
HAL Id: hal-03041902
https://enac.hal.science/hal-03041902

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Efficiency Comparison of Centralised and
Distributed Arrival Management (AMAN) Problem In

Terminal Airspace
Aniket Anand Deshmukh, Ying Huo, Daniel Delahaye, Philippe Notry,

Mohammed Sbihi

To cite this version:
Aniket Anand Deshmukh, Ying Huo, Daniel Delahaye, Philippe Notry, Mohammed Sbihi. Algorith-
mic Efficiency Comparison of Centralised and Distributed Arrival Management (AMAN) Problem
In Terminal Airspace. SID 2020, 10th Sesar Innovations Days, Dec 2020, Virtual event, France.
�hal-03041902�

https://enac.hal.science/hal-03041902
https://hal.archives-ouvertes.fr

Algorithmic Efficiency Comparison of Centralized
and Distributed Arrival Management (AMAN)

Problem in Terminal Airspace
Aniket Deshmukh ,Ying HUO, Daniel DELAHAYE, Philippe Notry, Mohammed SBIHI

OPTIM-Team/ENAC-LAB
ENAC – Université de Toulouse

Toulouse France
firstname.lastname@recherche.enac.fr

Abstract—Terminal Maneuvering Area (TMA) is one of the
most complex and busiest airspaces where the air traffic is
managed with the help of decision support tools such as Arrival
Manager (AMAN) in many airports. The objective of AMAN
involves regulating the inbound air traffic flow and providing
the expected scheduled time for each flight considering the
impact of the environment. As we know, the aircraft scheduling
problem is NP-hard and requires the implementation of advanced
algorithms. The heuristic algorithms are more likely to provide
a quick and satisfying result, in which simulated annealing (SA)
has been proven to be efficient and easily adapted to a complex
problem that involves large-dimensional state-space. Previously,
in our work [1], the problem is considered from a centralized
point of view in which the integrated information of all flights is
investigated. The optimization process involves population-based
and computational consuming evaluation for each simulation.
Considering the isolated decisions of each flight, it is evident that
the system is naturally distributed. By focusing on the individual
performance of each flight, the optimization process can be
guided with prioritization and no integration of flight information
is required, therefore the efficiency and flexibility of the algorithm
will be increased. Since the centralized and distributed AMAN
develop different implementations for simulated annealing, the
properties of both adapted algorithms are demonstrated. The
performances are analyzed in terms of the execution time and
quality of result based on a case study on Paris-Charles de Gaulle
airport.

Keywords—Air Traffic Optimization, Centralized AMAN, Dis-
tributed AMAN, Terminal Maneuvering Area

I. INTRODUCTION

Nowadays, many airports rely on AMAN to balance demand
and available resources. The main aims of AMAN are to
regulate the flow of aircraft entering the surrounding airspace
of an airport and provide predictability for its users. To meet
these objectives, AMAN provides the expected schedule time
or trajectory prediction for each flight at different fixes to
ensure the spacing and make full use of the capacity. However,
as the flight operations are affected by the environment, the
arisen of some unpredictable factors such as runway closure,
severe weather changes need a quick response, therefore the
improvement of computational time of the AMAN can benefit
the whole system.

Normally, information of all the flights is aggregated to trace
the status of one flight with respect to the others so as to ensure
system safety. In this context, the flights are centralized in
the network, which introduces some unnecessary underlying
communications and extra computation time in the simulation
[2]. One possible approach to overcome this drawback is to
change the strategy of centralized evaluation to a decentralized
(distributed) one. In a distributed perspective, aircraft self
organize in order to reach the safety in an efficient way. Be-
sides, they can also benefit from real time information coming
from other aircraft (current positions, TAS, wind, etc...) to
improve their trajectory predictions. The centralized AMAN
and distributed AMAN will lead to different implementations
on the chosen solution algorithm, simulated annealing (SA).
In the application of SA, the distributed version focuses on the
individual flight that is essential for the network safety which
can potentially increase the computational efficiency.

