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Abstract—In this study, we have highlighted the main
challenges of real-time fault diagnosis on small scale fixed-wing
UAVs. The feasibility of real-time fault prediction has been
shown in real flight conditions experiencing noisy measurements,
communication limitations, and wrapped wing structure that
breaks the geometric symmetry. A total of eleven flight logs have
been recorded and shared publicly for future potential use by
other researchers on fault and anomaly detection. Our proposed
method uses a data driven algorithm, SVM, in order to classify
the behavior of the vehicle in nominal flight phase and faulty
phase. Feasibility of a basic binary classification is shown, despite
the well-known over-fitting problem caused by limited data. We
have shown that geometrical imperfections that are common
in small UAVs can cause particular effects on the prediction
performance, and we used it in our advantage to improve the
detection on multi-class classification. The SVM algorithm with
proposed feature trajectories was capable to detect variation of
loss of control effectiveness faults up to an accuracy of 95% in real
flights. The data-set and all related programs can be downloaded
from ( https://github.com/mrtbrnz/fault_detection ).

Index Terms—Machine Learning, Real-time Fault-Detection,
Real-time Fault-Diagnosis, SVM, Paparazzi, UAV, Drones

I. INTRODUCTION

Future generations of flight control systems are likely to
be more adaptive and intelligent to cope with the safety and
reliability requirements. Addressing more and more complex
missions will necessitate intelligent approaches to address the
emergencies that will inevitably arise for all classes of UAV
operations as defined by EASA (European Aviation Safety
Agency). Not only the current increase in the use of UAVs
and but also the projected surge of use in the future makes
the real-time diagnosis of these systems a priority. Therefore
it is critical to have fault-tolerant flight control systems in
these vehicles. Small UAVs are in the frontage for these new
technology adoptions. However, their hardware limitations
point to the utilization of analytical redundancy, rather than
to the usual practice of hardware redundancy seen in manned
aviation.

Most desirable fault-tolerant control would have no perfor-
mance degradation in any type of fault. Of course there are
limitations to this fantasy, however efforts have been started
long ago with Self-Repairing Flight Control Systems [1] in
1984 with two main objective in mind: 1) Re-configurable
control system , meaning that the controller will modify and

This work is partially funded by Chaire-Drone Systems.

adapt itself to the changing conditions, and 2) is to have on-
line diagnostics to identify the failures.

Since then several researchers worked on these subjects:
[2] discusses multi-variable adaptive control algorithms that
can reconfigure the controller in real-time from the iden-
tified dynamics. [3] re-configures the controller based on
an eigenstructure assignment technique. [4] uses an adaptive
controller, which does not rely on the detection and isolation
algorithm, and identifies the actuator failures as a change
in the parameters in the failure model. Venkataraman [5],
[6] showed the possibility of flying safely with only one
aerodynamic control surface. Later Bauer and Venkataramman
[7] used Multiple Model Adaptive Estimation (MMAE), which
requires detailed modeling of the system dynamics including
the actuator dynamics, and handling of the time delays. Many
failure detection method relies on the model of nominal
(unfailed) system, any discrepancy with this model and the
reality might lead to a false detection.

In the core of most of the real-time identification methods,
or adaptive control methods lies the constant excitation
requirement problem. There must be a non-zero input to the
system, which is not satisfied during a level cruise flight for
example. Therefore in [8], a small sinusoidal input has been
added to the system to ensure sufficient excitation.

Understandably, Re-configurable control systems rely heav-
ily on the successful detection of the faults, or estimation of
the dynamics of the vehicle. Failure of such will result in
degradation of the performance (sometimes even catastrophic)
rather then improvement. Therefore, a successful detection and
diagnosis method is always desired.

A. Related Work

Detection strategy can be mainly based on two methods:
1) Model-based, and 2) Data-driven.

There are a variety of different approaches for model-based
fault detection and diagnosis in the literature. Detecting sensor
and actuator faults via state estimation, utilizing an EKF is
applied to a F-16 model in [9]. Parameter identification via
H∞ filter is used to indicate icing in [10]. Another method to
detect and isolate actuator/sensor faults is the multiple model
adaptive estimation (MMAE) method [11]. In MMAE [12],
multiple Kalman filters are used.
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A drawback of the model-based approaches is that they
require an accurate model of the aircraft for successful detec-
tion. In a small UAV system, which is susceptible to various
uncertainties/disturbances and usually lacks an accurate model,
using a model-based approach might fail. Furthermore, a
mathematical model of a UAV is built within the flight enve-
lope, and does not necessarily describe the possible dynamics
invoked by an on-board failure.

