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Abstract—This paper presents a novel air traffic structuration
approach to maintain flows of air traffic and to adapt traffic
situations, which can reduce the mental workload of air
traffic controllers. We reformulate the optimization problem
by reorganizing the aircraft trajectories in space (e.g. aircraft
rerouting) or time dimension (e.g. rescheduling time of departure,
flow crossing, time based metering) or both in some areas where
the system identifies a high level of disorder in the traffic
structure. To structure the traffic, an air traffic complexity metric
based on linear dynamical systems is used for this optimization
problem. To minimize the impact of traffic structure, we
propose an adaptive metaheuristic approach with the integration
of reinforcement learning for our resolution algorithm. The
resolution algorithm is applied for short-term (flow crossing,
time-based metering, and traffic encounters) trajectory planning
applications and national scale planning under time uncertainty
in French airspace. For short-term scenarios, our approach can
restructure the traffic which allows controllers to take less effort
for managing traffic situations. Our solution also improves the
traffic structure with approximately 50 % reduction of air traffic
complexity at national scale. Our research findings introduce
further steps toward taking other trajectory structuration
techniques into account and developing new search strategies
to our resolution algorithm.

Keywords—traffic structuration, air traffic complexity, linear
dynamical systems, adaptive metaheuristic, reinforcement
learning

I. INTRODUCTION

The air transportation system has been facing an
ever-increasing demand for air travel since the emergence of
commercial aviation. For instance, the average European traffic
was 30 427 flights per day with a maximum traffic demand of
more than 37 000 daily flights [1]. The rapid increase in air
traffic demand is causing serious airspace congestion due to
limited capacity. Optimizing capacity usage is an innovative
strategy within capacity management processes in current
ATM system.

The capacity of current ATM system is limited by the
maximum workload that air traffic controllers (ATCs) can use
their ability to provide safe and efficient traffic flows through
airspace sectors. A major source factor of ATC workload
is air traffic complexity. The air traffic complexity is often
defined as difficulty of monitoring and managing air traffic
situations. Due to complexity in traffic pattern, ATCs may
refuse some aircraft entering their sector less than usual if
incoming aircraft will increase the level of difficulty for ATCs

to maintain the appropriate separation of aircraft and identify
potential conflicts.

In European airspace, Network Managers Operation Center
(NMOC), previously known as the Central Flow Management
Unit (CFMU) is the operational unit of Eurocontrol that
performs strategic tasks (flight planning and slot allocation)
aimed at adapting traffic demand to capacity before the day of
operation and tactical intervention for which ATCs are mainly
responsible.

In the context of research, SESAR introduces the Advanced
Demand and Capacity Balancing (DCB) concept to identify
hotspots through an assessment of traffic complexity and ATC
workload for more accurately predicting DCB imbalances
and traffic demand. Due to different traffic structures in
European airspace, standardization of a complexity metric and
DCB resolution remains challenges in this concept. Several
complexity metrics have been reviewed in [2]. The complexity
assessment on a long-term horizon can identify congested
areas and support strategic flight planning, whilst complexity
metrics for a mid/short horizon can help identify situations
that are significant for distributed conflict resolutions.

This paper assesses the significance of traffic structuration
problem in Trajectory-Based Operations (TBO). We propose
the modification of departure time and en-route trajectory to
the aircraft for minimizing the impact of traffic structure in
airspace. An air traffic complexity metric based on linear
dynamical system is introduced to quantify the impact of
air traffic structure. Moreover, the new adaptive metaheuristic
based on reinforcement learning is used to solve this
problem. Empirical studies with short-term and long-term
traffic scenarios show that the proposed methods are benefit
to restructure traffic in terms of algorithm and quality of the
traffic organization. This paper is organized as follows: Section
II presents the previous related works. Section III gives the
mathematical formulation of traffic structuration problem. Our
resolution algorithm is presented in Section IV. Section V
reports the experimental results. Finally, Section VI concludes
our research work in this paper.