The organization of this paper is summarized as follows.
Section I introduces the addressed problem with background.
Section II presents some works that are related to our problem.
Then, in Section III, the mathematical model is introduced,
while due to the structure differences, the objective functions
of centralized AMAN and distributed AMAN are formulated
respectively. Simulated annealing is then adapted to both
models with the main differences presented in Section IV.
The results are analyzed and compared in terms of execution
time and quality in Section V. Conclusion and perspectives
are discussed in Section VI.

II. STATE OF THE ART

In previous works, the problems of TMA arrival man-
agement were studied extensively. By viewing the reviews
in multiple works [3–5], we roughly summarized the works
into two categories: The establishment of detailed models for
solving specific problems considering the local network or
relevant characteristics, and the development of novel algo-
rithmic approaches to facilitate the computational efficiency
or accuracy for solving the problem.

1

Lots of related studies of air scheduling problems were
modeled as a job shop scheduling problem in which the
resources and flights were considered as machines and jobs
[3, 4, 6]. This provided a flexible environment that can be
adapted to the problem with the required conditions or limi-
tations. As different airports have their own features, different
objective functions with weights or penalties are applied in
the models. Some works established the objective functions
and constraints by regarding the conflict elimination as the
prior issue while taking delay and variable deviations into
consideration for the interest of operation efficiency [7, 8].
The aircraft scheduling problem is known to be strongly
NP-hard, and both exact and heuristic solution approaches
were applied. The exact approach such as mixed integer
programming was proposed [9, 10]. [11] summarizes the meta-
heuristic algorithms for solving problems of airside operation
research. Other techniques such as time decomposition, sliding
windows are usually incorporated in the algorithms to improve
computational efficiency [12, 13].

After reviewing both applicable preferred models or algo-
rithmic focused works, it is clear that we need to incorporate
details and realistic features in the model while easing a certain
level of computation burden. The works of [14] and [15] has
proposed to use the distributed simulated annealing according
to the implemented problem. A classical job shop scheduling
problem is tackled, and the final results stated the scalability
and flexibility of the use of distributed simulated annealing.
[16] compared the performance of different levels of central-
ization based on a typical distributed optimization problem,
which shows the constraints endowed by the centralization will
cause extra computational burden and derive less flexibility.

Inspired by the aforementioned work, and considering the
distributed nature of our problem, the proposed model aims to
provide a new perspective to convert the centralized AMAN
to a distributed one by implementing different objectives
in the optimization process. Two optimization models with
different levels of centralization in terms of flight information
aggregation in the simulation are established.

III. MATHEMATICAL MODELING

In our research, a problem of flight scheduling taking the
conflict detection and resolution into account in TMA is
presented.

A. Network

In order to facilitate the simulation and reduce the com-
putational burden, the arrival route in TMA is abstracted as
a graph G(N ,L), where N represents the set of nodes and
L represents the set of links. Nodes are waypoints on the
arrival route including the runway thresholds and TMA entry
node. Links are the arcs connecting two nodes according to the
route structure. Each flight follows a designated route denoted
as Uf = {U lf ,Ung }, where U lf and Ung represent the links and
nodes that flight f passes through. Given a set of arrival flights
F = {F1, ..., FN}, the information of each flight (f ∈ F) are
specified:

lu vg f fg

duf,g dvf,g

Fig. 1. Link conflict detection

• Cf : Wake turbulence category of flight f .
• Ef : TMA Entry node of flight f .
• T of : Initial RTA (Required Time of Arrival) when flight
f entering the TMA through corresponding entry node.

• V of : Initial speed of flight f when entering the TMA
through entry node.

B. Decision variables and constraints

In this problem, two types of decision variables are pro-
posed, and the relevant constraints are applied to the decision
variables.

