reduced domain, of size Np

l . This latter depends only on the level l
and the step size ∆x. To assess the value of this parameter, we use the
support before propagation Nl, and the angle of propagation corresponding
to the validity domain of the wide-angle approximation (±π/4) [1] as shown
in Figure 3. Using the propagation step ∆x, and the discretization step ∆z
the number of points after propagation is given by

Np
l =

⌈

Nl +
√
2
∆x

∆z

⌉

, (14)

where ⌈x⌉ denotes the ceiling function, which gives the minimum integer
greater than or equal to x.

For example, with ∆x = 100 m and ∆z = 1 m using the symlet with
nv = 6 the support of the mother wavelet is 2nv−1 = 5 m, with L = 3. Thus,
for l ∈ [1, L] we have Nl = l(2nv−1) = 5l m and Np

l = 5l+100×
√
2. Hence,

the support after propagation is at most 156 points. Since the propagation
domains are in practice of order thousands of points this latter is much
smaller than the total domain. Besides, Np

l remains the same even with Nz

increasing if ∆x and ∆z remain constant.
Thus the DSSF propagation on Np

l is much faster than on the overall
domain.

Besides Np
l does not depend on Nz. Then, the propagation time for

computing P is independent ofNz. This method is cheap in terms of memory
size occupation. Moreover, for large domains (Np

l ≪ Nz) the computation
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Figure 3: Wavelet supports before and after propagation on one step.

of the set, of complexity O(
∑

lN
p
l log(Np

l )) is faster than the computation of
one step of propagation, of complexity O(Nz). Therefore, the propagator can
be computed on the fly during the propagation, adding versatility regarding
the domain and step sizes.

3.2 Local propagation

In this section, the local propagation method using the previously defined
set is introduced. The presentation firstly focuses on one non-zero wavelet
coefficient. The generalization consists in adding the contributions of all
non-zero coefficients to finally obtain the propagated wavelet coefficients
Ux+∆x.

The computation details can be found in Algorithm 2. First, the non-zero
coefficients αl[pz] of the wavelet decomposition of the field Ux are obtained
with a FWT and compression (with threshold Vs). For each coefficient, we
need to compute the corresponding propagator Pl,plt

in the set, from the level

l and position pz of αl[pz] following

pltpz = pz mod 2L−l. (15)

This latter must be computed because we only store the elementary prop-
agations in the set. Then, we compute the elementary propagation for this
coefficient by multiplying the local propagator by αl[pz]. Finally, all these
elementary propagations are translated to original position pz of the coeffi-
cient and summed as

Ux+∆x =
∑

l,pz

αl[pz]Pl,pltpz
[·+ pz] (16)
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to obtain the propagated wavelet coefficients. An inverse FWT finally gives
the propagated field in free space.

With compression on the signal Vs and on the propagators Vp an error
accumulates throughout iterating on the domain. Using the formula ob-
tained in [15], in Section 5.2, both thresholds are set to obtain an expected
error for a given scenario.

Algorithm 2 Free-space propagation with local propagators

Inputs: field ux, elementary propagator list
(

Pl,plt

)

l∈[0,L],plt∈[0,2
L−l[

Output: propagated field ufsx+∆x in free-space
Ux+∆x ← empty list of wavelet coefficients (initialization)
ux ← field at px.
Ux = CWux ← sparse wavelet representation of the field
for each non-zero coefficient αl[pz] of Ux do
l, pz ← level and position of the coefficient
pltpz ← choose the operator number using (15)
Pl,pltpz

← corresponding elementary propagator

Ux+∆x ← Ux+∆x + αl[pz]Pl,ptpz
end for
ufsx+∆x ← IFWT(Ux+∆x)

4 Numerical tests

In this section, numerical tests are performed. First, the interest in limit-
ing the computation of the propagator to the wavelet support is analyzed in
terms of time efficiency. Then, a realistic test case for tropospheric propaga-
tion is performed. We compute a long-range propagation with a tropospheric
duct and relief using DSSF, lSSW, and mSSW [15]. Finally, propagation in
a radio occultation configuration is proposed where the advantages of lSSW
over mSSW in terms of computation time and memory size are shown. All
numerical tests are done using a standard computer with 8 cores and a
2.7 GHz processor.

