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Abstract: In this work we show a construction of a Hessian foliation on a statistical manifold. Our results1

provide conditions under which the compacts hessian leaves are quotients of homogeneous convex cones, up to2

diffeomorphism.3

1. Introduction4

Hessian structures play an important role in information geometry. In [1], Shima observed that the Fisher information5

of most statistical models are Hessian metrics. Amari also proved in [2] that any locally flat statistical manifold is a6

Hessian manifold. These structures arised from works of many mathematicians (such as J.-L. Koszul, Y. Matsushima,7

A. Nijenhuis, E. B. Vinberg) in their attempt to solve the Gerstenhaber conjecture in the category of locally flat8

manifolds. The geometry of locally flat hyperbolic manifolds is also called Koszul geometry (see [3]). Gerstenhaber’s9

conjecture says that every restricted theory of deformation generates its proper theory of cohomology. This conjecture10

has been solved in 2006 by Michel Boyom (see [4]). In [5] and [6], Boyom also realizes the homological version of11

the Hessian geometry. The aim of this paper is to study hyperbolic foliations in statistical manifolds. In this context,12

a hyperbolic foliation is a foliation whose leaves handle Koszul geometry. The paper is organised as follows: section13

2 is devoted to basic notions which are used later in the paper; section 3 covers useful notions about the category of14

locally flat manifolds and their KV-cohomology. It is also devoted to Hessian equations of Koszul connections in the15

tangent bundle of a statistical manifold; section 4 aims at focusing on canonical pairs of locally flat foliations in a16

statistical manifold, before discussing conditions under which these foliations are hyperbolic. Finally, quotients of17

convex cones and exponential models are discussed in section 5.18

2. Basic notions19

For the sake of completeness and to make this paper as much self-contained as possible, the basic notions which20

link Koszul geometry to information geometry will be recalled. Our goal is to make this note as self-contained as21

possible.22
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2.1. Koszul connections.23

Let M be a differentiable manifold, C∞(M) the vector space of real valued functions defined in M and X(M) the
vector space of differentiable vector fields in M . Let (V ,π,M) be a vector fiber bundle over M . Loosely speaking, we
have a submersion

V 3 e→ π(e) ∈M ,

whose fibers π−1(x) are vector spaces.24

The space of sections of V is denoted as V. The cotangent bundle of M is denoted as T *M . The tensor product25

T *M ⊗V is canonically identified with the vector bundle Hom(TM ,V ).26

Definition 2.1. A Koszul connection on a vector bundle V is a first order differential operator

V 3 s→∇s ∈ T *M ⊗V

which satisfies the following requirement

∇(fs) = f∇s+df ⊗s,∀f ∈ C∞(M). (2.1)

Let
∇Xs= (∇s)(X). (2.2)

The above requirement means, given (X ,s) ∈ X(M)×V and f ∈ C∞(M), that

(∇(fs))(X) = f∇Xs+df (X)s. (2.3)

The curvature (of ∇), R∇ ∈ ⊗2T *M ⊗V*⊗V is defined as follows:

R∇(X ,Y )(s) = ∇X (∇Y s)−∇Y (∇Xs)−∇[X ,Y ]s. (2.4)

Definition 2.2. A vector fiber bundle is called a flat bundle if it admits a Koszul connection whose curvature vanishes27

identically.28

When dealing with Riemannian manifolfds, there is an distinguished connection that plays a particular role in the29

study of the metric.30

Definition 2.3. Let (M ,g) be a Riemannian manifold. A connection ∇ is said to be metric if for any triple (X ,Y ,Z)
of vector fields:

X (g(Y ,Z)) = g (∇XY ,Z)+g (Y ,∇XZ)

Proposition 2.4. On a Riemannian manifold, it exists a unique metric connection without torsion, called the31

Levi-Civita connection and denoted by ∇lc32
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2.2. Locally flat manifolds.33

Koszul connections on tangent vector bundles TM are usually called linear connections on M . The torsion of a linear
Koszul connection ∇, T∇ ∈ ⊗2T *M ⊗TM is defined as follows

T∇(X ,Y ) = ∇XY −∇YX − [X ,Y ]. (2.5)

Definition 2.5. A locally flat manifold is a pair (M ,∇) where ∇ is a linear Koszul connection (on TM) whose
curvature R∇ and torsion T∇ both vanish identically.

∇XY −∇YX − [X ,Y ] = 0, (2.6)

∇X (∇YZ)−∇Y (∇XZ)−∇[X ,Y ]Z = 0 ∀X ,Y ,Z ∈ Γ(TM). (2.7)

Example 5: Let Rn = {(x1, .......,xn)/xi ∈ R} be endowed with the linear connection ∇F defined as

∇F
∂

∂xi
= 0

∀i = 1,2, ..,n and ∀X ∈ X(M)34

35

Example 6: Let R2 and ∀X = f ∂
∂x1

+g ∂
∂x2
∈ X(M) be endowed with a linear connection defined as

∇
∂

∂x1
= f

∂

∂x1
and ∇

∂

∂x2
= 0

36

(R2,∇) is a locally flat manifold.37

2.3. The developing map of a locally flat manifold.38

Set a point x0 ∈M and consider the pairs
{
0, [0,1]

}
and {x0,M}. We now consider the space of pointed differentiable

paths
c :

{
0, [0,1]

}
→ {x0,M} .

With the above notation meaning that
c(0) = x0.