1) Entry time: flights can adjust the arrival time to TMA
by changing their en-route speed, using an alternative route
or considering a ground delay control in the departure airport
[17]. A discrete time slot denoted as ∆T is used as one unit
to measure the total entry time range. The maximum tardiness
and earliness are represented as ∆Tmax and ∆Tmin which are
composed of multiple of ∆T . Therefore, for a given flight f ,
a time slot decision variable tf ∈ Tf has a flexible range of:
tf = {T of + j∆T |∆Tmin/∆T 6 j 6 ∆Tmax/∆T, j ∈ Z},
where j denotes the number of time slots deviated from the
initial arrival time.

2) Entry speed: for an arrival flight f , an entering speed
decision variable vf ∈ Vf has a constraint of:
vf = {V min

f + j∆v
f |j ∈ Z, |j| 6 (V max

f − V min
f)/∆v

f}, where
j performs the deviation from the original speed, ∆v

f is the
discretized speed slot.

To summarize, the decision variable vector associated with
the flight set F is denoted by x, and we have:

x = (t, v)

where t and v denote the TMA entry time vector and entry
speed vector respectively. The decision variables selected for
flight f is denoted by xf .

C. Conflict evaluation

The conflict detection can be referred to the model es-
tablished in [2], in which the conflicts are evaluated on
specific locations in the network to determine whether there
are separation violations between the consecutively operated
aircraft or not. The conflict detection are categorized into two
types due to the spatial separation requirements. Link conflict
detection dedicated to the longitudinal separation violation and
node conflict detection is introduced for the lateral separation
violation.

1) Link conflict detection: as shown in Fig. 1, for each link
l = (µ, ν), where µ and ν represent the link entry and exit
point. The conflict detection is carried out on both sides of the

2

node ng

fRn = 2.2NM

Fig. 2. Node conflict detection

link. In order to evaluate the separation violation severity, the
percentage of violated distance over the required separation is
considered in our objective. The violation severity can provide
extra information for the interest of the optimization process.
Suppose that two aircraft f and g passing through link l, where
aircraft f is ahead of g, the conflict will be detected and the
corresponding costs for this conflict are given as follows:

Clfg(x) =

1 +

Df,g−dµf,g
Df,g

, if dµf,g < Df,g

1 +
Df,g−dνf,g
Df,g

, if dνf,g < Df,g

0, otherwise

(1)

where dµf,g and dνf,g are the separation between aircraft f and
g when aircraft f arrives at the entry and exit points of the
current link. Df,g is the required separation associated with
the categories of aircraft f and g that is indicated in Tab. I.

2) Node conflict detection: due to the fact that the inter-
section of two links might build an angle and the horizontal
separation requirements of flights have risks to be violated,
the lateral separation should be taken care of.

The nodes are considered as a disk with a radius of 2.2NM
to ensure the minimum separation between two consecutive
flights [2]. This area is defined as the detection zone, if two
aircraft are observed in the detection zone simultaneously,
a conflict is detected. The violation severity on nodes is
calculated by taking into account the violation time and the
flying time in the detection zone of both aircraft.

Fig. 2 shows the node structure where two consecutive
aircraft f and g pass through the node n. The conflict cost

TABLE I
MINIMUM WAKE TURBULENCE SEPARATION REQUIREMENTS, IN NM.

Categories Leading Aircraft, f
Heavy Medium Light

Trailing
Aircraft, g

Heavy 4 3 3
Medium 5 3 3

Light 6 5 3

for aircraft f and g on node n can be given as:

Cnfg(x) =

1 +
tOutf −tIng

2max(Tnf ,T
n
g) , if tOutf > tIng

0, otherwise
(2)

where tOutf and tIng denote the node exit time of aircraft f and
node entry time of aircraft g respectively on the current node
n. Tnf and Tng are the flying time of aircraft f and g when
passing through the detection zone of node n.

D. Delay and speed deviation

In real operations, not only the conflicts are important,
there are other factors that might have big effects on the
whole control system. In our objective functions, the delay
and the speed deviation are also included. Flight delay Df is
determined by the time deviation between the RTA and the
assigned arrival time of flight f , thus we have:

Df (x) = |tf − T of |. (3)

.
The constraint of speed deviation can produce fewer

changes and ease the workload for both the pilots and the
air traffic controllers. The speed deviation Vf of flight f is
derived from the following equation:

Vf (x) =
|vf − vof |

vof
. (4)

E. Objectives

Two objective functions are proposed in accordance with the
degree of centralization. The corresponding models referred as
the centralized model and the distributed model are therefore
established.