II. PREVIOUS RELATED WORKS

A. Complexity metrics

The Dynamic Density (DD) suggested by Laudeman et al.
from NASA [3], is the first assessment of air traffic complexity



considering both number of aircraft and traffic structures.
Combining traffic features produces a single positive real
number reflecting the level of complexity. In studies of
Sridhar et al. [4], the DD is also used to determine a
predictive model beforehand up to a given time horizon. The
features used in the DD are not enough to explain airspace
complexity. This motivation has driven the development of
new approaches to complexity measures that are independent
from traffic characteristics, such as the fractal dimension [5],
the input-output approach [6], and the intrinsic complexity [7].

Intrinsic complexity metrics firstly introduced by Delahaye
et al. [7], can better quantifies the airspace congestion than
a simple number of aircraft. Aircraft position and speed
vector are used to compute such metrics. The research have
investigated two classes of indicators. The first class uses
geometrical properties to build a metric. The second one
formalizes a representation of air traffic as a dynamical system.
This class can distinguish different air traffic situations:
translation, convergence, divergence and rotation. Few studies
have been performed to investigate the use of intrinsic
complexity metrics for automated ATM system.

B. Aircraft 4D trajectory optimization

Relevant to optimization problems in TBO environment,
most previous researches aims to resolve conflicts between
aircraft trajectories. Deterministic and metaheuristic
algorithms have been widely developped to solve these
problems. Durand et al. [8] proposed two trajectory separation
methods by modifying headings and flight levels. En-route
conflicts between trajectories are solved by genetic algorithms
(GA). Dougui et al. [9] suggested a Light Propagation
Algorithm (LPA) based on various light refractions. Using
a Branch-and-Bound (B&B) algorithm, certain potential
conflicts are solved. Chaimatanan et al. [10] proposed a
strategic trajectory planning methodology to minimize 4D
flight interactions. A hybrid simulated annealing was proposed
to generate interaction-free trajectories in European airspace.

Breil et al. [11] applied the convergence indicator to
measure airspace complexity and built a temporary route
network for reducing the traffic complexity at the tactical
level. Juntama et al. [12] proposed allocation of new departure
times and flight levels to minimize traffic complexity based on
König metric at strategic level. In this work, the distributed
metaheuristic optimization is applied for the resolution
approach but no learning mechanism incorporated in this
framework.

In this paper, we has been used a mathematical formulation
to structure aircraft trajectories. We focus on a new objective
function which aims at structuring the traffic in the airspace
by minimizing air traffic complexity. We apply the complexity
metric based on linear dynamical systems [7] to measure
the impact of air traffic structure in a TBO environment.
We also propose a new adaptive metaheuristic approach
using reinforcement learning for the resolution algorithm. The
heuristic selection and reinforcement learning mechanisms

applied in this approach, are based on the previous work in
[13].

III. MATHEMATICAL MODEL

The problem in this work is to determine the optimized
4D trajectories where aircraft can fly in the airspace with
less impact of traffic structure. In this section, we start
by reformulating the optimization problem. This problem
enables the two following opportunities to structure the aircraft
trajectories: alternative departure time and en-route trajectory
subject to the limited departure time shift and en-route
extension length constraints. Finally, air traffic complexity
metric based on linear dynamical system is introduced for the
objective function.

A. Decision variables
The problem instance is given by:
• X : Set of initial sampled 4D trajectories,
• N : Number of aircraft,
• ts: Trajectory sampling time,
• M : Maximum number of waypoints of each flight,
• δa: Maximum allowed advance departure time,
• δd: Maximum allowed delay departure time,
• di: The maximum allowed route length extension

coefficient of each flight i, 0 ≤ di ≤ 1
• Li: Length of the initial en-route segment for each flight
1) Alternative departure time: The first option is to advance

or delay time of departure with departure time shifts δi of each
flight i. As given in initial flightplans, each flight i has an
initial departure time ti. If the flight is selected to perform this
option, the new departure time will be expressed as follows:

t̂i = ti + δi (1)
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Figure 1. Initial (dashed line) and alternative (red line) trajectory with 3
additional waypoints

2) Alternative en-route trajectory: The second option is
to reconstruct an alternative trajectory by setting a set of
waypoints defined by

wi = {wm
i |wm

i = (wm
ix′, w

m
iy′)}Mm=1 (2)

The set of waypoints allows us to reshape the initial trajectory
as depicted in Fig. 1. More details regarding with this method
to modify the trajectory are presented in [10].