We will also have to consider differentiable paths in the tangent bundle. To distinguish them from paths in the39

manifold, a capital letter will be used.40

Definition 2.6. Let c : [0,1]→M be a differentiable path. A path Y : [0,1]→ TM is said to be a lift of c if π ◦Y = c41

where π : TM →M is the canonical projection.42

Definition 2.7. Let ∇ be a Koszul connection. A path Y : [0,1]→ TM is said to be the horizontal if:

∇ċ(t)Y (t) = 0, t ∈ [0,1]

with c = π ◦Y .43
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Using the Cauchy-Lipschitz theorem, it is easy to obtain the next result:44

Proposition 2.8. Let c be a C1-path in M , ∇ a Koszul connection and let V ∈ Tc(0)M be given. It exists a unique45

horizontal Y → TM lifting c.46

Definition 2.9. The parallel transport along the C1-path c : [0,1]→M , c(0) = x0, c(1) = x1 is the linear mapping:

τ : V ∈ Tx0M → τ(V ) = Y (1) ∈ Tx1M

where Y is the unique horizontal lift of c.47

We fix σ ∈ [0,1], the parallel transport along the path

c : [0,σ]→M

is denoted by τσ ; this a one to one linear map of Tx0M in Tc(σ)M . Thus we have

τ−1
σ (

dc

dt
(σ)) ∈ Tx0M .

We define an application
c→ Q(c) ∈ Tx0M

by putting

Q(c) =

∫ 1

0
τ−1
σ (

dc

dt
(σ)dσ.

It is called the development of c.48

Definition 2.10. Let c and c∗ be two pointed paths such that c(1) = c∗(1). They are said to be homotopic if it exists
a differential map:

[0,1]× [0,1] 3 (s, t)→ H(s, t) ∈M

satisfying:49

(1) H(s,0) = x0,∀s;50

(2) H(s,1) = c(1) = c ∗ (1)∀s;51

(3) H(0,t) = c(t);52

(4) H(1,t) = c*(t).53

Let us go back to the map
c→ Q(c) ∈ Tx0M .

The following assertion is a classical result, that can be obtained from the fact that a flat connection has a trivial54

holonomy group.55

Proposition 2.11. [7] Let ∇ be a flat connection. If the paths c and c* are homotopic then

Q(c) = Q(c∗). (2.8)
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Given a locally flat structure (M ,∇), we fixe x0 ∈M we consider the space of pointed differentiable paths{
(0, [0,1])→ (x0,M)

}
.

The set of their homotopy classes is the universal covering of M , denoted by denoted by M̃ . The connection ∇ lifts to
M̃ and so deos the map Q(c):

M̃ 3 [c]→ Q([c]) ∈ Tx0M .

This map is called the developing map of the locally flat manifold (M ,∇). We are in position to highlight the main56

question of this paper: What does the image Q(M̃) ⊂ Tx0M looks like?57

The next definition is due to Koszul.58

Definition 2.12. A locally flat manifold (M ,∇) is called hyperbolic if Q(M̃) is an open convex domain in the vector59

space Tx0M not containing any straight line.60

Theorem 2.13. [7] For (M ,∇) being hyperbolic it is necessary that there exists a de Rham closed differential 1-form61

ω whose covariant derivative ∇ω is positive definite.If M is compact ,then this condition is also sufficient.62

Remark 2.14. The existence of the nonvanishing Koszul 1-form ω proves that M is a radiant suspension and by63

using Tischler [8],we conclude that M is fibered over S1.Topological consequences are that the Euler characteristic64

X(M) = 0 and the first Betti number b1(M) > 0.65

This definition is the affine analogue to hyperbolic holomorphic manifolds following W.Kaup(see[9];[7]). The notion66

of hyperbolicity is among the fundamental notions of the geometry of Koszul. It may be addressed and studied67

form many perspectives. We are going to highlight the algebraic topology point of view, which is richer than the68

Riemannian geometry one. The reason is that the homological point of view highlights relationships with other69

research domains. An examples of these relations is the theory of affine representations of Lie groups which plays a70

key role in Lie group theory of Heat after Jean-Marie Souriau. In this paper we also perform the theory of affine71

representation to investigate the point set-topology of the image Q(M̃).72

73

2.4. Algebraic topology of locally flat manifolds74

Definition 2.15. An affine structure in an m-dimensional differentiable manifold M is a pair (M ,A) whereA is a75

complete atlas whose local coordinates changes coincide with affine transformations of Rm .76

Remark 2.16. There is a one to one correspondence between the category of locally flat structures in M and the77

category of affine structures in M .78

Many cochain complexes are associated with a locally flat manifold (M ,∇). We limit ourselves to what is used in this
paper. readers interested in the general theory of cohomology of Koszul–Vinberg algebras are referred to Nguiffo



Version February 9, 2021 submitted to Journal Not Specified 6 of 23

Boyom 2006, [10] and to Nijenhuis Albert 1968 . The group of integers is denoted by Z.
Aff (M ,∇ : R) stands for the vector space of f ∈ C∞(M) which are subject to the following requirement,

∇2(f ) = 0.

To investigate the structure of Q((M ,∇)), we introduce the Z-graded vector space:

C(∇) = ⊕qC
q(∇)

With homogeneous vector subspaces:
Cq(∇) = 0 if q < 0;

C0(∇) = Aff (M ,∇ : R);

Cq(∇) = HomR(⊗
qX(M),C∞(M))

The coboundary operator
δ : Cq(∇)→ Cq+1(∇)

is defined as it follows:79

80

(a)δf = df ∀f ∈ C0(∇);81

82

(b) let q > 0, f ∈ Cq(∇) and X1⊗ ..⊗Xq+1 ∈ ⊗
q+1X(M) then

δf (X1⊗ ...⊗Xq+1) = Σq1(−1)i [d(f (..⊗ X̂i ⊗ ..⊗Xq+1))(Xi)−Σj,i f (..⊗ X̂i ⊗ ..⊗∇XiXj ⊗ ..]