1) Objective function of centralized model: The objective
function is a weighted sum of the total number of conflicts in
the network, the total delay and speed deviations for the flight
set. Therefore, it can be represented as:

GC(x) = α
∑
f,g∈F
f 6=g

 ∑
l∈Ulf∩Ulg

Clfg +
∑

n∈Unf ∩Ung

Cnfg

+β
∑
f∈F

(Df + Vf)

(5)
In our problem, safety is the most important issue that needs

to be addressed, thus α should be set much more bigger than
β.

2) Objective function of distributed model: The objective
function of the distributed model identifies the performance
of an individual flight in order to build different objective
functions. The flights with the worst performance will be
considered with priority. For each flight, the weighted sum of
the number of conflicts, delay and speed deviation is regarded
as the total cost of this flight and computed as follows.

g(xf) = α

 ∑
l∈Ulf∩Ulg

Clfg +
∑

n∈Unf ∩Ung

Cnfg

+β (Df + Vf) , f, g ∈ F

(6)

3

Where aircraft f and g are supposed to be operated suc-
cessively. The objective function for the distributed model
should guarantee that the cost of the aircraft with the worst
performance can be minimized. So the most expensive cost
among the flight set is set as the objective:

GD(x) = max(g(xf)), f ∈ F (7)

IV. SIMULATED ANNEALING

A. General introduction of simulated annealing

Simulated annealing is a meta-heuristic method to ap-
proximate global optimum in a large search space for an
optimization problem in a fixed amount of time [18]. The
method involves heating and controlled cooling that mimics
the process of metal annealing. A critical control parameter
in this optimization process is the temperature. The heating
process explores the solution space to search for a temperature
that can ensure a sufficient and deep exploration during the
cooling process. The cooling process refers to the decreasing
of the temperature which can be interpreted as a slow decrease
in the probability of accepting worse solutions while exploring
the solution space.

In SA, several factors should be specified in the implemen-
tation:
• The temperature, in a cooling process for instance, fol-

lows a geometric pattern such as Tk = γTk−1 for
consecutive iterations where k denotes the number of
iteration and γ is a cooling parameter.

• Neighborhood generation randomly selects candidate so-
lutions in order to sufficiently explore the state space. At
each step, the quality of the current solution and neigh-
boring solution will be measured and decided whether
the new solution will be accepted or not.

• Acceptance probability for the neighboring solution is
specified with a Metropolis criterion. The steps men-
tioned above are repeated until the temperature is lower
than a certain value.

Algorithm 1 provides the pseudo-codes of the cooling proce-
dure for the SA.

In accordance with the structural features when incorporat-
ing the models into the solution algorithm, Centralized Simu-
lated Annealing (CSA) and Distributed Simulated Annealing
(DSA) are introduced. As the objective function indicated,
the costs of all flights are summed up in the centralized
model, and flights associate with different levels of costs can
not be distinguished. Consequently, the neighborhoods are
chosen blindly which yields a large computational burden.
However, from a distributed perspective, the cost of each
flight is treated individually at each iteration. The flights that
associate with costs higher than a standard will be selected
as critical flights. The critical flights are targeted with priority
for undergoing changes. Moreover, with a guided searching
process for critical flights, a better solution can be found much
easier and faster. The details of both centralized and distributed
simulated annealing are specified as follows.