In data-driven methods, a detailed knowledge about the
internal dynamics of the system is not necessary. The data
available is the source of information with regard to the
behavior of the system. Supervised learning, which requires
labeling the fault cases previously in the training data, is
usually used for data-centric fault detection [13]. In case of
an unlabeled fault, the result is expected as a probability
distribution of the available normal modes, identified fault
labels and a probable unknown fault.

In [14], the author applies an SVM classifier to detect
and diagnose faults in drones with an actuator failure. [15]
continuously regresses an estimation of the aircraft actuator
health. They have used a deep learning structure that comprise
one dimensional CNN following by LSTM layers. The health
information is embedded in the NDI based control system.
[16] also proposed a deep learning based fault detection and
identification method using CNN and LSTM. Sindhwani et al.
[17], while using a highly redundant VTOL vehicle, learned
the dynamics estimate function from 5000 mission flights and
used this function as a detector for anomalies on a new set
of 5000 mission flights. They have captured three different
anomaly types.

[18] compared model-based and data-driven fault detection
methods by using real-flight data gathered from flight tests.

An important initiative has been made by [19], where their
ALFA Flight data-set has been open-sourced. Furthermore,
in [20], they present the good use of their data-set for on-
line anomaly detection. We will be continuing this initiation
by open-sourcing our flight data-set and all related programs
including inference too.

B. Overview and Contribution

Main contributions of this work can be listed as :

• Most of the previous work used synthetic data to show
the feasibility of fault detection and reconfiguration of
the controller in order to isolate the faults, we contribute
with real-flight data and in-flight prediction results.

• We also offer to validate this by sharing our flight test
data from outdoor experiments which includes more than
6 hours of flight with at least 2 hours of faulty data. The
data-set and all related programs can be downloaded from
https://github.com/mrtbrnz/fault_detection.

• In this work, the effect of change in the environment of
the agent on learning performance has been discussed by
considering flights in windy and no wind conditions.

• Also, not only the changes of the environment, but also
the imperfections of the

Paper is organized as following: In Section II, we present
the hardware setup and autopilot software system that is
used for the experiments. In Section III, we present the
collected data-set and different types of log files. Section
IV describes, the important properties of the selected
classification algortihm SVM, actuator failure model, and
generation of feature trajectories.

Impatient readers can directly refer to Section V for the
results, however a quick look at Section IV will help to get
familiar with the used methodology and decisions.

II. FLIGHT TEST PLATFORM

A. Hardware Setup

An overview of the complete flight test system is shown
in Figure 1. A small fixed-wing UAV, easy to recover from
upset conditions, has been used for the data gathering and real-
flight experiments. A laptop running Unix/Linux for Ground
Control Station is used to control the autonomous mission
and also to inject the faults manually during flight. An X-Bee
radio modem for telemetry and datalink communication was
sufficient as the flight tests were done within 0.5km radius.
An RC-Transmitter is used to ensure the safely recovering of
the vehicle in case of loss of control in autonomous mode
with severe faults injected. Raspberry Pi-Zero is used as a
companion board. It was connected to the autopilot via serial
UART peripheral, and it was mainly responsible of making the
In-flight prediction and keeping a secondary on-board log. The
full list of specifications of the fixed-wing aircraft is shown in
Table I.

Fig. 1. Complete flight test system that is used during the data set collection
and real-time detection flights. Note the small XBee radio modem attached on
the side of the computer screen, used for telemetry communication between
the aircraft and the Ground Control Station

B. Software

Throughout the whole flight tests, we have used the Pa-
parazzi Autopilot system [21]. It is an open-sourced project
started back in 2003 and used by several research groups,
academics, and hobbyist.

Being one of the first open-source autopilot systems in the
world, Paparazzi covers all three segments: ground, airborne,
and the communication link between them. Paparazzi has
also its own complete flight plan language, where the user
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TABLE I
AIRFRAME SPECIFICATIONS

Specification Units
Wing Span 1.2 [m]
Surface Area 0.28 [m2]
Mass 0.75 [kg]
Battery Capacity 30 [Wh]
Flight speed 12 [m/s]
Flight time 60 [min]

Components
Motor T-Motor 2208/18 - Kv 1100
Autopilot Paparazzi Chimera v1.0 1

GPS U-Blox M8N
Companion board Raspberry Pi Zero v 1.3

can define any possible trajectory using existing commands,
such as circle, line, hippodrome, figure-eight, survey, etc.
Additionally, any function written in C language can be called
from the flight plan and executed. This opens up a lot of
application possibilities, such as triggering a navigation proce-
dure via a sensor output. Its integrated ground control station
permits the easy use of different navigation routines and also
interaction with the aircraft while in flight, such as injecting
the faults, or retrieving them back. Thanks to its middle-ware
communication bridge called Ivy-Bus, external software can
be directly connected with the publish and subscribe method
to the ground segment, without needing to modify on code.
This permits the use of custom simple modules in the flight
experiments.

