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Capturing and analyzing requirements of Cyber-Physical Systems
(CPS) can be challenging, since CPS models typically involve time-
varying and real-valued variables, physical system dynamics, or even
adaptive behavior. MATLAB/Simulink is a development and simula-
tion framework that is widely used in industry to capture such sys-
tems. In this paper, we report on the application of NASA Ames tools
to perform end-to-end analysis of the Ten Lockheed Martin Challenge
Problems (LMCPS). LMCPS is a set of industrial Simulink model
benchmarks and natural language requirements developed by domain
experts. Our framework, which integrates the tools fret and co-
cosim, is used to: 1) elicit, explain, and formalize the semantics of the
given natural language requirements; 2) generate verification code and
monitors that can be automatically attached to the Simulink models;
3) perform verification by using SMT-based model checkers. fret and
cocosim are open source, and can be used by other researchers and
practitioners to replicate our case study. We provide a categorization
of recurring patterns in the formalization of the requirements and
discuss the strengths and weaknesses of our automated verification
approach.

1 Introduction

Cyber-physical systems (CPS) integrate computation with physical

processes. MATLAB®/Simulink® [1] is a widely-used framework in
industry; in particular, more than 60% of engineers use Simulink for
the development and simulation of CPS [2, 3]. To ensure that points
of failure are identified as early as possible, it is crucial to check that
CPS models satisfy their requirements, which are usually expressed
in natural language and are riddled with ambiguities.

In this paper, we evaluate the feasibility and benefits of applying
automated tools to perform end-to-end analysis of CPS models. End-
to-end means that we start with requirements elicitation, formaliza-
tion, and analysis, and proceed with model analysis against formalized
requirements. Such analyses may result in updates of requirements
and/or models.

End-to-end analysis of CPS models is challenging. Requirements
are typically written in natural language, which is ambiguous and not
easily amenable to formal analysis. Moreover, CPS models typically
involve time-varying and real-valued variables, physical system dy-
namics, or even adaptive behavior. Formal languages supported by
analysis tools may not be expressive enough to capture requirements
for such systems. Finally, analysis tools may not be able to handle
the complexity and scale of CPS models.

Our feasibility study targets the Ten Lockheed Martin Challenge
Problems (LMCPS), a set of industrial Simulink model benchmarks
and natural language functional requirements developed by domain
experts [4, 5]. At the level of requirements, we use the Formal Re-
quirements Elicitation Tool fret [6, 7]. fret is an open-source tool
developed at NASA Ames for writing, understanding, formalizing,
and analyzing requirements. Users write requirements in a restricted
natural language, called fretish, with precise, unambiguous mean-
ing. For a fretish requirement, fret produces natural language and
diagrammatic explanations of its exact meaning, and formalizes the
requirement in logics. We investigate whether 1) the LMCPS require-
ments can be captured in fret, 2) the process of capturing LMCPS
requirements is intuitive to the user, and 3) the produced explanations
provide useful feedback.

For model analysis, we use cocosim [8, 9], an open source tool de-
veloped at NASA Ames, which analyzes Simulink models by connect-
ing to formal tools such as the MathWorks Simulink Design Verifier
(SLDV) [10] and Kind2 [11]. fret and cocosim are connected: co-
cosim exposes model details to fret to support the mapping between
requirement- and model- variables by fret users; fret generates ver-
ification code that cocosim can process to analyze models against re-
quirements. We study 1) the effectiveness of the connection between
fret and cocosim, both in terms of producing verification code and
in transferring verification results back at the requirements level, and
2) whether cocosim is able to successfully analyze the LMCPS re-
quirements.

We were able to capture and analyze the majority of the LMCPS
requirements with our framework. Our main findings can be summa-
rized as follows:

Language and Logics. CPS requirements involve timing, so it is im-
portant to handle this aspect in requirements elicitation tools. The
explanations produced by fret were instrumental in ensuring that the
fretish requirements captured our intended semantics. Even though
fretish is aimed at being intuitive, it was not always straightforward
to turn natural language LMCPS requirements into fretish. How-
ever, most of the LMCPS requirements fall within a small number of
patterns, an issue that we have also observed in other studies within
our organization. Our logic was not able to capture some aspects of
the system, in particular as related to delay blocks, which are heavily
used in the models. We were able to shortcut this problem by exposing
internal model variables at the requirements level, but a fretish-level
solution would be desirable.

Formalization and Verification Code. fret formalizations are com-
pact for most of the requirements of the LMCPS challenge; this is
because they are optimized for many of the patterns that occur in the
system. The automated production of verification code was a very
smooth process. Automating the process of generating verification
code from requirements has been extremely valuable since it reduces
the sources of discrepancy and errors in the various artefacts.