Algorithm 1 Simulated annealing applied for centralized
AMAN
Require: Initialize(initial temperature To obtained from heat-

ing procedure, number of transitions for each iteration
I = 100, random number β ∈ [0, 1]);

1: Calculate the initial sequence objective G(x);
2: G(x)c ← G(x)
3: Put the flights who have cost in the set of Fc;
4: while Tc > 0.0001 ·T0, G(x) is not optimum solution do
5: for i = 1 to I do
6: Choose one flight in Fc, randomly change one of

its decision variables;
7: Calculate the new objective G(x)c;
8: if G(x) > G(x)c then
9: G(x)← G(x)c;

10: else if β < exp(G(x)−G(x)c
Tc

) then
11: G(x)← G(x)c;
12: end if
13: end for
14: Update flight set Fc;
15: Tc = Tc · γc;
16: end while
17: return G(x)

B. Simulated annealing based on centralized structure

1) Heating procedure: opposite to the cooling procedure,
the temperature in the heating loop starts from a small value,
then this value is progressively multiplied by a control param-
eter δ that is slightly greater than 1. Each iteration correspond-
ing to a certain temperature is composed of multiple transi-
tions. As the number of transitions increases, the acceptance
rate ζ that is defined as the number of neighborhood solutions
accepted divided by the total number of transitions varies.
Once the acceptance rate reaches a certain value typically 0.8,
the heating process stops and the derived temperature is used
as the initial temperature for the cooling procedure.

2) Cooling procedure: during the evaluation of the objec-
tive function, the individual cost of each flight is accessible.
For each evaluation, a flight set Fc includes all the flights that
have a cost different from 0. The neighborhood solution is
chosen by randomly selecting a flight in Fc and changing
one of its decision variables arbitrarily, then a new state
is produced and the neighborhood solution can be obtained
accordingly. In order to get the new solution, the related
information of the chosen flight needs to be removed from the
network, after the changing of the decision variable, the flight
with new information will be injected in the overall network
simulation, where objective of this neighborhood solution is
then yielded.

The acceptance of the neighborhood solution is based on a
Metropolis criterion which is highly dependent on the current
temperature. In the Metropolis algorithm, at each temperature,
a large number of transitions are generated in order to achieve
the balance in exploring the state space and exploiting solu-
tions.

4

C. Simulated annealing based on distributed structure

DSA aims to decentralize the flight information by releasing
the integration of all the flights in the simulation and focus-
ing on the critical ones which are essential in coping with
unexpected situations.

1) Heating procedure: in this model, one simulated anneal-
ing algorithm is associated with each flight. The performance
of individual flight is used in the heating procedure. In each
transition, a flight f is chosen, the associated cost g(xf) is
considered as the current solution. The neighborhood solution
g(x′f) is generated by changing one of the decision variables of
flight f . Then the acceptance criterion is applied to determine
the acceptability of the neighborhood solution. Flights in the
flight set are chosen successively to repeat the aforementioned
procedure until the end of this iteration. Similar to the CSA,
temperature increases as each iteration finished, and once the
acceptance rate reaches a certain value (typically 0.8), the
heating process terminates.

2) Cooling procedure: the main difference between the
cooling procedure of CSA and DSA is the neighborhood eval-
uation. To initiate the process, all flights are first evaluated and
the highest cost is specified as a reference. Then, for a regular
iteration, each flight compares its performance with a cost
threshold λCm. Consequently, the flight that has a cost higher
than the cost threshold is selected for the critical flight set.
Through targeting the critical flights, the algorithm is efficient
in reducing the randomness of selecting the neighborhood.
This process is summarized in Fig. 3. The flight set is listed
on the x-axis with their associated costs indicated on the y-
axis. The maximum value of cost in this iteration is 19.71,
thus the critical flight set is composed of the flights that have
a cost bigger than 19.71λ. The horizontal red line denotes the
threshold of accepting critical flights and the flights with their
costs marked by red circles are chosen.

Flights in the critical set are selected successively for
each transition, and one of its decision variables is randomly
changed which will derive a neighborhood. Instead of evalu-
ating the costs of all flights, a simulation for this particular
flight is conducted. The costs of this flight before and after

Fig. 3. Critical flights selection process in DSA

Fig. 4. Neighborhood choosing and simulation frame of CSA and DSA

the decision changing are taken as the current solution and
the neighborhood solution. The qualities of the two solutions
are then measured to decide the result of acceptance. Fig.4
illustrates the structure of CSA and DSA in terms of neigh-
borhood searching and simulation structure.