The modifications that were necessary to make the flight
tests with injected faults were : first, setup a small module
that can send real-time faults from GCS to the aircraft; and
second, editing the controller on-board so that injected faults
configure the servo actuators without informing the controller
commands, so that it really works like a hardware fault.

In any phase of the flight, once the manual control is
activated from the Safety RC-Transmitter, the injected faults
are cancelled and the safety pilot can control the aircraft
normally.

III. COLLECTED DATA-SET

We are well aware that obtaining data from flights, es-
pecially for flights with faults, is difficult, and requires an
established infrastructure on the hardware, software, and hu-
man resources, as well as flight permissions. Therefore, as
one of the main contribution of this work, we have open-
sourced all of the flight test logs publicly which can be
downloaded from : https://github.com/mrtbrnz/
fault_detection.

The different types of logs with their description are listed
below:

GCS Log: Those are the quantities logged inside the ground
control station computer which receives the messages from
aircraft via telemetry.The use of small communication devices
and very portable small antennas makes the system vulnerable
to connection losses, therefore the GCS log can obtain several

missing information during the flight. Additionally, as the
bandwidth of the telemetry is limited, the frequency of the
messages are low. Main objective of the GCS log is to inform
the operator during the flight test, thus the data-set involved
should mainly considered for that purpose.

On-board SD Card Log: The limitations on the bandwidth
and the low frequency are handled by logging the data on-
board the autopilot, in a separate real-time operation system
thread at a high frequency (i.e. 100Hz). These quantities can
be defined before the flight with their corresponding frequency.
The operator is required to download the binary log file after
the flight and convert it to readable text file. Each message
contains a time-stamp which is used to synchronize the whole
data afterwards.

On-board Companion Board Log: Currently, the com-
panion board that is used does not have any sensor to obtain
the state features that is used for the detection algorithm.
Therefore, it obtains the sensory information from the autopilot
through a cabled serial connection link. During the experi-
ments only the linear accelerations, angular rates, and desired
control surface deflections have been sent from autopilot to
the companion board.

IV. FAULT DETECTION METHODOLOGY

The main objective of this work is to show the difficulties
and challenges that needs to be overcome during a real-time
fault detection with real measurements and real-life limita-
tions, such as noisy data, computational limitations, connection
problems, etc... Furthermore, what is even more interesting
is to see if a classical machine learning algorithm would
achieve the required performance within the complications of
the real world. Therefore, Support Vector Machine (SVM), a
supervised classification algorithm, has been implemented to
the problem of fault diagnosis in order to predict faults on-line.

A. Support Vector Machine (SVM)

Support Vector Machine is one of the most popular off-the-
shelf frameworks for supervised learning. As mentioned in
[22], the most forthcoming properties of SVMs are :

1) SVMs constructs a decision boundary that has the largest
distance to the example points, called Maximum mar-
gin separator. This helps on generalization.

2) SVMs can use so-called kernel-trick, which is to repre-
sent the linear separator in a high-dimensional space so
that it can represent a non-linear separator in the original
space.

3) SVMs are a non-parametric method, they retain train-
ing examples and potentially need to store them all.
However, in practice only a small fraction of the ex-
amples (support vectors) suffice which gives SVMs the
chance to combine the advantages of parametric and
non-parametric models. With that, they can represent
complex functions while being resistant to over-fitting.

After a SVM classifier is trained, the performance of the
classification is evaluated with a variety of different metrics,
depending on the nature of the classification problem. Also,
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during tuning, in which the hyper-parameters of the classifiers
are selected to give the best performance, requires a perfor-
mance index.

A brief reminder about the performance metrics that are
used in this work :
• Accuracy is the ratio between correctly classified points

to total number of points.
• Precision is the ratio between correctly predicted faults

to the total number of detection (both true and false). It
indicates how reliable is the model when it detects a fault.

• Recall is the ratio between correctly predicted faults to
the total number of existing fault points. It indicates how
reliable is the model in detecting faults.

• F1-score is the harmonic mean of the precision and recall.
• Matthews Correlation Coefficient takes into account

true and false positives and negatives and is generally
regarded as a balanced measure which can be used even
if the classes are of very different sizes [23].

• Receiver Operating Characteristics Curve is a graph
showing the performance of a classification model at all
classification thresholds.