Remember that X̂i means that Xi is missing.
The pair (C(∇),δ) is a differential vector space. This means that the linear δ is subject to the requirement

δ2 = δ ◦δ = 0.

Elements of ker(δ) are called cocycles; those of im(δ) are called coboundaries.
The q-th cohomology space Hq(∇) is defined by:

Hq
KV (∇) =

Ker(δ)

Im(δ)
.

In this paper we are mainly concerned by the first terms of the complex:

→ C1(∇)→ C2(∇)→ C3(∇)→

Elements C2(∇) are called KV 2-cochains. The coboundary of θ ∈ C2(∇) is computed as follows:83

δθ(X1⊗X2⊗X3) = −d(θ(X2⊗X3))(X1)+dθ(X1⊗X3)(X2)+θ(∇X1X2⊗X3)+θ(X2⊗∇X1X3)

−θ(∇X2X1⊗X3)−θ(X1⊗∇X2X3).

Remark 2.17. d stands here for the usual exterior derivative.84
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Definition 2.18. A 2nd cohomology class
[θ] ∈ H2

KV (∇)

is called a Hessian (resp. Hessian non-degenerate, Hessian positive definite) class if it contains a symmetric (resp85

symmetric non-degenerate, symmetric positive definite) cocycle.86

Remark 2.19. The Hessian geometry defined in [1] corresponds to the positive definite case.87

A classical result states that a manifold M admits locally flat structures if and only if it admits affine structures. It is88

worth to notice that locally flat geometry is linked to the Cartan-Koszul geometry in TM , while the affine geometry is89

related to local analysis in M .90

Proposition 2.20. [4] A locally flat manifold (M ,∇) is Hessian if δθ vanishes identically.91

The next theorem relates hyperbolicity to KV cohomology.92

Theorem 2.21. Let (M ,g,∇) be a compact Hessian manifold then the following assertions are equivalent;93

(a.1) [g] = 0 ∈ H2
KV (∇).94

(a.2) (M ,∇) is hyperbolic ♣95

In order to characterize Q(M̃) and hyperbolicity of leaves, we will follow the next scheme. Firstly we are going to96

introduce some canonical dynamics in a statistical manifold whose orbits are locally flat manifolds.Then we study97

the question of whether an orbit M is hyperbolic or not using the Koszul characterisation, that is Q(M̃) is an open98

convex domain not containing a straight line. Finally, we investigate conditions under which Q(M̃) is an open convex99

cone. In such a case, the statistical manifold can be given an exponential statistical model based on the characteristic100

function of Q(M̃). For details, readers may refer to the next references [11],[12],[13].101

3. Hessian differential operators of gauge structures.102

Throughout the paper we keep the notation of Nguiffo Boyom [14], [5].103

We recall that a gauge structure in a manifold M is a pair (M ,∇) where ∇ is a Koszul connection in the tangent104

bundle TM .105

106

Let us introduce the Hessian differential operator:

X(M) 3 X →∇2X ∈ T2
1 (M)

with T2
1 (M) is the space of (2,1)-tensors in M .107

The next proposition is an easy consequence of the definition of the covariant derivative of a tensor.108

Proposition 3.1. For any triple (X ,Y ,Z) of vector fields:

∇2X(Y ,Z) = ∇X (∇YZ)−∇∇XYZ .
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Letting X .Y = ∇XY , it reads as:
∇2X(Y ,Z) = X .(Y .Z)− (X .Y ).Z

showing that ∇2 is the associator of the product defined above.109

Let (x1, ..,xm) be a system of local coordinate functions of M and let X ∈ X(M). We set

∂i =
∂

∂xi
,

X = ΣkXk∂k,

∇∂i∂j = ΣkΓki,j∂k.

The principal of symbol of the Hessian differential operator can be expressed as110

(∇2X)(∂i,∂j) = ΣkΩk
i,j∂k (3.1)

where

Ωl
ij =

∂2X l

∂xi∂xj
+

∑
k

[
Γlik

∂Xk

∂xj
+Γljk

∂Xk

∂xi
−Γkij

∂X l

∂xk

]
+

∑
k

∂Γljk
∂xi

+
∑
m

(
ΓmjkΓkim −Γmij Γlmk

) (3.2)

On (M ,∇), the Hessian equation is the following 2nd order differential equation, [14]

FE(∇) : ∇2X = 0.

Its sheaf of solutions will be denoted by J∇(M) in the sequel. It is easily found to be a sheaf of associative algebras
whose product of sections is given as

X .Y = ∇XY .

The space of sections of J∇(M) will be denoted by J∇.111

The pair (J∇,∇) is an associative algebra with commutator Lie algebra (J∇, [−,−]∇) where the bracket [X ,Y ]∇112

is:113

[X ,Y ]∇ = ∇XY −∇YX .

Remember that (M ,∇) is called symmetric gauge structure if the Koszul connection ∇ is symmetric, that is to say
that the torsion of ∇ vanishes identically.
Therefore when (M ,∇) is symmetric, the Lie algebra (J∇, [−,−]∇) is a Lie subalgebra of the Lie algebra of vector
fields

(X(M), [−,−]);

According to [14] when (M ,∇) is symmetric the Lie subalgebra J∇ ⊂ X(M) is finite a dimensional over the field of114

real numbers.115

Proposition 3.2. Let (M ,g) be a Riemmian manifold and let Ric be its Ricci curvature tensor.We have116

J∇ ⊂ Ker(Ric) (3.3)
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Proof. Let (X ,Y ) be a couple of vector fields and let ξ ∈ J∇. Then:

R∇(Y ,X)ξ = (∇2ξ )(X ,Y )− (∇2ξ )(Y ,X). (3.4)

Taking the trace we deduce that:
Ric(X ,ξ ) = 0 (3.5)