V. RESULTS AND OBSERVATIONS

A. Case study

Actual arrival flights that are operated to runway 26L from
a west flow configuration on 11th July 2017 in Pairs CDG
airport are applied for our case study. Table. II provides the

Algorithm 2 Distributed neighborhood solution selecting
method
Require: Initialize: Initial temperature To obtained from heat-

ing procedure, random number β ∈ [0, 1];
1: while Tc > 0.0001 · To, Cm > 0 do
2: For each flight f , compute the associated cost g(xf);
3: Specifying the maximum cost of an individual flight

Cm, and
4: for f ∈ F do
5: if cf > λCm then
6: Put flight f in the critical flight set Fc;
7: end if
8: end for
9: for f ∈ Fc do

10: One of tf and vf is chosen with equal probability
and change its value.

11: Calculating the new cost of f , g(x′f).
12: if g(xf) > g(x′f) then
13: g(xf)← g(x′f);

14: else if β < exp(
g(xf)−g(x′

f)

Tc
) then

15: g(xf)← g(x′f);
16: end if
17: end for
18: Tc = Tc · γd;
19: Specifying the maximum cost of an individual flight

Cm;
20: end while

5

TABLE II
ARRIVAL FLIGHTS INFORMATION

Entry point Number of flight Heavy Medium
MOPAR 60 26 34
LORNI 74 20 54
OKIPA 195 36 159

BANOX 108 20 88
Total number 437 102 335

flight information which contains the flying route and mixed
ratio of aircraft categories. Fig. 5 depicts the arrival route
network of Paris-Charle de Gaulle (CDG). Flights come from
four entry nodes are mostly composed of heavy and medium
aircraft. In our case study, chosen parameters for the problem
formulation are given in Tab. III. Mention that ∆Tmax has
been set as 30 mins to provide a large enough margin to make
sure a conflict free result can be achieved. This tardiness seems
unreal for short-haul flights as a result of the speed regulation,
while if a high tardiness time is required, the ground delay
can be considered as a time control measurement. Besides, the
parameters of the solution algorithms also need to be specified
taking into account the problem size and the desired configu-
ration. The related information is equally give in Tab. IV. The
overall process is run on a 2.50GHz core i7 CPU, under Linux
operating system PC with Java code. The derived results are
investigated in terms of execution time and the solution quality
for the two models.

B. Execution time

The main factor that affects the execution time for the
optimization process is the time consumed for each simulation
in the CSA and the DSA. As defined previously, in CSA, the
costs of all the flights are evaluated and summed up, while
in DSA, only one flight is fully involved in the simulation
without interacting with irrelevant information. This makes the
distributed SA hundreds of times faster than the centralized SA
in terms of simulation time for each transition.

60 80 100 120 140

100

120

140

MOPAR

LORNI

OKIPA

BANOX

RWY 26L

NM

NM

Fig. 5. Arrival route structure for runway 26L in Paris CDG airport.

TABLE III
CHOSEN PARAMETER VALUES FOR THE OPTIMIZATION PROBLEM

Parameters of the optimization problem Values
Maximum tardiness regarding RTA, ∆Tmax 30 mins
Maximum earliness regarding RTA, ∆Tmin -5 mins
Time slot, ∆T 5 seconds
Maximum speed in TMA, V max

f 1.1V of
Minimum speed in TMA, V min

f 0.9V of
Speed slot, ∆v

f 0.01V of
Weighting parameter, α 1
Weighting parameter, β 0.001

TABLE IV
CHOSEN PARAMETERS VALUES FOR SOLUTION ALGORITHMS

Parameters of the solution approaches Values
Heating control parameter for CSA and DSA, δ 1.1
Heating acceptance rate for CSA and DSA, ζ 0.8
Cooling parameter for CSA, γc 0.99
Number of transition in each iteration for CSA, I 100
Critical flights threshold factor for DSA, λ 0.8
Cooling parameter for DSA, γd 0.999