B. Modeling of Actuator Failure

Common actuator failure cases for an aircraft include: 1)
locked-in place, 2) floating around trim, 3) hard-over, 4) loss
of effectiveness. We have used the same actuator fault model
proposed in [4].

uapp = Ducom +E (1)

where, ucom is the commanded control deflection from
the autopilot to the actuators and uapp is the applied control
deflection (i.e final movement of the surface). For example, by
the use of (1), actuator loss of effectiveness can be modeled
by changing D, locked-in place can be modeled by making
D = 0 and changing the E offset to the locked-in angle.

The airframe used in this work has only two aerodynamic
control surfaces, and a motor. We have only concentrated
on the faults injected to the aerodynamic control surfaces.
Especially, the loss of effectiveness of the control surfaces
as flying with such a type fault is still possible even with
an under-actuated platform as ours. Hard-over type faults
typically results in a sudden spin towards the ground, and can
not be controlled at all. If we write (1) in ?vector?? form[

uapp1

uapp2

]
=

[
d1, 0
0, d2

] [
ucom1

ucom2

]
+

[
e1
e2

]
(2)

where, ()1 is for right wing control surface (i.e., right elevon)
and ()2 is for left wing control surface (i.e., left elevon).

C. Generation of Feature Trajectories

It is usually desirable to reduce the number of input features
to both reduce the computational cost of modeling and, in
some cases, to improve the performance of the model by
removing the unrelated information. In this work, it is decided
that a basic feature list will suffice to show the feasibility
of the proposed idea. Therefore, without a complex Feature

Engineering, we directly used the linear accelerations (axyz),
angular rates (ωxyz) and autopilot commanded controls (ucom1

, ucom2
) for the two aerodynamic actuators, adding up to 8

features (X
′
)in the first place.

X
′
(t) = [axt

ayt
azt ωxt

ωyt
ωzt ucom1t ucom2t ] (3)

Information on temporal dynamics is added by concatenating
20 of those 8-element basic feature lists.

X
′
(t) = [axt

ayt
azt ωxt

ωyt
ωzt ucom1t ucom2t ]

X
′
(t− 1) = [axt−1

. . . ωxt−1
. . . ucom1t−1

ucom2t−1
]

...

X
′
(t− 19) = [axt−19

. . . ωxt−19
. . . ucom1t−19

ucom2t−19
]

Finally we obtain a 160-element vector (X) as an input feature
trajectory to the SVM algorithm.

X(t) = [X
′
(t− 19) . . .X

′
(t− 2)X

′
(t− 1)X

′
(t)] (4)

0 20 40 60 80 100 120 140 160

Feature trajectory with added history (8 Features x 20 history)

Fig. 2. A set of feature trajectories, starting from top (dark black), the newest
trajectory, going down (light grey), the older trajectories. Each trajectory is
an input for the inference model, and has 160 points.

SVMs assume that all features are centered around 0 and
have variance in the same order. In order to prevent the domi-
nation of any single attribute in the feature vector, we standard-
ize features by removing the mean and scaling to unit variance
(using sklearn.preprocessing.StandartScaler).
Centering and scaling happen independently on each attribute
of the feature vector by computing the relevant statistics on the
samples in the training set. Mean and standard deviation are
then stored to be used later during inference pre-processing
phase.

Figure 2 shows a set of feature trajectories, starting from
top (dark black), the newest trajectory, going down (light
grey), the older trajectories. Each trajectory has 160 points.
Sensory information is passed to the inference computer (i.e.,
RaspberryPi-Zero) at a frequency of 10Hz, piling up the buffer
(i.e., 20 time history) takes 2 seconds. We call the inference
prediction only once the feature trajectory buffer is completed,
so every 2 seconds only. A ring buffer can be used to increase
the prediction frequency. The prediction call in the inference
takes about 0.06 seconds of computation time, so increasing
the prediction frequency upto 10Hz can be possible for the



current hardware. Using a more powerful companion board
such as Jetson Nano/Xavier-NX will increase the prediction
frequency at least one order of magnitude.

V. PREDICTION PERFORMANCE IN REAL-FLIGHTS

In most in-flight prediction applications, the model would
have been already trained with previous data and uploaded
to the inference computer. During the prediction phase, the
inference model will see the new data stream for the first
time, and its performance will highly rely on its generalization
capability. We will highlight how the day to day change in
feature trajectory influences the predictions, and more impor-
tantly, how much trust one can have in real-life conditions
(such as changing wind conditions) for a model that is trained
with a limited data-set.