Connecting Requirements to Models for Analysis. Requirements
capture should not depend on the existence of a model. In fact,
different members of our team worked on requirements capture and
Simulink model analysis. We therefore found the capability of import-
ing Simulink models in fret a great help during the step of connecting
requirements with their targeted models. The most important feature
of our integrated framework has been the capability to preserve the
component structure of the LMCPS systems, and use it to perform
analysis in a modular fashion. This has been instrumental in achieving
scalability. Our analysis exposed issues including requirement ambi-
guities, undefined parts in the models, and small bugs in the checkers
invoked by cocosim.

All details of our case study are available at [12], and our tools
can be obtained, open source, at https://github.com/NASA-SW-VnV/.
Our study can therefore be replicated by other researchers and prac-
titioners.
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2 Background

2.1 The FRETish language

A fretish requirement contains up to six fields: scope, condition,
component*, shall*, timing, and response*, where mandatory fields
are indicated by an asterisk. ‘component’ specifies the component
that the requirement refers to. ‘shall’ is used to express that the
component’s behavior must conform to the requirement. ‘response’
is a Boolean condition that the component’s behavior must satisfy.
‘scope’ specifies intervals where the requirement is enforced. For in-
stance, ‘scope’ can specify system behavior before a mode occurs, or
after a mode ends, or when the system is in a mode. The optional
‘condition’ field is a Boolean expression that triggers the need for a
‘response’ within the scope. When triggered, the response must occur
as specified by field timing, e.g., immediately, always, after/for/within
N time units.

Each template is designated by a template key with values for fields
[scope, condition, timing]. For example, [in, null, always] identifies
requirements of the form In M mode, the software shall always satisfy
R. Condition null (as opposed to regular), means that the response is
triggered at the beginning of each scope interval. The most common
key is [null, null, always], i.e., The software shall always satisfy R.
Scope null indicates global scope, which means that the requirement
is enforced on the entire execution interval. At the time of this case
study, fretish supported 8 values for field mode, 2 values for field
condition, and 7 values for field timing, for a total of 8× 2× 7 = 112
semantic templates. More details on fretish and its semantics are
available in [7].

2.2 Past-Time Metric Linear Temporal Logic (pmLTL)

We briefly review the main pmLTL operators (Y, O, H, S, SI),
which stand for Yesterday, Once, Historically, Since, and Since In-
clusive, respectively. Y refers to the previous time step, i.e., at any
non-initial time, Yφ is true iff φ holds at the previous time step. O
refers to at least one past time step, i.e., Oφ is true iff φ is true at
some past time step including the present time. Hφ is true iff φ is
always true in the past. φSψ is true iff ψ holds somewhere at step
t in the past and for all steps t′ (such that t′ > t) φ is true. Fi-
nally, φ SIψ ≡ φ S (ψ&φ). Timed modifiers constrain an operator’s
scope to specific intervals: Op [l, r] φ, where Op ∈ {O, H, S, SI}
and l, r ∈ N0. For instance, O [l, r] φ is true at time t iff φ was true in
at least one of the previous time steps t′ such that t− r ≤ t′ ≤ t− l.
So O[0, 3] restricts the scope of O to the interval including the step
where the interval is interpreted and the previous 3 time steps.

2.3 The Lustre language

Lustre [13] is a synchronous dataflow language. Lustre code consists
of a set of nodes that transform infinite streams of input flows to
streams of output flows, with possible local variables denoting inter-
nal flows. A symbolic “abstract” universal clock is used to model
system progress. Two important Lustre operators in this context are
the unary right-shift pre (for previous) operator and the binary ini-
tialization -> (for followed-by) operator. Their semantics is as follows:
at time t = 0, pre p is undefined, while for each time step t > 0 it
returns the value of p at t − 1. At time t = 0, p -> q returns the
value of p at t = 0, while for t > 0 it returns the value of q at t.
cocospec [14] is an extension of the synchronous dataflow language
Lustre for the specification of assume-guarantee contracts.

3 lockheed martin cyber physical systems (lmcps)
challenge problems

The 10 Cyber-Physical V&V Challenges [5] were created by Lockheed
Martin Aeronautics to evaluate and improve the state-of-the-art in for-
mal method toolsets. Each challenge problem includes: 1) documen-
tation that contains a high-level description and a set of requirements
written in plain English; 2) a Simulink model; 3) a set of parameters
(in .mat format) for simulating the model.

The challenges were first presented in the 2016 Safe and Secure
Systems and Software Symposium (S5) [5]. They consist of a set of
problems inspired by flight control and vehicle management systems,
which are representative of flight-critical systems. They are publicly
available1 and as such, they provide an excellent basis for discussion
and comparison of approaches across the research community.