B. Problem constraints
Throughout this problem, the constraints will be defined as

follows:



1) Maximum allowed departure time shifts: We can manage
the overall flight delay by giving the maximum allowed
departure time shifts to the solution. The departure time shifts
δi has the unit of slot. The range of departure time slots can
be expressed as follows:

δi ∈ {−δa,−(δa − 1), · · · , 0, · · · , δd − 1, δd} (3)

2) Limited route length extension: To limit the route length
extension, the alternative en-route profile of flight i shall
satisfy:

Li(wi) ≤ (1 + di) · Li (4)

where Li(wi) is the new length of the alternative en-route
profile determined by the set of waypoints wi.

C. Objective function

This subsection introduces the modeling and analysis of the
air traffic complexity metric and then clarifies the approach to
develop the objective function with such metric.

The approach is to model at each instant of time a set of
trajectories using a linear dynamic system with the following
general equation:

˙⃗
X = A · X⃗ + B⃗ (5)

where X⃗ represents the state vector of the system.

X⃗ =
[
x y z

]T
(6)

This equation associates a speed vector ˙⃗
X with each point in

the state space X⃗ . The vector B⃗ represents the static behavior
of the system. The matrix A is the linear relation between the
speed vector ˙⃗

X . The eigenvalues of the matrix A represent
the evolution of the system. Hence, we use these eigenvalues
to determine the complexity metric.

⃗X1, V⃗1

⃗X2, V⃗2

⃗X3, V⃗3

(a) Observation vectors (b) Vector field

Figure 2. Measurement or observation vectors and vector fields derived by
the linear dynamical model

Let N be the number of aircraft presented in a sector at a
given time. For each aircraft, we consider the two observation
vectors (see Fig. 2a): a position measurement:

X⃗i =
[
xi yi zi

]T
(7)

and a speed measurement:

V⃗i =
[
vxi vyi vzi

]T
(8)

To obtain the matrix A, we determine the dynamic model
which is best fitted to observations. As shown in Fig. 2b, the

dynamic model can be illustrated by the vector field in the
airspace. The vector field is derived from linear equation ( ˙⃗

X =
A.X⃗ + B⃗) which is best fitted to the given observations.

Our problem is to find the matrix A and vector B⃗, which can
minimize the error between observations and the dynamical
model. This minimization problem can be expressed as
follows:

min
A,B⃗

√√√√i=N∑
i=1

∥∥∥V⃗i −
(
A.X⃗i + B⃗

)∥∥∥2 (9)

To obtain the matrix A and B⃗ from this minimization
problem, the Least Mean Square minimization (LMS) method
can be used as detailed in [7].
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Figure 3. Eigenvalue locations for four different traffic situations

Fig. 3 shows the locations of the eigenvalues of
matrix A for four outstanding traffic organizations: parallel,
convergence, divergence and rotation. With the first situation,
the eigenvalues are null because the aircraft are flying in
parallel, representing a translation: distances between aircraft
remain unchanged with time. In contrast with the second
situation, the eigenvalues are real negative; the system evolves
in a contraction mode and the four aircraft are converging: the
norms of the relative distances between aircraft decrease with
time. The third situation represents an expansion evolution
whose eigenvalues are real positive and the aircraft are
diverging: the relative distances increase with time. The
rotation situation is associated with full imaginary eigenvalues
because the aircraft stay at the same distance for all time from
each other in a curl moving.

In this paper, we use complexity metric to measure the
traffic structure. To obtain the complexity metric Ψik for
the aircraft i at time k, the process begins with identifying
the traffic situation around an aircraft i at time k with the
horizontal and vertical search spaces as represented in Fig. 4.
The horizontal search space is centered around the reference
aircraft. In RVSM (Reduced Vertical Separation Minima)
airspace, en-route aircraft vertical separation is 1000 ft.
Therefore, the vertical search space is created to find the
neighboring aircraft whose altitudes are in the risk of loss
separation to the reference aircraft. The observation vectors of
reference and neighboring aircraft found within the horizontal



and vertical search spaces are included in determining the
complexity metric.