For all experiments, the same wavelet parameters are used. The symlet6
family is used, because this latter is of compact support and almost sym-
metric [9, 8]. The maximum level L is chosen as L = 3. These choices are
discussed in [15].

4.1 Computing the propagators

The aim of this test is to show the improvement in terms of computation
time using the wavelet supports for their propagations. We compute the
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set of propagators with DSSF for several values of Nz. The propagators are
computed on Np

l points and compared to propagators obtained by using the
total vertical domain Nz. We test this method for wavelets of each level
l ≤ 3. The steps ∆x and ∆z are 50 m and 0.5 m, respectively. Figure 4
shows the results.

0 10 20 30 40 50 60
N_z (10^3)

0

20

40

60

80

100

tim
e 

(m
s)

library on Nz

library on Np
supp

Figure 4: Computation time (ms) to obtain the set of propagators with
DSSF on the total domain and on Np

l .

Figure 4 shows that the time to generate the propagators on Np
l is inde-

pendent of Nz, as expected. Limiting the computation domain saves a lot of
computation time for large Nz. Numerical tests show that the normalized
difference between both methods is at maximum −250 dB. This shows the
interest of considering the support after propagation Np

l . The next simula-
tion illustrates that the local method with Np

l does not add any error in a
realistic test case.

4.2 Realistic test case

The aim of this section is to compare lSSW and mSSW in terms of compu-
tation time, memory size, and accuracy in a realistic scenario.

The propagation of a complex source point (CSP) between Pau (43◦17′51′′N, 0◦22′07′′E)
and Toulouse (43◦36′15′′N, 1◦26′36′′E) is computed using both versions of
SSW (lSSW and mSSW). An atmospheric duct is added. The relief be-
tween the two cities is taken into account.

The CSP parameters are: a frequency f = 3 GHz, with coordinates
xs = xw0+ jk0W

2
0 /2, with xw0 = −50 m and W0 = 5 m and zs = 50 m from

the ground.
First, we consider a domain of size xmax = 150 km (distance between the

two cities) and zmax = 1024 m. The grid size is ∆x = 200 m in horizontal
and ∆z = λ = 0.1 m in vertical. The impedance ground is of parameters
ǫr = 20.0 and σ = 0.02 S/m.

We consider a refractive duct modelled by a trilinear refractive index,
e.g., [19]. The parameters are M0 = 330 M-units, zb = 241 m, zt = 391 m,
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with gradients c0 = 0.118 M-units/m and c2 = −0.1 M-units/m.
The signal and propagators thresholds are Vs = 2.1 × 10−5 and Vp =

4.3 × 10−6, respectively, so as to obtain an error of −30 dB at the last
iteration using the formula given by [15]. The image layer for applying the
local image method is of size 0.1zmax.

The electric field using lSSW is represented in Figure 5. The effects of
both the atmosphere – bending of the wave – and the relief – interference
and shadow zone – can be seen on that figure. For lSSW and mSSW, the
RMS difference with DSSF at each iteration px is shown in Figure 6. We can
see that the RMS error evolution is exactly the same with both methods.

Distance

Figure 5: Electric field (dBV/m) in the vertical plane obtained by lSSW.

Table 1 presents the times to compute the propagator, one step of prop-
agation with each method, the total time for the propagation, and the mem-
ory needed for mSSW and lSSW. The initialization time corresponds to the
time to compute the set of propagators or the matrix.