1https://github.com/hbourbouh/lm\_challenges

Although in most cases the specified requirements look relatively
straightforward, a closer study revealed many questions regarding
their precise meaning. Additionally, even though the Simulink models
of the challenges were built with commonly used blocks, their anal-
ysis has proven to be challenging. Table 1 summarizes the ten LM-
CPS challenges. For each challenge it includes a brief description, the
number of Simulink blocks in the models, the types of blocks that
challenged our analysis, and the 7 fret template keys that we used
to formalize the requirements of each challenge.

The LMCPS requirements and models were developed to represent
challenges that are typical of CPS systems. The inputs and outputs
of CPS systems are modeled through signals, which are functions over
time. Most of the LMCPS models are highly numeric and often exhibit
non-linear behavior. Next, we present elements of LMCPS that proved
challenging for the analysis of the requirements. Section 5 discusses
how we handled these challenges.

Vectors and Matrices. LMCPS challenges manipulate signals
with multiple dimensions. The use of multi-dimensional signals and
matrices is common in CPS Simulink models, since control systems
are often defined as the composition of linear systems.

Non Linear and Non Algebraic Blocks. Trigonometric func-
tions, exponential functions, and the logarithm are typically not sup-
ported by SMT solvers. Two of the LMCPS challenges, i.e., AP and
EUL, use the Trigonometric Function Simulink block to perform com-
mon trigonometric functions. The square root, i.e., sqrt Simulink
block, used in the NLG, AP, and SWIM challenges is usually not
well-handled by SMT solvers. Other non-linear Simulink blocks that
are challenging for analysis are Abs, MinMax, Switch, and Saturation.

Continuous time blocks. Such blocks can be almost arbitrarily
mixed with sampled blocks in Simulink. Thus another challenge comes
from the fact that CPS models often contain mixes of continuous and
discrete parts.

Complex requirement formalizations. As shown in Table 1,
we used 7 distinct semantic template keys to express the LMCPS
requirements. The formalization that corresponds to each template
key is shown in Table 2. For certain template keys, e.g., [in, regular,
always] the formalization is complex and potentially challenging for
analysis tools.

4 The fret-cocosim integrated framework

Figure 1 illustrates the flow of our framework. In the elicitation loop
– Step 0 – the user writes and refines requirements in fretish based
on the semantic explanations and simulation capabilities supported by
fret. Once the user is satisfied with the requirement semantics, the
fretish requirements are translated in Step 1 into pure Past-Time
/ Future-Time Metric LTL (pmLTL/fmLTL) formulas. In Step 2,
data from the model under analysis is used to produce an architec-
tural mapping between requirement propositions and Simulink signals.
In Step 3, the pmLTL formulas and the architectural mapping are
used to generate cocospec monitors and traceability data. In Step
4, cocosim [8] imports the generated cocospec monitors and trace-
ability data, along with the Simulink model. cocosim then produces
Simulink monitors, attaches them to the model, and produces Lustre
code for the complete model (initial model plus attached monitors).
cocosim can thus drive both Simulink-based (e.g., Simulink Design
Verifier (SLDV)) and Lustre-based (e.g., Kind2 [11], Zustre) verifica-
tion tools to analyze the target model in Step 5. Counterexamples
produced by the analysis can be traced back to cocosim or fret
(Step 6).

We illustrate the entire process through the following requirement
from the 6 Degree Of Freedom Dehavilland Beaver Autopilot (AP)
LMCPS challenge.

[AP-003c] Natural Language: The roll hold reference shall be
set to 30 degrees in the same direction as the actual roll angle if the
actual roll angle is greater than 30 degrees at the time of roll hold
mode engagement.

Step 0: Elicitation. Understanding the above natural language re-
quirement and making it precise is not straightforward. We first
identify the variables involved. By reading the first part of the re-
quirement: ‘The roll hold reference shall be set to 30 degrees in the
same direction as the actual roll angle’ we identify two variables:
roll hold reference and roll angle, and express this part of the re-
quirement as roll hold reference = 30 * sign(roll angle), where
function sign returns the sign, e.g., −1 or 1, of the roll angle in
order to determine its direction. For the second part of the require-
ment, i.e., if the actual roll angle is greater than 30 degrees at the time
of roll hold mode engagement, we identify variables: roll angle and
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Table 1: Summary of LMCPS Challenges (NoB stands for Number of Blocks)

Challenge Description NoB Block Types Template Keys

Triplex Signal Moni-
tor (TSM)

A redundancy management system that prevents errors
from propagating past the input of an airborne appli-
cation.