Then
J∇ ⊂ KerRic

�117

As a consequence, it may turn out that J∇ is trivial:118

Corollary 3.3. If ∇ is the Levi-Civita connection of an Einstein Riemanian manifold ,then

J∇ = {0}

Using the third theorem of Lie, it comes:119

Theorem 3.4. Up to a Lie group isomorphism there exists a unique simply connected Lie group G∇ whose Lie120

algebra is isomorphic to the Lie algebra J∇.121

Before pursuing we going to recall a few useful notions which will be involved in the sequel. Let G be a Lie group122

whose Lie algebra is denoted by G.123

Definition 3.5. A Lie algebra homomorphism of G in the Lie algebra X(M) is called an infinitesimal differentiable124

action of G in M.125

An infinitesimal differentiable action of G in M is called integrable if it is the derivative of an action of G in M[15].126

Example127

In a compact manifold M every infinitesimal action of a finite dimensional Lie group is integrable. That is due to the128

fact every vector field X is complete in the meaning that X is a generator of a one parameter subgroup of the group of129

diffeomorphisms.130

A non trivial example of integrable infinitesimal action arises in our setting. Given a gauge structure (M ,∇) remember
that the elements of the Lie subalgebra

aff (M ,∇) ⊂ X(M)

are vector fields X satisfying the next identity:131

[X ,∇YZ ]−∇[X ,Y ]Z −∇Y [X ,Z ] = 0,∀(Y ,Z) ⊂ X(M) (3.6)

.132
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Definition 3.6. A path c(t) is a geodesic in (M ,∇) if it is a solution of the following differential equation

∇ċ(t)(ċ(t)) = 0.

(M ,∇) is called geodesically complete if all of its geodesics are defined in ]−∞,+∞[.133

Proposition 3.7. If (M ,∇) is geodesically complete then elements of aff (M ,∇) are complete, see134

Kobayashi-Nomizu,[16].135

Let (M ,∇) be a symmetric gauge structure. We keep the notation J∇,G∇.
The Lie subalgebra

J∇ ⊂ X(M)

is a locally effective infinitesimal differentiable action of G∇ in M. If either ∇ is geodesically complete or M is
compact, then J∇ is integrable. Thus it is the infinitesimal counterpart of a locally effective differentiable action

G∇×M 3 (γ,x)→ γ.x ∈M .

Proposition 3.8. ([14] Under the same assumptions, if J∇ is integrable then each orbit of G∇ is an homogenoeous136

locally flat manifold.137

3.0.1. A canonical representaion of G∇138

Let G be a group and the W be a finite dimensional real vector space whose group of affine isomorphisms is denoted
by Aff(W). This group is a semi-direct product GL(W ) ∗W whose underlying set is the Cartesian product

GL(W )×W

and the composition rule is
(γ1,w1) ∗ (γ2,w2) = (γ1 ◦ γ2,γ1(w2)+w1)

There is a natural affine representaion of the Lie algebra J∇ in itself as a vector space:

J∇ 3 X → ρ(X) = (∇X ,X) ∈ gl(J∇)×J∇ = aff (J∇).

The affine action is defined as:
ρ(X).Y = ∇XY +X , ∀Y ∈ J∇.

By virtue of the universal property of simply connected finite dimensional Lie groups, there exist a unique continuous
affine representation

G∇ 3 γ→ (f (γ),q(γ)) ∈ GL(J∇)×J∇) = Aff (J∇),

whose differential at the unit element is the representation ρ.139

So e being the unit element of G∇ one has
[(df )(e)](X) = ∇X ,

[(dq)(e)](X) = X .
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In the sequel, we point out how this canonical affine representation impacts the Information Geometry in statistical140

manifolds.141

3.1. The radiant class of affine representations.142

We keep the notations G∇,J∇,ρ, f ,q as in the section above.
The couple (f,q) is a continuous homomorphism of the Lie group G∇ on the Lie group Aff (J∇). Therefore one
has

[f (γ),q(γ)] ◦ [f (γ∗),q(γ∗)] = [f (γ) ◦ f (γ∗), f (γ)q(γ∗)+q(γ)] = [f (γ.γ∗),q(γ.γ∗)].

So f is a linear representation of G∇ in J∇ and q is a J∇ valued 1-cocycle of f . The cohomology class of q is denoted
by

[q] ∈ H1(G∇,J∇).

Let
f∇ : G∇ −→ GL(J∇)

q∇ : G∇ −→ J∇

Remind the cohomology of the Lie group G∇ value in his Lie algebra J∇ is defined by :

...→ Cq(G∇,J∇)→ Cq+1(G∇,J∇)→ Cq+2(G∇,J∇)→

with differential operator D defined by :

Dθ(γ1, ......,γq+1) = f∇(γ1).θ(γ2, .......,γq+1)+
∑
i6q

(−1)iθ(..,γiγi+1, ...)+ (−1)qθ(γ1, ....,γq)

See Koszul[17] ,Cartan and Eleinberg [18] and Chevalley and Eleinberg [19],M.Boyom[20] for more details on Lie
algebra cohomology.
It’s easy to see that the condition :

q∇(γ1.γ2) = f∇(γ1)q∇(γ2)+q∇(γ1)

∀γ1,γ2 ∈ G∇

is equivalent to q∇ ∈ Z1(G∇,J∇). Let [q∇] ∈ H1(G∇,J∇) be its cohomology class. It is called the radiant class of the143

affine representation (f ,q).144

Theorem 3.9. ] The following statements are equivalent :145

1. The affine action
G∇×J∇ 3 (γ,X)→ f (γ).X +q(γ) ∈ J∇

has a fixed point;146

147

2. The cohomology class [q] vanishes;148

149

3. The affine representation
G∇ 3 γ→ (f (γ),q(γ) ∈ Aff (J∇)
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is conjugated to the linear representation

G∇ 3 γ→ f (γ) ∈ GL(J∇)♣

Proof. (1) implies (2).
Let −Y0 be a fixed point of the affine action (f ,q), then

f (γ)(−Y0)+q(γ) = −Y0, ∀γ ∈ G∇.