R
=
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(a) Horizontal search space

1000 ft

1000 ft

(b) Vertical search space

Figure 4. Search space for structure validation

The extension of the time uncertainty, which can be caused
by passenger delay, airport and network operations, is taken
into account. We apply the maximum time error tϵ to all
aircraft within the search space. This error is the predicted
arrival time of aircraft at a given position under uncertainty
lying in the interval tϵ where t−tϵ/2 ≤ t ≤ t+tϵ/2 and t is the
actual arrival time of the aircraft. Fig. 5 shows time uncertainty
to all aircraft within the search space. All observation vectors
presented in this time interval will be considered for the metric.
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Figure 5. Horizontal search with extension of time uncertainty

After determining the matrix A from eq. (9), we can extract
complex eigenvalues from this matrix. For aircraft i at time
k, we have Λik = {λ(ik)

1 , λ
(ik)
2 , . . . , λ

(ik)
L } the set of complex

eigenvalues from the matrix A where λ
(ik)
l = a

(ik)
l + jb

(ik)
l ,

we can produce the complexity metric as follows:

Ψik =
∑
l∈L

|a(ik)l |, for L = {l|a(ik)l < 0} (10)

Then, we calculate the total complexity Ψi of the aircraft i
from the following equation:

Ψi =

Ni∑
k=1

Ψik (11)

Ni is a number of 4D coordinates of aircraft i.
Therefore, the aggregated complexity Ψ determined from

all aircraft in airspace can be determined as follows:

Ψ =

N∑
i=1

Ψi =

N∑
i=1

Ni∑
k=1

Ψik (12)

where N is a number of aircraft.

IV. RESOLUTION ALGORITHM

The resolution algorithm relies on a hyper-heuristic
approach. A hyper-heuristic, was first generalized in 2003,
is an automated methodology for selecting or generating
heuristics to solve hard computational search problems [14].
In this paper, we propose the adaptive metaheuristic using

reinforcement learning (AMRL) for air traffic structuration
problem. This algorithm enhances the traditional metaheuristic
optimization with the incorporation of reinforcement learning,
heuristic selection method and several low-level heuristics.
This section introduces the AMRL algorithm and its three
major components: low-level heuristics, heuristic selection and
reinforcement learning.

High level strategy

Reinforcement Learning

Heuristic selection Move acceptance

Domain barrier

Problem domain
Low level heuristics Decision set

h1
. . . hi

. . . hn d1 ... dk ... dN

i

d̃k = hi ∗ dk

f(d̃k)

Figure 6. Adaptive metaheuristic framework with three major components: (i)
low-level heuristics, (ii) heuristic selection, (iii) reinforcement learning and
(iv) move acceptance and (iv)

A. Adaptive metaheuristic using reinforcement learning

The AMRL framework is represented in Fig. 6. Suppose that
the current decision is dk in the system, the system performs
the heuristic selection method for selecting the heuristic
operator hi from one of low-level heuristics. The system
applies such selected operator hi to generate a new decision
d̃k. The system then performs the move acceptance method
to accept or reject the new decision d̃k . The reinforcement
learning observes the current state, the selected operator and
the evolution of decisions to determine rewards. Values in the
state-action matrix will be updated with rewards to favor the
selection of the heuristic operators in the same states.

B. Low-level heuristics

The specialization of AMRL for a particular optimization
problem requires the definition of diversification and
intensification operators. In this paper, generation and mutation
operators perform the diversification task. Some local descent
heuristics are used for intensification. To solve the traffic
structuration problem, four diversification operators and four
intensification operators are proposed.

1) Intensification operators: The four intensification
operators are based on different neighborhood structures:
5-advance, 5-delay, 1-move, 2-move. These neighborhood
structures are used in a local descent procedure that consists
in performing a sequence of moves toward a local optimum
decision.



• 5-advance (h1): a local search which consists in randomly
advancing departure time not more than 5 minutes.

• 5-delay (h2): a local search which consists in randomly
delaying departure time not more than 5 minutes.

• 1-move (h3): a local search which finds a neighborhood
decision by moving a single waypoint within a given
bound.

• 2-move (h4): a local search which finds a neighborhood
decision by moving one or more waypoints within a given
bound.

2) Diversification operators: The set of diversification
operators is composed of two generation and two mutation
procedures. These operators are used for the diversification
process during optimization.

• 20-shift (h5): a generation operator which randomly
advance or delay departure time 20 minutes from the
current time.

• new-route (h6): a generation operator which randomly
create one or more waypoints under problem constraints.