479 Non-linear (Switch),
Vectors and Matrices

[null, null, always]

Finite State Machine
(FSM)

An abstraction of an advanced autopilot system inter-
acting with an independent sensor platform to ensure
a safe automatic operation in the vicinity of hazardous
obstacles.

279 Non-linear (Switch) [null, null, always]
[null, regular, immedi-
ately]

Tustin Integrator
(TUI)

A flight software utility for computing the integration
of a signal.

45 Non-linear (Switch,
Saturation), Vectors
and Matrices

[null, null, always]

Control Loop Regula-
tors (REG)

A regulators inner loop architecture that is commonly
used in many feedback control applications.

271 Non-linear (Switch,
Saturation), Vec-
tors and Matrices,
Continuous-time

[null, null, always]

Nonlinear Guidance
Algorithm (NLG)

A nonlinear guidance algorithm that generates com-
mands in order to guide an Unmanned Aerial Vehicle
(UAV) to follow a moving target respecting a specific
safety distance.

355 Non-linear (Sqrt,
Switch),
Vectors and Matrices

[null, null, always]
[null, regular, always]

Feedforward Cascade
Connectivity Neural
Network (NN)

A two-input single-output predictor neural network
with two hidden layers arranged in a feedforward ar-
chitecture.

699 Non-linear (Satura-
tion),
Vectors and Matrices

[null, null, always]
[null, regular, for ]

Abstraction of a Con-
trol Allocator - Effec-
tor Blender (EB)

A control allocation method, which enables the calcu-
lation of the optimal effector (surface) configuration for
a vehicle, given a control minimization effort problem.

75 Non-linear (Switch),
Vectors and Matrices

[null, null, always]

6DoF with DeHavil-
land Beaver Autopilot
(AP)

A full, realistic full six degree of freedom simulation of
the DeHavilland Beaver airplane with autopilot.

1357 Non-linear (Switch,
Sqrt, Abs, MinMax,
Saturation), Non-alge-
braic (Trigonometric),
Vectors and Matrices,
Continuous-time

[null, null, always]
[in, null, always]
[in, null, immediately]
[in, regular, always]
[null, regular, immedi-
ately]

System Wide In-
tegrity Monitor
(SWIM)

A safety algorithm for monitoring airspeed in the SWIM
(System Wide Integrity Monitor) suite in order to pro-
vide warning to an operator when the vehicle speed is
approaching a boundary where an evasive flyup maneu-
ver cannot be achieved.

141 Non-linear (Switch,
Sqrt),
Vectors and Matrices

[null, null, always]

Euler Transformation
(EUL)

A component that creates a Rotation Matrix describing
a rotation about the z-axis, y-axis, and finally x-axis of
an Inertial frame in Euclidean space.

97 Non-linear (Switch),
Non-algebraic
(Trigonometric),
Vectors and Matrices

[null, null, always]
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Table 2: Semantic Template Formalizations. FTP (First Time Point) stands for ¬Y TRUE

Template Key Past-time Temporal Logic

[null, null, always] Hψ
[null, regular, immediately] H(φ ∧ ((Y ¬φ) ∨ FTP))⇒ ψ)

[null, regular, always] H(H(¬φ) ∨ (ψS(ψ ∧ (φ ∧ ((Y ¬φ) ∨ FTP)))))
[null, null, for ] H((O[≤ duration]FTP)⇒ ψ

[in, null, always] H(mode⇒ ψ)
[in, null, immediately] H((mode ∧ (FTP ∨ (Y (¬mode))))⇒ ψ)
[in, regular, always] ((H((((¬mode) ∧ (Y mode)) ∧ (Y TRUE))⇒

(Y ((((¬φ)S((¬φ) ∧ (mode ∧ (FTP ∨ (Y (¬mode)))))) ∨ (ψS
(ψ ∧ (φ ∧ ((Y (¬φ)) ∨ (mode ∧ (FTP ∨ (Y (¬mode)))))))))S

((((¬φ)S((¬φ) ∧ (mode ∧ (FTP ∨ (Y (¬mode))))))∨
(ψS(ψ ∧ (φ ∧ ((Y (¬φ)) ∨ (mode ∧ (FTP ∨ (Y (¬mode)))))))))∧

(mode ∧ (FTP ∨ (Y (¬mode)))))))))∧
(((¬((¬mode) ∧ (Y mode)))S

((¬((¬mode) ∧ (Y mode))) ∧ (mode ∧ (FTP ∨ (Y (¬mode))))))⇒
((((¬φ)S((¬φ) ∧ (mode ∧ (FTP ∨ (Y (¬mode))))))∨

(ψS(ψ ∧ (φ ∧ ((Y (¬φ)) ∨ (mode ∧ (FTP ∨ (Y (¬mode)))))))))S
((((¬φ)S((¬φ) ∧ (mode ∧ (FTP ∨ (Y (¬mode))))))∨