Therefore one has
q(γ) = f (γ)(Y0)−Y0, ∀γ ∈ G∇.

So the cocycle q is exact.
(2) implies (3).
Consider the affine the affine isomorphism (e,Y0). It is nothing but the translation by Y0

X → X +Y0;

We calculate
(e,Y0) ◦ (f (γ),q(γ)) ◦ (e,Y0)

−1 = (f (γ),0∇),

Where O∇ stands for the zero element of the vector space J∇.
(3) implies (1).
The assertion means that there exists an affine isomorphism

J∇ 3 Y → L(Y )+X0 ∈ J∇

such that
(L,X0) ◦ (f (γ),q(γ)) ◦ (L,X0)

−1 = (f (γ),0∇), ∀γ ∈ G∇

The calculation of the left member yields the following identities,150

(a) : L ◦ f (γ) ◦L = f (γ),

(b) : L(q(γ))+X0− [L ◦ (f (γ) ◦L
−1](X0) = 0∇.

The identity (b) yields
q(γ) = f (γ)(L−1(X0))−L

−1(X0), ∀γ ∈ G∇.

Taking into account the identity (a), we obtain the following identity:

q(γ) = f (γ)(X0)−X0, ∀γ ∈ G∇.

So the vector −X0 is a fixed point of the affine representaion (f ,q).151

�152

Definition 3.10. The affine representation (f ,q) is called the canonical affine representation of the gauge structure153

(M ,∇)154
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Remark 3.11. When the infinitesimal action J∇ is integrable, the proposition above is a key tool to relate the155

canonical affine representaion of (M ,∇) and the hyperbolicity problem for the orbits of G∇.156

4. Statistical manifolds.157

We go to restrict the attention Riemannian statistical manifolds (excluding the pseudo-Riemannian case) whose158

particular cases are nondegenerate Fisher information metrics of statistical models and their family of α-connections,159

α ∈ R.160

We recall that a statistical manifold can be viewed as a triple (M ,g,∇) formed of a Riemannian manifold (M ,g) and161

a symmetric gauge structure (M ,∇) which are linked by the following identity:162

(∇Xg)(Y ,Z)− (∇Yg)(X ,Z) = 0, ∀(X ,Y ,Z) ⊂ X(M)

The g-dual, ∇* is defined as:

g(∇*XY ,Z) = Xg(Y ,Z)−g(Y ,∇XZ), ∀(X ,Y ,Z).

Depending on need and aims we will use the next alternative definition:163

Definition 4.1. A statistical manifold is a quadruple (M ,g,∇,∇*) formed a positive Riemannian manifold (M ,g)
and pair of symmetric gauge structure (M ,∇,∇*) which are linked by the following identity

Xg(Y ,Z)−g(∇XY ,Z)−g(Y ,∇*XZ) = 0, ∀(X ,Y ,Z).

Example 1: Any Riemannian manifold (M ,g,∇LC) where ∇LC is the Levi-Civita connection of g, We will say that M164

is a trivial statistical manifold.165

166

Example 2: Let (M ,g,∇,∇∗) any statistical manifold, the family (M ,g,∇(α),∇(−α))α∈R where ∇(α) = 1+α
2 ∇+

1−α
2 ∇

∗
167

is a statistical manifold for ∀α ∈ R.168

169

Example 3: Let (M ,g) some Riemannian manifold and denote ∇LC the Levi-Civita connection with respect to g,170

and let E ∈ TM \ {0}. The triplet (M ,g,∇,∇∗) is a statistical manifold where ∇XY = ∇LCX Y +g(X ,E)g(Y ,E)E and171

∇∗XY = ∇LCX Y −g(X ,E)g(Y ,E)E.172

173

According to previous sections, a statistical manifold (M ,g,∇,∇*) yields a pair of finite dimensional simply connected174

Lie groups:175

(G∇,G∇*).

Their corresponding canonical affine representations will be denoted by (f ,q) and (f *,q*) respectively. The176

Levi-Civita connection of (M ,g) is denoted by ∇LC.177

178
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From now, we assume that either both (M ,∇), (M ,∇*) and (M ,∇LC) are geodesically complete or M is compact.
Therefore J∇, J∇* and J∇LC are the infinitesimal counterpart of the following locally effective differentiable dynamical
systems:

G∇×M →M ,

G∇* ×M →M ,

G∇LC ×M →M .

Gathering things, a statistical manifold (M ,g,∇,∇*) supports the following families of dynamics:179

{
G∇,J∇, (f ,q),

}
,{

G∇* ,J∇* , (f
*,q*

)
},{

G∇LC ,J∇LC , (f LC,qLC
)
}.

For information geometry the relevant data are the radiant classes:180

[q] ∈ H1(G∇,J∇),

[q*] ∈ H1(G∇* ,J∇*).