In the following subsections, we will demonstrate the in-
flight prediction performance of SVM algorithm used for
binary (nominal and faulty) and multi-class classification prob-
lem (nominal and 9 different variation of control effective-
ness). Emphasis will be firstly on the external disturbance,
such as wind, and then we will show how the imperfections
in real life, such as a twisted wing, contribute to the prediction
performance.

A. Effect of External Disturbance (Wind)

Flights made on 12th and 13th of July 2020 includes 15
minutes (between 500th and 1400th seconds) of similar fault
pattern of reduced efficiency of right control surface (d1 =
0.3).

From the above defined portion of 12th of July 2020 flight,
we have generated the feature trajectories as explained in
Section IV-C. Data has been split into two parts: 80% training
data, and 20% test data. An SVM algorithm that uses Radial
Basis Function kernel is trained and optimized with grid search
method using the training data. The best hyper-parameters
are found to be C = 5 and γ = 1/160 (γ =’auto’ takes
1/nbfeatures as default) for this flight. Table II shows the
classification performance report of the optimized model that
is evaluated on the separate test data, and yields Matthews
Correlation Coefficient MCC = 0.98.

TABLE II
12th JULY FLIGHT BINARY CLASSIFICATION REPORT

Precision Recall F1-score Support
Nominal 0.99 0.99 0.99 843

Faulty (d1 = 0.3) 0.99 0.99 0.99 956

Accuracy 0.99 1799
Macro avg 0.99 0.99 0.99 1799

Weighted avg 0.99 0.99 0.99 1799

Performance metrics that are obtained encouraged us to use
this model for the real-time prediction on a flight the following
day. However, when the model is used on the day of 13th of
July, as can be seen from the Table III, and from the calculated
MCC = 0.39, the real-time predictions on-board the vehicle
was not acceptable.

TABLE III
13th JULY FLIGHT (WITH 12th’S MODEL) BINARY CLASSIFICATION

REPORT

Precision Recall F1-score Support
Nominal 0.93 0.43 0.59 293

Faulty (d1 = 0.3) 0.47 0.94 0.63 157

Accuracy 0.61 450
Macro avg 0.70 0.68 0.61 450

Weighted avg 0.77 0.61 0.60 450

The real-time prediction performance is shown in Figure 3,
where the Applied Faults are shown for the ground-truth, and
on the bottom, instantaneous predictions are shown in blue.
Additionally in shaded green the prediction state is shown,
which is basically a function that switches the state only after
receiving three consecutive equal predictions. For example,
while the predicted state is nominal, and the model predicts a
fault, the state will not immediately change to faulty, unless
two more consecutive faults are predicted. This will prevent
rapid changing of the predicted state, making it more stale for
the false predictions, but also less agile in the case of true
predictions.
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Fig. 3. In-flight prediction performance of the model that is trained on 12th

of July’s data during 13th of July flight.

One of the main possible causes for such a bad performance
is the memorization of the data during the training and not
being able to generalize well for the new test data, which is
also known as over-fitting.

However, in the presented case, there is another source of
problem coming from the data, which is the amount of exci-
tation in the signal coming from external disturbance. Figure
4 shows the angular rates (w) and the commanded deflection
angles (ucom) for the flights on July 12th and 13th. As it can
be seen from the variations of the angular rates between the
two days, the difference on the external disturbance is clearly
visible, which comes from the atmospheric wind.

On the 12th of July, there was nearly no wind on the ground
level, and the estimated wind was below 2m/s up in the air at
90m Above the Ground Level (AGL), whereas the estimated
maximum wind speed on the 13th of July was close to 10m/s
with an average of 8m/s. The effect of the atmospheric wind
is also clearly visible on the navigation path following which
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Fig. 4. The effect of day-to-day variation of the atmospheric disturbance
(wind) on the sensory data is shown. On the top, the variation of the airframe
body angular rates can be seen, and on the bottom, the required autopilot
control outputs are visible to cope with wind effects.

is shown in Figure 5, the variance between the desired and
actual path increases with the effect of the atmospheric wind.
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Fig. 5. Showing the increased variance between the desired and actual path
as a result of the atmospheric wind on two consecutive flight days.

If only we could have changed the order of the days...
If we assume that we could have gathered the data from

13th of July first, and train and optimize the model with that
data, again we would have obtained very good and similar
prediction performance when we compare only with that day’s
test data. This is shown in the Table IV, with the calculated
MCC = 0.94.