(ψS(ψ ∧ (φ ∧ ((Y (¬φ)) ∨ (mode ∧ (FTP ∨ (Y (¬mode)))))))))∧
(mode ∧ (FTP ∨ (Y (¬mode))))))))

Figure 1: Requirement analysis framework

Figure 2: fret semantics for requirement [AP-003c-v1]

roll hold mode engagement. Our first attempt at fretish for [AP-
003c] was the following:
[AP-003c-v1]:
If abs(roll angle) > 30 & roll hold mode engagement Autopilot shall
immediately satisfy roll hold reference = 30 * sign(roll angle), where
function abs returns the absolute value of roll angle.

fret displays requirement semantics in a variety of forms: En-
glish descriptions, diagrammatic representations, logic formulas (met-
ric temporal logics with pure future-time / pure past-time operators).
Figure 2 shows the English and diagrammatic descriptions generated
by fret for [AP-003c-v1]. TC denotes a triggering condition.

Since scope is not specified, the requirement is ‘enforced’ in the
interval defined by the entire execution, i.e., beginning of time to the
end of the execution. Notice that the condition of the requirement, i.e.,
If abs(roll angle) > 30 & roll hold mode engagement, is a ‘trigger’:
the requirement is only enforced at time points where the condition
becomes true from false, or at the first point of the interval if the
condition holds there. Timing “immediately” states that the response
should hold simultaneously with each trigger point.

We additionally use the fret simulator, which allows users to inter-
actively set values of requirement variables over a time interval and ob-
serve the consequences on the value of the requirement formulas. Let
us abbreviate abs(roll angle) > 30 as ‘p’, roll hold mode engagement
as ‘q’, and roll hold reference = 30 * sign(roll angle) as ‘r’. Figure 3
shows the fret simulator. We can see that even when condition (‘p’
and ‘q’) holds for two consecutive points, response is only required to
hold at the first point (where condition becomes true), for the require-
ment (REQ) to hold. The green color of the last row (REQ) indicates
that the requirement holds with the selected valuation of variables (it
would be red otherwise).

Having thus used the aids that fret provides for understanding
fretish requirements, we realized that [AP-003c-v1] did not cap-
ture our intentions. Instead of a trigger we wanted the response to
hold every time the condition is true and not only when it becomes
true from false. Thus, we rewrote the requirement as follows:
[AP-003c-v2]: Autopilot shall always satisfy (abs(roll angle) >
30 & roll hold mode engagement) ⇒ roll hold reference = 30 *
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Figure 3: Simulating requirement [AP-003c-v1]

Figure 4: Simulating requirement [AP-003c-v2]

sign(roll angle).
The response is now expressed as an implication. The require-

ment is no longer true in the scenario of Figure 3, as indicated by
the red color of the last row (REQ) in Figure 4. Version 2 already
seems closer to the intended semantics of the initial requirement, how-
ever, there is a temporal sub-property that we have not expressed
yet — it is hidden in the roll hold mode engagement variable. In
order to elicit the full meaning of the requirement, it is ideal to ex-
press explicitly all sub-properties through the fretish grammar. The
roll hold mode engagement variable captures the fact that there is a
mode of operation, i.e., the roll hold mode, and the scope of our
requirement only applies to the intervals in which roll hold mode
is true. The roll hold reference must be set to 30 degrees in the
direction of the roll angle at the time of roll hold mode engagement,
in other words, immediately upon entering the roll hold mode. We
unfold this subproperty within the fretish requirement as follows:
[AP-003c-v3]: when in roll hold mode Autopilot shall immedi-
ately satisfy (abs(roll angle) > 30) ⇒ roll hold reference = 30 *
sign(roll angle).

The fret semantics for requirement [AP-003c-v3] is shown in Fig-
ure 5. The requirement is ‘enforced’ in every interval where roll hold
holds. The ‘trigger’ defines the first point in the mode interval: when
roll hold becomes true from false. Response is ‘required’ to hold at
that same point.

Step 1: Formalization. The pmLTL formula that fret generates
for [AP-003c-v3] is an instantiation of the [in, null, immediately]
template key in Table 2:

Figure 5: fret semantics for requirement [AP-003c-v3]

Table 3: FRET to Model Variables mapping for Autopilot (abbr.
ap 12BAdapted/GlobalScope by global)

FRET name Model path

roll angle global/Autopilot/Roll Autopilot/Phi
roll hold reference global/Autopilot/Roll Autopilot/PhiRef cmd
roll hold global/Autopilot/Roll Autopilot/RollHold

Figure 6: Simulink model for requirement [AP-003c-v4]

(H(roll hold & (!FTP | (Y (! roll hold))) ⇒ (abs(roll angle) > 30 ⇒
roll hold reference = 30 ∗ sign(roll angle)))),
where FTP is a predicate that holds at the First Time Point of an
execution (equivalent to ¬ Y TRUE).