• flip-opposite (h7): a mutation operator which consists in
vertically flipping current waypoints opposite to the direct
route segment in a symmetrical manner.

• remove-or-insert (h8): a mutation operator which consists
in randomly removing or inserting a single waypoint in
such a way that problem constraints are satisfied.

C. Heuristic selection
As illustrated from Table I, we construct the transition

matrix in form of (state, action) where the actions corresponds
to intensification and diversification operators. To select the
heuristic operator, we perform the roulette-wheel selection
principle from each weight associated with each operator
for the current state. At initial state, each weight value
wij in the transition matrix is initialized with either µ or
0. The modification of each weight value is performed by
reinforcement learning.

TABLE I. INITIALIZATION OF WEIGHT VALUES IN STATE-ACTION MATRIX

Intensification
operators

Diversification
operators

State h1 h2 h3 h4 h5 h6 h7 h8

s0 µ µ µ µ
s1 0 µ µ µ
s2 µ 0 µ µ
s3 µ µ 0 µ
s4 µ µ µ 0
s5 µ µ µ µ

The collection of states allows us to perform the
Diversification-Intensification cycle (D-I cycle). The cycle
starts from selecting a generation operator among the set
of diversification operators. Each state is determined based
on the type of operator previously applied. Since there are
four intensification operators applied in the traffic structuration
problem, six states will be represented as follows:

• s0: a diversification operator has been previously applied.
• s1: intensification operator h1 has been previously

applied.

• s2: intensification operator h2 has been previously
applied.

• s3: intensification operator h3 has been previously
applied.

• s4: intensification operator h4 has been previously
applied.

• s5: two successive intensification operators have been
previously applied without modifying the current
decision.

D. Reinforcement learning (RL)

The reinforcement learning approach [15] selects actions
that maximize expected rewards generated by decisions. The
agent learns how to choose actions through trial-and-error
interactions with a dynamic environment to observe the signals
or rewards returned from previous states. The agent may take a
long sequence of actions to have a delayed rewards, receiving
insignificant reinforcement, then finally arrive at a state with
high reinforcement.

At each state-to-state transition in AMRL, the system
stores an experience containing the current state s with the
selected operator h and the gain g which is the different
cost between the new decision and the previous one. Until
the end of D-I cycle, RL learns the collection of experiences
and then determines the reward σ to update the weight values
in the state-action matrix. Only the weight values whose
state-operator pairs can improve the decision, will be updated
with this formula:

wi,j := wi,j + σ (13)

where wi,j is the weight value of the event whose action is
taken by selecting the operator hi due to the state sj .

E. Moving acceptance

Move acceptance decides whether to accept or reject a new
decision at each step during the search process. The iterations
continue until a termination criterion is met.

In our framework, we apply the metropolis based criterion
to perform our move acceptance mechanism. In case of
minimization, the newly produced decision is accepted if it is
better and if it is worse, it will be accepted with a probability

exp

(
f(di)− f(d̃i)

T

)
, where f(di) and f(d̃i) denotes the

cost value of the current decision and the newly generated
decision respectively, and T denotes the temperature. When
T is high/low, the chance of accepting a deteriorated move is
high/low.

The AMRL algorithm for traffic structuration problem is
detailed in Algorithm 1. Based on the metropolis mechanism,
the algorithm is composed of data pre-processing, heating
loop and cooling loop. The algorithm starts with the start
of the data structures. Then, the heating process is started
and the output from this process provides us with the initial
temperature T0 that is required to start the cooling loop.
The initial temperature is set with the initial acceptance rate
τ = 0.8. The cooling loop of the algorithm is executed as long



as the stop criterion is not reached. During an iteration of the
cooling loop, the algorithm selects an operator, apply it and
update the decision. The end of each transition corresponds
to the tasks assigned to the RL. RL action and sharing the
transition matrix only take place at the end of a D-I cycle. If
some new decisions are improved from their current decisions,
The system will reinforce the related state-operator pairs in this
D-I cycle by using eq. (13).