TABLE IV
13th JULY FLIGHT BINARY CLASSIFICATION REPORT

Precision Recall F1-score Support
Nominal 0.97 0.98 0.98 1169

Faulty (d1 = 0.3) 0.97 0.95 0.96 629

Accuracy 0.97 1798
Macro avg 0.97 0.97 0.97 1798

Weighted avg 0.97 0.97 0.97 1798

However, different than the first case, if we use this model
(i.e., trained on 13th of July data), and do the real-time

inference prediction with the data gathered on 12th of July
(i.e., fly virtually), we would have obtained a better prediction
performance in the flight, meaning a better generalization. This
is shown in Table V with the calculated MCC = 0.75

TABLE V
12th JULY FLIGHT (WITH 13th’S MODEL) BINARY CLASSIFICATION

REPORT

Precision Recall F1-score Support
Nominal 0.82 0.93 0.87 211

Faulty (d1 = 0.3) 0.93 0.82 0.87 239

Accuracy 0.87 450
Macro avg 0.87 0.87 0.87 450

Weighted avg 0.88 0.87 0.87 450

Like before, the real-time prediction performance is shown
in Figure 6, where the Applied Faults are only shown for the
ground-truth, and on the bottom, instantaneous predictions are
shown in blue. One can see the improvement of the real-time
prediction performance.

With this model, the State Filter also works nicely and
eliminates most of the false negatives (i.e., false prediction
of Nominal phase while being in fault phase), however it
increases the time of the faulty phase prediction significantly
as it requires three consecutive equal predictions. This is very
visible on the fault number 4, just after 1000th second.
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Fig. 6. In-flight prediction performance of the model that is trained on 13th

of July’s data during 12th of July flight (virtually, by using the flight data).

B. Imperfection in Real-life & Wrong Trim Effect

The test aircraft is designed according to a general require-
ment list and manufactured in-house. Several imperfections
exists because of manufacturing method, integration of the
equipment or even geometric wrapping and twisting of the
vehicle during transportation to the test field. Figure 8 shows
the deformation on the left wing of the test aircraft Zagi, which
is twisted upward. This deformation increases the local angle
of attack on the left wing which generates positive rolling
moment (i.e., right wing going down). Therefore, the aircraft
has a tendency to turn right, and again therefore in order to
go straight and stabilize the rolling moment, the left control
surface has to have a built-in negative deflection as shown also
in Figure 8. This required negative deflection comes from the
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Fig. 7. Receiver Operating Characteristics curves of the prediction perfor-
mance of two models that are subject to other day’s flight. On the right, It can
be seen that the model trained with the data coming from windy conditions
(13th of July) generalize better to the calm day’s flight (12th of July) as the
area under the curve is bigger, and from the steepness of the curve.

integrator of the PID controller automatically, and the user
does not realize the problem in nominal conditions. However,
once there is an injected fault which reduces the efficiency of
the control surfaces, the autopilot controller has to augment
its commanded values (i.e., desired commands or set-points)
proportionally in order to obtain the same applied control
deflection.

Built-in negative deflection for trim condition

Upward twisted wingFront View

Back View

Fig. 8. Geometric twist of the left wing is shown. There is an increase in the
local angle of attack on the left wing, which results a positive roll tendency,
which has to be compensated by negative (upward) control surface deflection
on the left wing. This compensation is handled automatically by the integrator
of the PID controller.

The explained effect on the augmented commands can be
observed from the flight logs. For example, Figure 9 shows
the flight of 17th of July, where the upper plot shows the
injected faults (0: nominal, 1: right elevon d1 = 0.3, 2: left
elevon d2 = 0.3), and the bottom plot shows the commanded
controls (ucom).

When the injected fault code is 2, meaning that left elevon
control efficiency is reduced to 30% (d2 = 0.3) of its nominal
capacity, the commanded control values augments significantly
higher compared to d1 = 0.3 case. The augmented values
increases the embedded information in the signal, therefore
detection of the d2 is easier compared to detection of d1 faults.

C. Multi-Class Classification for Varying Control Effective-
ness

Two consecutive and identical flights have been made on
21st and 23rd of July in order to concentrate on multi-class
classification with more data to train on. Figure 11 shows the
some sensory information gathered from 21st of July’s flight,
just as an example to the interested reader (which can also
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Fig. 9. Bottom plot shows the output of the autopilot’s control commands
ucom, not the actual control surface movements, for right and left control
surfaces. Once the effectiveness of the left control surface is reduced (d2 =
0.3, Fault code : 2), controller’s compensation deflection for the unwanted
wing twist also reduces, therefore in order to further compensate both twist
effect and the navigation requirements, the control commands increases more
than the usual case.
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Fig. 10. Trajectories flown during the 21st(Wind speed = 2.5m/s) and
23rd(Wind speed = 5.0m/s) of July 2020.

be obtained numerically from the shared data-set). As before,
the right control surface efficiency is reduced (d1 = 0.3), and
additional cases have also been investigated, by reducing the
left control surface’s efficiency in between d2 = 0.3−1.0. The
fault codes and corresponding faults are listed in the Table
VI. We put more emphasis on the detection of left control
surface faults (d2), using the geometric twist caused effect as
an advantage.