From the Riemannian geometry viewpoint the orbits of GLC
∇

are flat Riemannian manifolds. Up to isometry and up to
finite covering each such an n-dimensional orbit is a flat cylinder of over an Euclidean torus[21], namely

(
Tk

Γ
×Rn−k ,g0)

with the flat metric g0 induced from the ambient Euclidean metric of Rn . The integer k is the first Betti number of the181

orbit and Γ is finite group of isometry.182

To make simpler we adopt the following notation.183

184

F∇ is the foliation whose leaves are orbits of the Lie group G∇.185

186

F∇* is the foliation whose leaves are orbits of the Lie group G∇* .187

188

(f∇,q∇) is the canonical affine representation of G∇.189

190

4.1. Radiancy of (f∇* ,q∇*) and hyperbolicity of F∇.191

For the sake of simplicity, we assume statistical manifolds

(M ,g,∇,∇*)

where both J∇ and J∇* are integrable and we use the following notation: g∇ is the restriction of g to F∇.192

Therefore we can prove the following facts:193
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Theorem 4.2. Let (M ,g,∇,∇*) a compact statistical manifold. We have:194

1. The foliation F∇ is Hessian foliation in (M ,g,∇),195

196

2. The foliation F∇* is Hessian foliation in (M ,g,∇*) .197

Proof. (1) By assumption M is compact then J∇ is integrable,we conclude that J∇ is an infinitesimal action of G∇198

on M.We have R∇(X ,Y )J∇ = 0 then F∇ is locally flat foliation in (M ,∇). The G∇-orbits are ∇-auto-parallel then199

δKVg∇ = 0. The leaves of F∇ are Hessian submanifolds of (M ,g,∇).200

(2) By using the same arguments for G∇*(M), the theorem is proved. �201

We thus have that:
[F∇,g∇,∇]

and
[F∇* ,g∇* ,∇

*]

are Hessian foliations in (M ,g,∇) and in (M ,g,∇*) respectively.202

It is important to notice that the leaves of F∇ are not ∇*-auto-parallel. Since all of them are statistical manifolds w.r.t.203

(g∇,∇), in each of them ∇ admits a g∇-dual which coincides with the g-orthogonal projection of ∇*; by abuse of204

notation, this projection also is denoted by ∇*.205

The Hessian classes of F∇ and F∇* are denoted as it follows

[g∇] ∈ H
2
KV (F∇)

[g∇* ] ∈ H
2
KV (F∇*)

In the next theorem we prove that the statistical manifold (M ,g,∇,∇*) is a leaf of F∇ endowed with its Hessian206

structure (g∇,∇).207

Theorem 4.3. In a statistical manifold (M ,g,∇,∇*) the following assertions are equivalent.208

1. [g∇] = 0 ∈ H2
KV (F∇);209

210

2. [q∇* ] = 0 ∈ H1(G∇,J∇);211

212

3. (f∇* ,q∇*) has a fixed point;213

214

4. (f∇* ,q∇*) is affinely conjugated to its linear component f∇*♣.215

Proof. According to Theorem 3.9 assertions (2), (3) and (4) are equivalent. Thereof, it is sufficient to prove that216

assertions (1) and (2) are equivalent217

Let us demonstrate first that (1) implies (2)

Since the class [g∇] vanishes the exist a deRham closed differential 1-form θ suject the following identity,

g∇(X ,Y ) = −Xθ(Y )+θ(∇XY ), ∀(X ,Y ).
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By the defining property of statistical manifolds, it comes:

Xg∇(Y ,Z) = g∇(∇
*
XY ,Z)+g∇(Y ,∇XZ), ∀(X ,Y ,Z).

Let H be the unique vector field such that

θ(X) = g∇(H ,X), ∀X .

Using once again the defining property of statistical manifolds, we get:

Xg∇(H ,Y )−g∇(∇*XH ,Y )−g∇(H ,∇XY ) = 0,

Since left hand member is tensorial, i.e. C∞(M)-multilinear we can assume that

H ∈ J∇.

Thus we get the following identity218

g∇(∇
*
XH ,Y ) = Xg∇(H ,Y )−g∇(H ,∇XY ) = g∇(X ,Y ), ∀(X ,Y ) ⊂ X(M).

Thus one has
∇*X (−H)−X = 0∇, ∀X ∈ X(M).

So the −H is a fixed point of (f∇* ,q∇*).
In other words one has

f∇*(γ)(−H)+q∇*(γ) = −H , ∀γ ∈ G∇* .

Thus one has
q∇*(γ) = f∇*(γ)(H)−H , ∀γ ∈ G∇* .

Let us demonstrate now that (2) implies (1).

Let us assume that (f∇* ,q∇*) has a fixed point
Y0 ∈ J∇* .

Therefore
f∇*(γ)(Y0)+q∇*(γ) = Y0, ∀γ ∈ G∇* .

To make every obvious, to every
X ∈ J∇*

we assign the one parameter subgroup {
Exp(tX), t ∈ R

}
⊂ G∇* .

Wehave
f∇*(Exp(tX))(Y0)+q∇*(Exp(tX)) = Y0, ∀t ∈ R.

One calculate the derivative at t = 0 ∈ R one obtains

∇*XY0 +X = 0.
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Now finally:
Xg∇(Y0,Y ) = g∇(∇

*
XY0,Y )+g∇(Y0,∇XY );

Thus taking into account that
∇*XY0 = −X ,∀X ,

one obtains the following identity,219

Xg∇(Y0,Y ) = −g∇(X ,Y )+g∇(Y0,∇XY ).

By putting
θ(Y ) = −g∇(Y0,Y )

One obtains
g∇(X ,Y ) = Xθ(Y )−θ(∇XY ), ∀(X ,Y ).

Then one has
[g∇] = 0 ∈ H2

KV (∇).