Table 1: Times and memory size needed with lSSW and mSSW.

method mSSW lSSW
Initialization time (s) 135 0.1

One step propagation (s) 0.01 to 0.3 0.01 to 0.4
Total time (s) 160 27.1

Propagator memory size 252 MB 117 kB

Results show that lSSW is better in terms of computation time and
memory size than mSSW. First, in terms of propagation lSSW is as fast
as mSSW but the initialization time is much larger for mSSW: 1000 times
larger. Thus lSSW allows being faster overall. Also, the time to compute
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Figure 6: RMS difference of lSSW and mSSW with DSSF at each iteration.

the set of propagators (0.1 s) is of the order of one step of propagation and
allows to update the propagators with acceptable effort if needed. In terms
of memory size lSSW needs 2000 times less memory in this scenario.

Then, we double the number of vertical points (zmax = 2048 m) to show
further the interest of lSSW against mSSW. All other parameters remain
the same. We obtain the results of Table 2 for the times and memory size.

Table 2: Times and memory size needed with zmax = 2048 m with lSSW
and mSSW.

method mSSW lSSW
Initialization time (s) 285 0.1

One step propagation (s) 0.02 to 0.4 0.02 to 0.5
Total time (s) 339 56.1

Propagator memory size 505 MB 117 kB

As expected, the time to initialize and the memory size of the propagator
remain the same with Nz increasing. Regarding the time and memory size
needed with mSSW, lSSW becomes very attractive in this case, since both
parameters have significantly increased with mSSW. Finally, the test shows
that the difference with DSSF remains the same at the last iteration. Thus,
the new version of SSW allows to compute fields for large scenarios with
small memory requirements. In the next section, lSSW and mSSW are
compared with a scenario where the memory size and the computation time
of the propagator are the main concerns.
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4.3 Radio occultation scenario

Radio occultation (RO) consists in inferring atmospheric data from the radio
frequency (RF) link between two satellites in the limit of line of sight. This
is generally used with the RF link between GPS and LEO satellites [20,
21, 22]. In this configuration, the propagation is altered by the refractive
condition (troposphere and ionosphere) of the Earth. This altered data
carry information about the atmospheric conditions. Since 1995 inverse
RO techniques have been used to estimate the physical properties of the
Earth atmosphere using inversion techniques [23, 24]. The problem is here
simplified to a 2D model of RO where both satellites are in the same plane.

RO inversion methods need to be validated. For that direct models that
compute the field for a given atmosphere condition are necessary. These
models should be fast and accurate. Indeed in a large domain, like RO, the
computation time required for SSF becomes prohibitive. Other methods
have been proposed to eliminate this constraint. Using the Gaussian beam as
an asymptotic solution of the PE, [25] have proposed a fast method for field
propagation in large domains. This method has then been applied to RO
[26, 27]. mSSW has also been used as a direct method for RO scenarios [28]
but both the time and memory size needed by the matrix become prohibitive
to reduce the vertical step. In this section, we use lSSW as the direct method
to obtain the field on the overall domain of a RO scenario. With its low
requirements in time and memory size for the propagator, lSSW helps to
decrease the computation time and thus to compute the propagation with
improved grid size.

The following RO scenario is considered here. The Cartesian system
with (x, z) coordinates is used. We consider a GPS satellite at frequency
f0 = 1.575 GHz with a gain of 16 dBi and a power of 25 W. The transmitter
is located at xTx = −24647 km, modeled here by a plane wave illumination
at x = 0. The receiver is a LEO satellite located around z = 0 at x =
4553 km. The total distance between both satellites is xmax = 29200 km,
corresponding to the x-axis coordinate of the LEO satellite. The goal is to
obtain the field near the LEO satellite.

No ionosphere is included in the simulation. This could be added using
ITU-R P531. The refractive index in the troposphere is computed using
ITU-R P834. More realistic models could use the Weather Research and
Forecasting model (WRF) [29, 30] or the AROME model from Météo-France
[31].