Algorithm 1 Adaptive Metaheuristic with RL (AMRL)

1: T0 ← heat_up(τ )
2: D ← init_decisions()
3: H ← init_heuristic_operators()
4: W ← init_transition_matrix()
5: E ← init_experiences()
6: T := T0

7: repeat ▷ Start cooling loop
8: for i = 1→ N do
9: if f(di) > γT then

10: s← compute_state(E)
11: h← select_operator(W, s)
12: d̃i ← apply_operator(h, di)
13: g ← f(di)− f(d̃i)
14: update_history(E, s, h, g)
15: metropolis_acceptance(d̃i, di)
16: if end of D-I cycle then
17: individual_learning(W,E)
18: end if
19: end if
20: end for
21: T ← α · T
22: until (T = Tf ) ∨ (Ψ = 0)

23: return D̃

V. RESULTS

By assessing the performance of our model and algorithm,
we propose five different scenarios for our experiment.
The first three scenarios are related to short-term traffic
structuration. The latter two scenarios are the strategic
trajectory planning application, which takes place six months
to seven days before the day of operation. We perform this
experiment with Java on Ubuntu system with Quad-core 2.7
GHz processor and 16 GB memory.

A. Flow crossing

The first scenario is to control an interaction of three traffic
flows. Each parallel ten aircraft from W-E, S-N and NE-SW
are flying with the same speed and altitude to the same area as
depicted in Fig. 7a. Each aircraft enter the sector at different
times. As shown in Fig. 7c, the proposed complexity metric
can identify the level of disorder of the initial trajectories from
ts = 100 to ts = 150. Aggregated complexity for this initial
traffic is Ψ = 50.48.

We customize the AMRL algorithm to restructure the traffic
in the first scenario by rescheduling the flight time of each

aircraft before arriving in the sector. The heuristic operators
5-delay and 20-shift are activated to generate the neighborhood
decision for this scenario. After running our algorithm with
717 iterations, we can mitigate the risk of collision in this
traffic situation. As represented in Fig. 7b, the final aggregated
complexity is Ψ = 0.118. Each flight time is adjusted before
entering the sector to avoid complexity.
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Figure 7. Traffic situation of (a) initial traffic and (b) restructured traffic and (c)
Initial and final complexity metrics as a function of time during the operation
of flow crossing
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Figure 8. Traffic situation of (a) initial traffic and (b) restructured traffic and (c)
Initial and final complexity metrics as a function of time during the operation
of time based metering

B. Time based metering traffic

The second experiment is related to the management of two
traffic flows flying to the same crossing point. Time-based



metering [16] is a method used by controllers to reduce
air traffic complexity and to increase predictability to ATC
system. Flights are delivered to a specific point at a specific
time. This manner of structuring proposes a new short-term
schedule of aircraft entering a sector. The new schedule will
be easier to perceive and to manage by controllers. In this
scenario, five aircraft are flying to the same metering point
with the same speed and altitude but different time for entering
the sector. These aircraft will fly on the same path after
crossing over the metering point. For initial trajectories in
Fig. 8a, the complexity tends to be higher than usual when
three aircraft converge to the metering point at approximately
the same time. The aggregated complexity of these initial
trajectories is Ψ = 10.45.

Likely in the first scenario, we reschedule the flight time
of each aircraft before arriving in the sector. The resolution
algorithm activates the heuristic operators used in previous
scenario. Finally, we can mitigate the congested traffic as
depicted in Fig. 8b. The final complexity is Ψ = 2.63 · 10−2

after 32 iterations. Each flight time is adjusted for entering the
sector to avoid complexity.

C. Traffic encounters

The third scenario is an attempt to manage two flows of
traffic encounters with the same speed and attitude (see Fig.
9a). To manage this situation, the controllers should create a
temporary route for each aircraft. As depicted in Fig. 9c, high
complexity values are identified in theăarea where aircraft are
in the risk of collision. The aggregated complexity for these
initial trajectories is Ψ = 18.28.
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Figure 9. Traffic situation of (a) initial traffic, (b) restructured traffic and (c)
Initial and final complexity metrics as a function of time during the operation
of collision avoidance

We propose the customized AMRL algorithm to restructure
the traffic. To propose the temporary route to each aircraft,
we apply space-based heuristic operators: 1-move, 2-move,

new-route, flip-opposite, remove-or-insert. As depicted in Fig.
9b, the AMRL algorithm proposes parallel route structure
to minimize complexity in the sector. After running our
algorithm with 576 iterations, the aggregated complexity for
final trajectories is Ψ = 1.21 · 10−2.