Step 2: Architectural mapping. To generate monitors and automati-
cally attach them at the right hierarchical level of the model, we need
architectural data from the model. For instance, for [AP-003c-v3],
we need the path, in the model hierarchy, of the Autopilot compo-
nent mentioned in fretish. Additionally, we need information about
the signals of the component, e.g., name, type (e.g., input, output),
datatype (e.g., boolean, double, bus) that correspond to the vari-
ables mentioned in [AP-003c-v3]. Our framework provides a mech-
anism to automatically extract the required data from a Simulink
model. The mapping of the variables used in [AP-003c-v3] is shown
in Table 3.

Steps 3 & 4: Generation of analysis code and Simulink monitors.
To translate [AP-003c-v3] into Lustre code, the pmLTL formula
generated by fret gets translated into the following cocospec code,
used by cocosim for analysis:

1 -- AP -003c-v3 requirement in CoCoSpec

2 guarantee H(( roll_hold and (FTP or (pre (not roll_hold))))

3 => abs(roll_angle) > 30 =>

4 roll_hold_reference = 30 * sign(roll_angle))

The cocospec code then gets compiled into a Simulink monitor
block, which is attached to the original model.

Steps 5 & 6: Analysis and counterexample generation. Require-
ment [AP-003c-v3] was shown to be invalid by the Kind2 model
checker. Kind2 returned the counterexample shown in Table 4, which
shows that at the time of roll hold mode engagement, (when T =
0.025, roll hold becomes true and the absolute value of roll angle
is greater than 30), roll hold reference is not set to 30 degrees in
the same direction as the roll angle, i.e., roll hold reference is
not equal to -30. Instead we noticed that at the time of roll hold
engagement, roll hold reference is equal to 0.0, which is the value
of roll angle at the previous step. Based on this counterexample we
modified the requirement as follows:

[AP-003c-v4]: when in roll hold mode Autopilot shall immedi-
ately satisfy (abs(roll angle) > 30) ⇒ roll hold reference = previ-
ous(roll angle), where previous is a function that returns the value
of roll angle at the previous time step. Requirement [AP-003c-v4]
was proven valid.

In order to understand why the output is based on the previous
value of roll angle, we looked at the Simulink model. Figure 6
shows the Simulink model responsible for returning the roll angle,
where u is the roll angle and E is the condition ‘not engaged in roll
hold mode’. If E is true, output y is equal to the previous value of
roll angle. Once the roll hold mode becomes active (E is false), the
value of output y is equal to pre y; y holds this value while roll hold
mode is active. Thus, the component holds the value of the roll angle
just before the activation of roll hold mode and not ‘at the time of
activation’. Thus, we believe that [AP-003c-v3] is not satisfied due
to an incomplete/erroneous model.

Note that we could not express the temporal subproperty previous
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Table 4: Counterexample of requirement [AP-003c-v3]

Inputs T = 0 T = 0.025
roll angle 0.0 -90.0
roll hold false true
Outputs
roll hold reference 3.0 0.0

roll angle of [AP-003c-v4] directly through the fretish language
and thus, we expressed it through an internal variable, which we de-
fined directly in cocospec.

4.1 Reliable tool integration

A key feature in the integration of fret and cocosim is the capa-
bility to generate cocospec code from pmLTL logic formulas. Our
translation keeps the structure of the original formulas, and is based
on defining pmLTL operators in cocospec. This process is described
in [15] for untimed operators. To support timed modifiers that con-
strain an operator’s scope to a specific interval [l, r], we have extended
the process described in [15] and created a library of timed operators
in Lustre. For instance for the timed version of O, we added the fol-
lowing nodes to the library:

1 --Timed Once: general case

2 node OT(const L: int; const R: int; X: bool;)

3 returns (Y: bool);

4 var D:bool;

5 let

6 D = delay(X,R);

7 Y = OTlore(L-R,D);

8 tel

9
10 --Timed Once: less than or equal to N

11 node OTlore(const N: int; X: bool; ) returns (Y: bool);

12 var C:int;

13 let

14 C = if X then 0

15 else (-1 -> pre C + (if pre C <0 then 0 else 1));

16
17 Y = 0 <= C and C <= N;

18 tel

The delay function delays input X by R time units to define the right
bound of the interval in which the valuation of X must be checked.
Once the input X has been delayed by R time steps, we can treat the
R bound as zero and use the OTlore (Once Timed less than or equal
to) node to check the valuation of X in the interval defined by the 0
(current) time step and the left bound L-R. OTlore is implemented
using an integer counter C, which counts the number of time steps
that occurred since the last occurrence of property X. If the event has
never occurred, the counter keeps its initial value of -1. Other time-
constrained operators are defined through OT using the usual temporal
logic equivalences.