In the solution algorithm, each transition contains a simula-
tion for a new state space, therefore the number of transitions
in the whole optimization process is essential for the execution
time. In the DSA, at the beginning of each iteration, all the
flights are evaluated in the simulation to update the overall
optimization performance, which updates the value of Cm
for the current iteration. Since Cm defines different threshold
for the selection of critical flights, the number of transitions
which is determined by the flight number in Fc varies in each
iteration. Considering another related parameter λ = 0.8, it
is expected that only a small proportion of flights lies in the
critical flight set. However, in the CSA, the transitions for each
iteration is fixed as 100. Since the optimization process ends
when the temperature reduces to a certain level, the number
of iterations is determined by the evolution of temperature.
Table.V gives the execution time information of centralized
SA and decentralized SA, in which we can see no matter the
total number of iterations or the total execution time, the DSA
outperforms the CSA.

C. Quality of result

In our problem, the delay and the speed deviations are
included in the objective functions. Fig. 6 depicts the conflict

TABLE V
COMPUTATIONAL PROPERTIES FOR CENTRALIZED AND DISTRIBUTED SA

Distributed SA Centralized SA
Nb of iterations 9227 1146
Nb of transitions 32386 114600

Total execution time (s) 46.876 1157.663

6

Fig. 6. conflicts evolution of the centralized SA and the distributed SA.

Fig. 7. Delay and speed deviation evolution of the centralized SA and the
distributed SA.

TABLE VI
COMPUTATIONAL TIME FOR CENTRALIZED AND DISTRIBUTED SA

Distributed SA Centralized SA
Delay (hour) 39.9625 36.675

Speed deviation (%) 18.1699 12.16

evolution of CSA and DSA respectively in which the conflicts
have been eliminated in both cases. In Fig. 7, the total
delays and speed deviations with respect to the number of
transitions are displayed. Since the conflicts have a higher
weight, the delay and speed deviation are mainly targeted after
the elimination of conflicts which explains the variation trends
in the figure. The final results in Tab. VI show that under
the current setting of parameters, the CSA provides a result
with less delay time and speed deviation than DSA, where the
longer execution time certainly helps the optimization of the
results. Besides, those numbers represent the cumulative delay
for all the flights and we can expect a small value for a single
flight.

VI. CONCLUSION

This paper addresses the scheduling problem for arrival
flights in TMA. The TMA entry time and the TMA entry
speed are set as decision variables. In order to be consistent
with the real operations, safety has been considered as our
priority. Besides, the delay and speed deviations are considered
with a minor weight in the objective function as well. Since
this problem is a complex NP-hard one, the computational
efficiency is highly required to adapt to real cases.

Our work focuses on the improvement of algorithmic effi-
ciency to better fit in the possible decision support tools. The
traditional centralized AMAN are reconsidered with respect
to the level of centralization, then a model with a rather
distributed structure is proposed. Opposite to the centralized
model which integrates the information of all flights and gets
a full awareness of the performances of the flights at each
transition, the distributed AMAN targets the individual flights
and reduces unnecessary underlying communication between
irrelevant flights. Both models are implemented for a heuristic
simulated annealing to evaluate the efficiency. The full-day
data of Paris CDG on one landing runway has been applied
as the case study. The results of the two models are presented,
where the execution times and the qualities of the results are
demonstrated. Tests show that the distributed AMAN has an
absolute advantage over centralized AMAN in computational
time with a slightly dropped performance in minimizing the
delay and speed deviation.

The future work lies in providing more tests with different
scenarios and conducting a deep investigation on the attributes
of distributed AMAN. We hope that the algorithm can be
applied to the online pre-tactical support tool. The decen-
tralized AMAN may be also very useful in the Unmanned
Traffic Management (UTM) framework for which there is no
centralized AMAN.

ACKNOWLEDGMENT

The author gratefully acknowledges the support of our
colleagues who have provided tremendous suggestions on the
paper writing.