D. Real traffic without uncertainty

The fourth scenario represents a full day traffic in French
airspace with 8836 aircraft trajectories as depicted in Fig. 10.
The parameters defined for the optimization problem are given
in Table II. All heuristic operators proposed in this paper are
applied for this problem. Before starting, initial trajectories
represent an overall complexity of Ψ = 188456 and the
complexity map for these trajectories is represented in Fig.
11a. The final complexity and the computation time to solve
the problem are reported in Table III. Restructuring the traffic
can improve the overall complexity by 49.6 %, compared to
the initial trajectories. The complexity map related to final
trajectories is shown in Fig. 11b.

Figure 10. Initial trajectories of a full-day traffic in French airspace

TABLE II. USER PARAMETERS FOR REAL TRAFFIC SCENARIO

Parameters Value

Starting temperature control parameter χ 0.8
Complexity threshold value γT 0.95 · γmax
Geometric cooling rate α 0.99
Initial weight values of state-operator µ 1.0
Reward value σ 1.0
Maximum changes of departure time δa, δd 60 minutes
Maximum number of waypoints M 3
Maximum route length extension L 0.15 (15 %)

(a) (b)

Figure 11. Complexity map of (a) initial trajectories and (b) final trajectories
of a full-day traffic in French airspace



TABLE III. NUMERICAL RESULTS FOR RESTRUCTURING A FULL DAY
TRAFFIC IN FRENCH AIRSPACE (10 RUNS FOR AVERAGE COMPUTATION)

Numerical result Value

number of iterations 3295
total complexity 94994.1
avg. complexity 10.80
avg. departure time changes 4.35 minutes
avg. route length extensions 0.12 %
avg. computation time 3.72 minutes

E. Real traffic with uncertainty

The proposed robust traffic structuration methodology is
tested by accounting time uncertainty. The structure validation
model related to this scenario is explained in Section III.
The traffic used in this experiment is similar to the previous
scenario. The parameters of the AMRL algorithm are the same
as those proposed in Table II. The simulation is performed
considering time uncertainty interval with tϵ = 1, 2 and
3 minutes. The initial and final complexity between trajectories
are reported in Table IV.

TABLE IV. NUMERICAL RESULTS FOR RESTRUCTURING A FULL DAY OF
TRAFFIC CONSIDERING TIME UNCERTAINTIES OF 1, 2 AND 3 MINUTES

tϵ
(minutes)

initial
Ψ

final
Ψ

computation time
(minutes) no. of iterations

1 1.00 · 106 59 740.5 25.8 3446
2 7.38 · 106 56 411.4 72.1 3783
3 9.80 · 106 55 666.3 117.8 4225

The proposed traffic structuration can mitigate the
complexity in air traffic by 94.0 %, 99.2 % and 99.4 % for
given time uncertainties of tϵ = 1, 2 and 3 minutes respectively.
The computation time increases when we consider a higher
level of time uncertainty.

VI. CONCLUSION

In this paper, we introduced a methodology to address the
traffic structuration problem in the framework of trajectory
based operation. The structure validation model using air
traffic complexity metric based on linear dynamical system can
quantify the impact of air traffic complexity. To minimize this
impact, we can restructure air traffic patterns by modifying
the departure time and route structure for each trajectory.
To solve this problem, an adaptive metaheuristic using
reinforcement learning was proposed. Experimental results
from five scenarios represent the potential of the proposed
methods. The AMRL can restructure traffic in both time
dimension (for flow crossing and Time-based metering traffic)
and space dimension (for traffic encounters) with lessened
air traffic complexity metric. Especially in traffic encounter
situation, the AMRL can reorganize traffic into parallel flows,
which are easier for controllers to perceive and manage this
situation. A national scale dataset with 8836 trajectories is
used as another scenario. Our algorithm can minimize the
impact of traffic structure with less computation time (3-4
minutes for 8836 trajectories without uncertainty). In order

to increase robustness of trajectories, the time uncertainty of
aircraft was also considered. Future work can perform other
structuration approaches such as allocation of flight level and
speed regulation. In addition to enhance the performance of
AMRL, new heuristic operators can be developed with the aim
of providing better structuration in air traffic.
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