To provide assurance that the cocospec code generated is correct,
we extend fret’s formula verification framework to also handle co-
cospec code. The framework presented in [7] automatically generates
test cases each consisting of an execution trace t, a template key k,
and an expected truth value e, reflecting the semantics of k applied to
t. Formulas corresponding to k are then evaluated on t using a model
checker, to ensure that the result agrees with e. In our extension
for cocospec, this step uses the Kind2 model checker. Our verifi-
cation framework helped us detect and correct discrepancies between
the cocospec generated formulas and the intended fret template key
semantics.

5 Analysis - Selected use cases and requirements

Our case study encompasses the following tasks: 1) eliciting require-
ments in fretish; 2) making the mapping between fretish variables
and model variables; 3) performing analysis; 4) interpreting counterex-
amples at requirements level; 5) interpreting requirements at model
level. Three researchers were involved: 1) a control engineer, consid-
ered the domain expert; 2) a requirements expert; and 3) a verification
expert. Tasks 1 and 2 were performed together by the requirements
and domain experts. Tasks 3 and 5 were performed by the verification
expert. Finally, task 4 was performed by the requirements expert.

The verification results are summarized in Table 7. The analysis
was carried out on a MacBook Pro with 3.1 GHz Intel Core i7 and
16 GB Memory, with a R2019b MATLAB/Simulink, and a v1.1.0
Kind2. Kind2 was configured to timeout after 2 hours. In this section,
we highlight analysis results of a subset of the LMCPS challenges
and discuss how we approached the challenging elements presented in
Section 3.

Table 5: Counter example of requirement [FSM-003]

Inputs T = 0
standby true
supported true
good true
state ap transition state
Outputs
STATE ap standby state

5.1 Requirements and Verification

Our presentation focuses on the following LMCPS components: FSM,
TUI, NN, and AP. We include the FSM and TUI challenges because
they exhibit cases of unrealizable requirements, as well as a require-
ment that we were not able to express directly in fretish. The NN
challenge describes a machine learning model. Verification of models
that are inferred by machine learning techniques is currently consid-
ered an open area for research. Finally, AP is the most complex of
the LMCPS challenges in terms of number and types of blocks used,
and its fretish requirements involve a variety of template keys.

FSM represents an abstraction of an advanced autopilot system in-
teracting with an independent sensor platform for the purpose of en-
suring a safe automatic operation in the vicinity of hazardous obsta-
cles. The autopilot system, tightly integrated with the vehicle flight
control computer, is responsible for commanding a safety maneuver
in the event of a hazard. The sensor is the reporting agent to the
autopilot with observability of imminent danger.

All FSM requirement examples were written in fretish using
the [null, null, always] semantic key pattern. Let us look into the
following FSM requirements:

[FSM-002] Natural Language: The autopilot shall
change states from TRANSITION to STANDBY when
the pilot is in control (standby).
[FSM-002] fretish: FSM shall always satisfy
(standby & state = ap transition state) => STATE
= ap standby state.

[FSM-003] Natural Language: The autopilot shall
change states from TRANSITION to NOMINAL when
the system is supported and sensor data is good.
[FSM-003] fretish: FSM shall always satisfy (state =
ap transition state & good & supported) => STATE =
ap nominal state.

The valuations ap transition state, ap standby state,
ap nominal state of the state and STATE variables represent
the TRANSITION, STANDBY, and NOMINAL states of the
autopilot. Requirement [FSM-002] was shown to be valid. However,
when checking requirement [FSM-003], analysis returned the
counterexample shown in Table 5. It is interesting to note that the
valuation of the input variables of the counterexample satisfies the
preconditions of both [FSM-002] and [FSM-003]. While these
requirements are not mutually exclusive, their expected responses
are conflicting, which makes them unrealizable [16]. If we form a
weaker property, i.e., strengthen the precondition as follows (state
= ap transition state & good & supported & !standby) (notice the
addition of !standby), then [FSM-002] and [FSM-003] become
mutually exclusive and requirement [FSM-003] is proven valid.

Note that non-mutually-exclusive requirements are not necessarily
problematic, since requirements are often complementing each other
to make up a system’s specification. In fact, we found several pairs
of requirements that were not mutually exclusive in the LMCPS chal-
lenge.