TABLE VI
FAULT CODES AND CORRESPONDING FAULTS FOR MULTI-CLASS

CLASSIFICATION

Fault code Fault Fault code Fault
0 Nominal 5 d2 = 0.6
1 d1 = 0.3 6 d2 = 0.5
2 d2 = 0.9 7 d2 = 0.4
3 d2 = 0.8 8 d2 = 0.3
4 d2 = 0.7

The first flight was made on 21st of July 2020. After a short
preparation time on the ground, the aircraft is launched and
immediately started its fully autonomous flight with a figure-
eight flight pattern, which can be seen on the left of the Figure
10.

Three consecutive d1 = 0.3 faults are injected with nom-
inal phase between each injection. Each phase has started
approximately from the same coordinates, and duration has
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Fig. 11. Angular rates, linear acceleration, and the desired commands for
right and left elevons are shown alongside the applied faults during the real
flight on 21st of July 2020.

been kept for a full lap of figure-eight pattern. Then another
three consecutive d2 = 0.3 faults are injected with nominal
phase between each injection. Following that, the left control
surface’s efficiency has been reduced between d2 = 0.3−1.0.
The variation of the injected faults are visible in the upper plot
of Figure 12.

For training the multi-class classifier model, flight portion
is selected between 400th and 2600th seconds. As we have
done in the binary classification case, in Section V-A, feature
trajectories are generated, again as explained in Section IV-C.

TABLE VII
21st JULY FLIGHT MULTI-CLASS CLASSIFICATION REPORT

Precision Recall F1-score Support
Nominal 0.94 0.95 0.95 346
d1 = 0.3 0.88 0.98 0.93 121
d2 = 0.9 0.97 0.84 0.90 74
d2 = 0.8 0.99 0.92 0.95 74
d2 = 0.7 0.89 0.95 0.92 75
d2 = 0.6 0.90 0.90 0.90 78
d2 = 0.5 0.96 0.91 0.93 77
d2 = 0.4 0.92 0.96 0.94 81
d2 = 0.3 0.99 0.95 0.97 175

Accuracy 0.94 1101
Macro avg 0.94 0.93 0.93 1101

Weighted avg 0.94 0.94 0.94 1101

Data has been split into two part being 80% training data,
and 20% test data. Each fault category is labeled according
to its fault code in order to generate the multi-labeled data.
An SVM algorithm that uses Radial Basis Function kernel
is trained and optimized with grid search method using the
training data. The best parameters are found to be C = 10 and
γ = 1/160 (γ =’auto’ takes 1/nbfeatures as default) for this
flight portion. Table VII shows the classification performance
report of the optimized model that is evaluated on the separate
test data, and additionally, Matthews Correlation Coefficient
is found to be MCC = 0.93.
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Fig. 12. Prediction performance of the model on the whole flight data, after
training on 80% of the same flight data.

If we look at the prediction performance of this model
on the full flight data, shown in Figure 12, it can be seen
that we can detect almost all of the fault classes. There
exists some false instantaneous predictions, however those are
mainly eliminated by the State Filter shown in shaded green.
The real issue is to see the generalization capability of the
model on a new dataset (i.e., another flight day).

An almost identical flight has been repeated on the 23rd

of July 2020, with the same injected fault classes, on the
same figure-eight pattern. However as mentioned before on
the Section V-A, day to day conditions affect the environment
which has a big effect on the prediction performance of the
trained model. The model that is trained with the 21st of
July’s data, has been uploaded and used as inference model



during the real-time prediction of the fault classes on the 23rd

of July flight day. Figure 13 shows the real-time prediction
performance.
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Fig. 13. In-flight prediction performance of the model that is trained on 21st

of July’s data during 23rd of July flight.

After gathering the flight data, classification report is cal-
culated, and shown in Table VIII, and Matthews Correlation
Coefficient is found to be MCC = 0.37.