�220

From Theorems 2.21 and 3.9 we obtain the next corollary:221

Corollary 4.4. Let (M ,g,∇,∇*) such that both J∇ and J∇* are integrable. We assume that leaves of both F∇ and222

F∇* satisfy one among the assertions of Theorem 4.3. Then we can conclude as follows:223

(1) Every compact leaf of F∇ is hyperbolic.224

(2) Every compact leaf of F∇* is hyperbolic ♣225

5. When are the orbits quotients of convex cones.226

Convex cones are examples of bounded domains. The studies of convex cones have been and continue to be among227

high standing subjects in geometry and in analysis. The pioneering works are those of Elie Cartan, but there is a228

wealth of subsequent works, see [22], [23], [24] and many others. Nowadays the analysis in convex cones plays229

interesting role in the information geometry, [12]. Theorem 3.3 provides conditions under which compact orbits230

of G∇ are hyperbolic. We are going to demonstrate that up to difeomorphisms, compact leaves of F∇ are quotient231

homogeneous convex cones. According to our previous notation, if M is a compact leaf of F∇ then Q(M̃) is a232

homogeneous convex cone.233

5.1. A theorem of Koszul.234

For convenience, we introduce the following notion.235

Definition 5.1. A statistical manifold (M ,g,∇,∇∗) is called integrable if both J∇ and J∇* are integrable.236

Compact statistical manifolds and geodesically complete ones are integrable.237

Let (N ,g,∇,∇*) be an integrable statistical manifold whose Hessian foliations are denoted by

{F∇,g∇,∇}



Version February 9, 2021 submitted to Journal Not Specified 18 of 23

and {
F∇* ,g∇* ,∇

*
}
.

Henceforth, by abuse of notation, a leaf of
{F∇,g∇,∇}

is an Hessian manifold that we denote by
(M ,g∇,∇).

Its g-dual is denoted by
(M ,g∇,∇*).

Theorem 4.2 links both the Hessian of (M ,g∇,∇), namely

[g∇] ∈ H
2
KV (∇)

and the radiant class of (M ,g,∇*), namely

[q∇* ] ∈ H
1(G∇* ,J∇*).

By Theorem 4.3 we know that if M is compact then

[g∇]∪ [q∇* ]

is a characteristic obstruction to (M ,∇) being hyperbolic.238

239

Henceforth we assume these obstructions vanish.240

We have already pointed out that M̃ a universal covering of M . Therefore it admits a unique locally flat structure
(M̃ , ∇̃) such that the covering map

π : M̃ →M

is a gauge morphism between ∇̃ and ∇.241

Theorem 5.2. [23] Let {
(M ,g,∇), [g∇]∪ [q∇* ]

}
being a compact Hessian manifold. If:

[g∇]∪ [q∇* ] = 0.

Then for Q(M̃) being a cone, it is sufficient that M̃ being homogeneous under group of transformation of (M̃ , ∇̃)♣242

We are going to show that this theorem applies in the category of integrable statistical manifolds.243

Theorem 5.3. Under the assumptions of Theorem 4.3 and Theorem 4.3 the (simply connected) locally flat manifold244

(M̃ , ∇̃) is homogeneous ♣245

Proof. Remind that P is the topological space of differentiable pointed paths

(0, [0,1]) 3 t→ c(t) ∈ (x0,M).
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If
M 3 x → f (x) ∈M

is a differentiable map then f ◦ c is a differentiable path whose origin is f (x0). This to remind that every continuous
map of M in M can be canonically left to a map of M̃ in itself.
Therefore the action

G∇×M →M

gives rise to the action
G∇× M̃ → M̃ .

At one side remember that (M ,∇) is homogeneous under the action of the Lie group G∇.
At another side remember that (M ,∇) is the quotient of (M̃ , ∇̃) under the action of the fundamental group π1(M).
Therefore both π1(M) and G∇ are subgroups of the group

Aff (M̃ , ∇̃).

It is easy to check that G∇ is included in the normalizer of π1(M).246

Since M is transitively acted on by G∇, every orbit of G∇ in M̃ is an open submanifold of M̃ . Since M̃ is connected247

the action of G∇ is M̃ is transitive.248

�249

Theorem 5.4. Let (N ,g,∇) be a integrable statistical manifold and let F∇ be its canonical Hessian foliation.
If the characteristic obstruction vanishes:

[g∇]∪ [q∇* ] = 0.

Then up to affine diffeomorphism every m-dimensional compact leaf of F∇ is the quotient of a convex cone C ⊂ Rm250

under a discrete subgroup of affine group GL(Rm) ∗Rm♣251

6. Characteristic function and Formalism of Barbaresco.252

Let C be a convex cone of E whose dual cone is denoted by C* and is defined by

C* =
{
Ψ | (Ψ,x) > 0,∀x ∈ C̄−{0}

}
(6.1)

J-L Koszul and E.B. Vinberg have introduced a characteristic function ρ of a regular convex cone C,it is defined by

ρC(x) =

∫
C*

e−<Ψ,x>dΨ (6.2)

where dΨ is the Lebesgue mesure of E*253

Applying this construction to aforementioned convex cone yields a realisation of the statistical manifold as an254

exponential model.255

7. Application to statistical models of measurable sets256

We focus on local regular functional models. Consider a measurable set (Σ,Ω). Remember that an m-dimensional
regular local functional model of (Σ,Ω) is a couple (Θ,P) formed of an connected open subset Θ ⊂ Rm and P a non
negative real valued function:

Θ×Σ 3 (∂,ξ ) −→ P(∂,ξ ) ∈ R.



Version February 9, 2021 submitted to Journal Not Specified 20 of 23

Further257

(a) P(∂,ξ ) is smooth w.r.t. ∂;258

(b) ΣξP(∂,ξ ) = 1, ∀∂;259

(c) the following symmetric bilinear form g(,Fisher information,) is positive definite,

g(∂)(X ,Y ) = ΣξP(∂,ξ )[dlog(P)(X)dlog(P)(Y )](∂,ξ ).

(X ,Y ) ⊂ X(Θ)

8. α-connections260

∂ = (∂j,1 ≤ j ≤m) are coordinate functions in Rm . For every α ∈ R we put

Γαij;k = ΣξP(∂,ξ )[[
∂2log(P)

∂i∂j
+

1+α
2

∂i log(P)∂jlog(P)]∂k log(P)](∂,ξ ).