The configuration of the computation domain is shown in Figure 7. Axis
z = 0 is placed at the center of this window. Moreover, the first vertical is
set at x0 = 24986 km from the GPS satellite. Thus, the horizontal size of
propagation is xmax−x0 = 4214 km. The vertical size is chosen to 65.536 km.
The steps are set to ∆x = 1 km and ∆z = 1 m ≈ 5λ. The propagation
is thus computed on Nx = 4214 points and Nz = 65536 points. Earth is
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considered as a sphere and treated as relief with a staircase model. Before
the computation domain reaches the Earth, apodization layers are added at
the top and the bottom of the domain. When propagating above the Earth,
an apodization window is considered at the top. The ground is considered
as a PEC and a local image layer of size 0.1Nz is added. Finally, when Earth
is no more in the computation domain, apodization layers are added at the
top and the bottom of the domain. For the source, a windowed plane wave
at x = 0 and of the size the vertical domain is used.

Distance

Figure 7: Configuration of the computation domain for the RO scenario.

The refractivity N is represented in Figure 8. Earth is represented in
black.

Distance

Figure 8: N index along the propagation scene.

The compression thresholds are set to obtain a negligible final compres-
sion error of −30 dB compared to DSSF.

The electrical field computed with lSSW is represented in Figure 9. The
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two vertical dotted lines show the limits of the propagation over the Earth.
We can see the effect of the Earth with the interference pattern of the field
and the shadow zone. Also, the maximum error between lSSW and mSSW
is still at −140 dB and thus negligible.

Distance

Figure 9: Electrical field (dBV/m) obtained with lSSW.

The results in terms of time and memory size with lSSW and mSSW are
stored in Table 3. First, with lSSW the computation time and the memory

Table 3: Times and memory size needed with lSSW and mSSW.

method mSSW lSSW
Initialization time (s) 585 0.017
Propagation time (s) 374 466

Total time (s) 959 466

Propagator memory size 759 MB 42 kB

are better than with mSSW. In particular, lSSW initialization time is 50000
less than the one with mSSW, but the propagation time is a bit slower.
Overall lSSW is faster than mSSW. For the memory requirement concerns,
the impact of the local method becomes clear since lSSW is better of a factor
of 25000 against mSSW. Thus with lSSW a smaller grid size is possible.

Also, since the time to generate the propagators is negligible to the
propagation, horizontal steps can be changed between vacuum and ground
propagations if needed, adding versatility.

To conclude, lSSW is a good method to model the field with a RO
scenario, since the computation time and memory requirements are low in
comparison to mSSW.
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5 Conclusion

In this paper, the local method for SSW, namely lSSW, has been introduced.
It is based on an efficient strategy to compute the propagators using the
support of the wavelet for the propagation, and storing only the essential
information.

First, an overview of the SSW method has been given. We have re-
minded that the wavelet coefficients are propagated using a pre-computed
propagator. The propagation can thus either be a matrix-vector product
or a sum of local propagations. The other steps (relief and atmosphere
taken into account in the space domain) are independent of the choice of
the propagation.

Then, the method to compute the local propagators has been compre-
hensively detailed. Based on the translation property of the wavelets, few
propagators are computed and stored. Using the wavelet supports as verti-
cal domains for the propagation of these wavelets allows to be faster and to
use less memory. Thus, the propagators are generated independently of the
vertical size of the domain for given horizontal and vertical steps. The prop-
agation is then performed by summing all the local propagations associated
to the wavelet coefficients of the field.

Numerical tests have shown that lSSW does not add any additional error
compared to its matrix counterpart, mSSW. In terms of computation time
with the domain growing, the time to propagate the wavelet stays constant.
For complex environment simulations and large domain scenarios, the same
electric fields as with mSSW are obtained. Nevertheless, the memory size is
way better with lSSW and allows to compute propagations in larger domains.
The computation time needed for initialization is also significantly reduced.
Finally, the limited support of wavelets renders the computation of the set
of propagators fast, approximately as fast as one step of propagation with
SSW, adding versatility to the method.

This new version of SSW allows to tackle the problem of memory size
and computation time for the propagator in mSSW. Since the computation
time for the propagators is low compared to the propagation time, adapta-
tive steps can be introduced with this method. Besides the improvements
obtained in the memory and time requirements are an essential step towards
an efficient 3D version of SSW, where local propagators gain an additional
dimension.
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