REFERENCES

[1] Y. Huo, D. Delahaye, M. Sbihi, and Y. Wang, “Air traffic flow manage-
ment under uncertainty in terminal maneuvering area,” in ICRAT 2020,
9th International Conference for Research in Air Transportation, 2020.

[2] J. Ma, D. Delahaye, M. Sbihi, and M. Mongeau, “Integrated optimization
of terminal manoeuvring area and airport,” in 6th SESAR Innovation
Days (2016)., pp. ISSN–0770, 2016.

[3] L. Bianco, P. DellOlmo, and S. Giordani, “Scheduling models for air
traffic control in terminal areas,” Journal of Scheduling, vol. 9, no. 3,
pp. 223–253, 2006.

[4] M. Sama, A. DAriano, F. Corman, and D. Pacciarelli, “Metaheuristics
for efficient aircraft scheduling and re-routing at busy terminal control
areas,” Transportation Research Part C: Emerging Technologies, vol. 80,
pp. 485–511, 2017.

[5] Y. Hong, Determinstic and Stochastic Optimization for Aircraft Arrival
Sequencing and Scheduling under Uncertainty. PhD thesis, Seoul
National University, 2018.

[6] A. D’Ariano, P. D’Urgolo, D. Pacciarelli, and M. Pranzo, “Optimal
sequencing of aircrafts take-off and landing at a busy airport,” in 13th
International IEEE Conference on Intelligent Transportation Systems,
pp. 1569–1574, IEEE, 2010.

7

[7] J. Ma, D. Delahaye, M. Sbihi, and M. Mongeau, “Merging flows in
terminal moneuvering area using time decomposition approach,” 2016.

[8] C. Zuniga, D. Delahaye, and M. A. Piera, “Integrating and sequencing
flows in terminal maneuvering area by evolutionary algorithms,” in 2011
IEEE/AIAA 30th Digital Avionics Systems Conference, pp. 2A1–1, IEEE,
2011.

[9] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson,
“Scheduling aircraft landingsthe static case,” Transportation science,
vol. 34, no. 2, pp. 180–197, 2000.

[10] M. Samà, A. D’Ariano, P. D’Ariano, and D. Pacciarelli, “Comparing
centralized and rolling horizon approaches for optimal aircraft traffic
control in terminal areas,” Transportation Research Record, vol. 2449,
no. 1, pp. 45–52, 2014.

[11] K. Ng, C. K. Lee, F. T. Chan, and Y. Lv, “Review on meta-heuristics
approaches for airside operation research,” Applied Soft Computing,
vol. 66, pp. 104–133, 2018.

[12] J. Ma, D. Delahaye, M. Sbihi, P. Scala, and M. A. M. Mota, “Integrated
optimization of terminal maneuvering area and airport at the macro-
scopic level,” Transportation Research Part C: Emerging Technologies,
vol. 98, pp. 338–357, 2019.

[13] M. Xiangwei, Z. Ping, and L. Chunjin, “Sliding window algorithm
for aircraft landing problem,” in 2011 Chinese Control and Decision
Conference (CCDC), pp. 874–879, IEEE, 2011.

[14] K. Krishna, K. Ganeshan, and D. J. Ram, “Distributed simulated
annealing algorithms for job shop scheduling,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 25, no. 7, pp. 1102–1109, 1995.

[15] M. E. Aydin and T. C. Fogarty, “A simulated annealing algorithm
for multi-agent systems: a job-shop scheduling application,” Journal of
intelligent manufacturing, vol. 15, no. 6, pp. 805–814, 2004.

[16] J. Davin and P. J. Modi, “Impact of problem centralization in distributed
constraint optimization algorithms,” in Proceedings of the fourth inter-
national joint conference on Autonomous agents and multiagent systems,
pp. 1057–1063, 2005.

[17] N. Hasevoets and P. Conroy, “Extended amansesar deployment manager-
workshop18thseptember 2018, brussels,” EUROCONTROL, Brussels,
Tech. Rep, 2010.

[18] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications, pp. 7–15, Springer, 1987.

8