TABLE VIII
23rd JULY FLIGHT PREDICTED BY 21st’S MODEL

Precision Recall F1-score Support
Nominal 0.57 0.65 0.60 362
d1 = 0.3 0.50 0.42 0.45 125
d2 = 0.9 0.12 0.18 0.15 71
d2 = 0.8 0.24 0.32 0.27 73
d2 = 0.7 0.45 0.31 0.37 74
d2 = 0.6 0.51 0.28 0.36 76
d2 = 0.5 0.39 0.34 0.36 77
d2 = 0.4 0.29 0.30 0.29 81
d2 = 0.3 0.79 0.70 0.74 187

Accuracy 0.48 1126
Macro avg 0.43 0.39 0.40 1126

Weighted avg 0.50 0.48 0.49 1126

As it can be seen from the results, the model that is
trained with only limited data from 21st of July’s data can
still detect in-flight faults on 23rd of July, but with a very
low confidence, which results a lot of false predictions. As
mentioned before, this is again a problem of over-fitting to
a limited dataset, and not being able to generalize to the
new day’s data. As a solution to improve the model, we can
concatenate the flight data of 21st and 23rd of July and train
and optimize the model using this bigger dataset. Trained on
80% of the data, and tested on rest 20%, we obtained a better
model that can generalize for the two different conditions
coming from separate days. The virtual real-time prediction
on the concatenated data is shown in the Figure 14 and the
classification report is presented in the Table IX.

The new model can detect different fault classes with a
high confidence, especially after the use of State Filter it can
neglect most of the false predictions. It is always necessary to
gather more data in different type of weather and atmospheric
conditions as well as different type of flight patterns and

TABLE IX
21− 23rd JULY FLIGHT PREDICTED BY 21− 23rd’S MODEL

Precision Recall F1-score Support
Nominal 0.96 0.99 0.98 878
d1 = 0.3 0.99 0.95 0.97 248
d2 = 0.9 0.97 0.82 0.89 146
d2 = 0.8 0.91 0.95 0.93 147
d2 = 0.7 0.95 0.95 0.95 150
d2 = 0.6 0.97 0.93 0.95 152
d2 = 0.5 0.96 0.97 0.96 155
d2 = 0.4 0.96 0.93 0.94 162
d2 = 0.3 0.98 0.99 0.98 364

Accuracy 0.96 2402
Macro avg 0.96 0.94 0.95 2402

Weighted avg 0.96 0.96 0.96 2402

mission definitions. However more important is to find the
way to generalize the problem so that it can work in all
of those given conditions for different type of vehicles and
imperfections, etc... Capturing the common behaviors and
finding a generic model is out of the scope of this paper,
however within the interest of the authors so it will be left as
a future work.

D. Additional Challenges of the In-Flight Detection

Some of the problems that were not foreseen before the
flight experiments that we thought worth sharing were :
• Sensory data transfer rate : The communication be-

tween the autopilot and the companion board, which
uses serial connection, passes the sensory information
(IMU, commands) to be used in the fault detection.
The parsing of the binary messages were taking too
long and preventing to go over 10Hz , which was not
realized while we were trying higher frequency of sensory
data collection for the feature trajectories. Which results
phased and not aligned feature trajectories, that reduces
the prediction performance of severely. We have corrected
the parsing function to overcome this issue, and tested
upto 100Hz with good results (only communication, no
predictions).

• Telemetry Communication Loss : The communication
between the airframe and the ground control station is
done by the X-Bee radio modem. Which is proven to
be reliable within our mission limits normally. However
adding a companion board on-board the vehicle, without
careful inspection of the electro-magnetic interactions re-
duced the telemetry range. Problem solved by distancing
the two modules.

VI. CONCLUSION

In this study, we have highlighted the main challenges of
real-time fault detection on small scale fixed-wing UAVs. A
total of eleven flight logs have been recorded and shared
publicly for future potential use by other researchers that
are interested in fault and anomaly detection. Our proposed
method uses a data driven algorithm, SVM, in order to classify
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Fig. 14. After concatenating the flight data from 21st and 23rd of July, the model is trained and optimized using the 80% of the concatenated data, virtually
flown over the whole data in order to obtain the in-flight prediction performance as shown on the bottom of the plot.

the behavior of the vehicle in nominal flight phase and faulty
phase. Feasibility of a basic binary classification is shown,
despite the well-known over-fitting problem caused by limited
data. We have shown that geometrical imperfections that
are common in small UAVs can cause particular effects on
the prediction performance, sometimes being positive as our
given example. We have experienced that the computational
limitations of the inference hardware should be carefully taken
into account during the training phase. Especially, the data
transfer rate and sampling sequence synchronization has to
be planned beforehand. Nevertheless, the SVM algorithm is
robust enough to cope with small deviations from expected
sampling time, and was still capable of demonstrating the de-
tection of different fault classes during real-flight experiments.
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