These functions Γαij;k are Christoffel symbols of a ∇α is symmetric connection on Θ . Here

∂i log(P) =
∂log(P)

∂∂i

Let (Θ,g,∇a ,∇−a) be a statistical manifold.Putting:

Ja = J∇a

the results of the previous sections can be applied directly, with:261

• F∇a is the foliation whose leaves are orbits of the Lie group G∇a .262

• F∇−a is the foliation whose leaves are orbits of the Lie group G∇−a .263

• g∇a is the restriction of the Fisher Information to F∇a .264

• g∇−a is the restriction of the Fisher Information to F∇−a .265

• (f∇a ,q∇a ) is the canonical affine representation of G∇a .266

• (f∇−a ,q∇−a ) is the canonical affine representation of G∇−a .267

Theorems below are then easy consequences of the general results.268

Theorem 8.1. Let (Θ,P) a statistical model.We have the following statements.269

(1)[F∇a ,g∇a ,∇a ] is exponential foliation in (Θ,P),270

(2)[F∇−a ,g∇−a ,∇−a ] is exponential foliation in (Θ,P).271

Theorem 8.2. In a statistical model (Θ,P) the following assertions are equivalent:272

1. [g∇a ] = 0 ∈ H2
KV (F∇a );273

2. [q∇−a ] = 0 ∈ H1(G∇−a ,J∇−a );274

3. (f∇−a ,q∇−a ) has a fixed point;275

4. (f∇−a ,q∇−a ) is affinely conjugated to its linear component f∇−a♣.276
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Theorem 8.3. Let (Θ,P) be a statistical model which satisfies one of the equivalent conditions of the theorem 7.3,we277

have the following assertions:278

1. The compacts leaves of the exponential foliations F∇a are isomorphic to the quotient of convex homogeneous279

cones by discrete subgroups of GL(Rs)nRs;280

2. The compacts leaves of the exponential foliations F∇−a are isomorphic to the quotient of convex homogeneous281

cones by discrete subgroups of GL(Rs)nRl .282

Corollary 8.4. Let (Θ ⊂ R4,P) a statistical model satisfying the conditions of the Theorem 7.4. We have the
following assertions.

If s= 1 Σ = S1 (8.1)

If s= 2 Σ = T2 (8.2)

If s= 3 Σ =


Hyperbolic Torus bundle

Nilmanifold

Seifert Manifold

(8.3)

We shall now give a example of compact hessian manifold which orbits are quotient of statistical models by discrete
subgroup.Let R2 be a 2-dimensional real affine space with the natural flat affine connection D and let {x ,y} be an
affine coordinate system of R2.
Let Ω be a domain define by x > 0 and y > 0.Consider a Riemannian metric on Ω given by g = 1

x2dx
2 + 1

y2dy
2.

Then (D,g) is Hessian structure on Ω.
Let Σ and χ be linear transformations on Ω defined by :

Σ : (x ,y)→ (2x ,y)

χ : (x ,y)→ (2x ,3y)

Then <Σ,χ> leave the Hessian structure (D,g) invariant.
We denote Γ the group generate by {Σ,χ}, we can also write Γ as < (2 0

0 1 ) ; (2 0
0 3 ) >.

Γ acts properly discontinuously on Ω and Ω
Γ is is compact Hessian manifold which is diffeomorphic to a Torus.

Let us denote by π the projection from Ω to Ω
Γ and by (D,g) the Hessian structure on Ω

Γ .Since the space of all
Γ-invariant D parallel 1-forms on Ωis spanned by dx and dy.The space of all D-parallel 1-forms on Ω

Γ is spanned
by ω and Φ where dx = π*ω and dy = π*Φ.Let X and X̃ be a vector field on Ω

Γ defined by ω(Y ) = g(X ,Y )
and Φ(Y ) = g(X̃ ,Y )for each vector field Y on Ω

Γ .Then X = π*(
∂
∂x ) and X̃ = π*(

∂
∂y ) and the vector space J∇ of

all Hessian vector fields on Ω
Γ is spanned by <X ,X̃>.Since T2 is compact the J∇ is integrable.Let Exp(tX) and

Exp(tY ) is a 1-parameter group of transformations generated by X and by Y .Let G∇ =< Exp(tX),Exp(tY ) >.
Consider a > 0 and b > 0, the compact homogeneous the orbit G∇π(a,b) = {γ.π(a,b),γ ∈ G∇} is a circle. Then we
conclude that (S1,D,gS1) is Hessian manifold and satisfies D ∂

∂θ = 0 and gS1 = 1
θ2dθ

⊗2.By using conjugation we
have D*∂

∂θ

∂
∂θ = −

2
θ
∂
∂θ .Let H* = h(θ) ∂∂θ vectors fields on S1.H* is homothety vector fields of D* if h is solution of

differential equation y
′

− 2
θ2 y= 1.We deduce that

h(θ) = Ae
−2
θ +2e

−2
θ

∫ +∞

−2
θ

e−s

s
ds+θ
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where A is constant.
As D*H* = Id then (S1,D) is hyperbolic.Now let p : R→ S1 the covering map, and consider the map

(R, D̃)→ (S1,D)

.The compacts orbits is G∇π(a,b) is quotient R>0

Γ , here Γ is discrete subgroup of Gl(R)nR283

9. Conclusion284

The theorems 3.9,4.3 give conditions for hyperbolicity of compact leaves and in turn allow an explicit construction285

of a statistical exponential model for a statistical manifold. While is it already known that any statistical manifold286

posseses such concrete realizations, there is no mechanism to construct them, which our results provide.In a future287

work, study of special cases will be done with the idea of finding new canonical densities on manifolds.288
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