TUI represents a flight software utility for computing the integration
of a signal. The algorithm executed by the utility bounds the allowable
integration range with a position limiter. The integrator is in normal
operation when it is not in reset mode, and the output is within the
specified limits.

[TUI-004] Natural Language: After 10 seconds of computation
at an execution frequency of 10 Hz, the output should equal 10 within
a +/-0.1 tolerance, for a constant input (xin = 1.0) and the sample
delta time T = 0.1 seconds when in normal mode of operation.

This requirement could not be expressed directly in fretish. The
“After 10 seconds of computation at an execution frequency of 10 Hz”
part of the requirement constitutes a condition that must persist for
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a time duration (10 seconds). Such conditions are not yet supported
in fretish.

NN is a two-input, single-output, two-hidden-layer feed-forward non-
linear neural network. Neural networks of this form are common util-
ities in modeling and simulation for capturing complex numerical de-
pendencies. In this challenge, a single variable, z, is computed based
on two independent parameters x and y. This challenge comes with a
truth table in the form of a Matlab matrix file with reference values xt,
yt and zt. The NN specification file consisted of four requirements. We
show below the fretish version of requirement [NN-004], for which
we used the for 200 sec metric timing, which resulted in CoCoSpec
code that uses the once timed (OT) metric LTL operator.

[NN-004]: NN shall for 200 sec satisfy ( x = xt & y = yt =>
AbsoluteErrorZtMinusZ ≤ 0.01).

Below is the generated CoCoSpec code for [NN-004]:

1 var AbsoluteErrorZtMinusZ: real = if (zt -z) > 0.0 then zt - z else z - zt;

2
3 guarantee "NN004" OT(200,0,FTP) => ( x = xt and y = yt => AbsoluteErrorZtMinusZ

<= 0.01 );

Kind2 and SLDV did not return an answer for any of the four NN
requirements.

AP AP represents a complete system and, as shown in Table 1, it
contains Simulink blocks that involve non-linearities, non-algebraic
math, and manipulation of matrices. AP is a full six degree of free-
dom simulation of a single-engined high-wing propeller-driven airplane
with autopilot. A six degree of freedom simulation enables move-
ment and rotation in the three-dimensional space. The AP model
and requirements also capture the plant mode of the airplane, i.e.,
the physical model, as well as environmental aspects such as wind
that influence the motion of the airplane. AP requirements define
the required behavior of the model in terms of changes in the three
perpendicular position axes (forward/backward, left/right, up/down)
combined with changes through rotation (yaw, pitch, and roll).

In the AP and FSM challenges, we performed modular analysis,
since the specification generation mechanism of fret provides speci-
fications at any desired level along with full traceability information
regarding where the corresponding monitor should be deployed in the
model. Additionally, the cocosim compiler preserves the hierarchy
of the model which allows performing analysis at different hierarchy
levels.

The AP model is a closed loop system that contains an algebraic
loop involving all top level components. An algebraic loop occurs when
there is a circular dependency of signals/ variables (block outputs and
inputs) in the same time-step. Lustre forbids such constructs; no cir-
cular dependencies are allowed. Strangely though, Kind2 was not
able to detect the algebraic loop. We contacted a Kind2 developer
and confirmed that there is a bug in the algebraic loop detection al-
gorithm. Once the bug was fixed, top-level analysis was not possible
with Kind2. Simulink, on the other hand, treats algebraic loops as
algebraic constraints which it solves numerically by using the ODE
(Ordinary Differential Equation) solver. However, this is not consid-
ered a good programming practice since the behavior is defined by the
simulator engine.

As shown in Table 62, we were able to get results only for the re-
quirements that were analyzed against a sub component (local scope,
e.g., Roll AP). Requirements that were analyzed against the top AP
component (global scope), e.g., [AP-000] were either unsupported or
undecided. In particular, analysis with Kind2 was not supported due
to the algebraic-loop, while analysis with SLDV was undecided.

5.2 Challenges

Vectors and Matrices SMT solvers do not typically support multi-
dimensional signals as native objects. Signals and matrices need to
be split into individual scalar variables making analysis harder de-
pending on the operations that need to be performed. For instance,
the EB and AP challenges use blocks that compute the inverse of
matrices, while AP also manipulates quaternions with some advanced
quaternion operations (e.g. Quaternion Modulus, Quaternion Norm
and Quaternion Normalize).

We experienced the same problem at the level of requirements.
In order to generate specifications that can be used for analysis by
SMT solvers, we had to encode and expand matrix operations as non-
matrix formulas. For instance, requirement [EUL-001] describes the

2We also used SLDV but the MathWorks license prevents publication of empiri-
cal results comparing with SLDV, so we omit the SLDV results from Table 6.

Table 6: AP Analysis Results with Kind2

Reqs Scope Kind2 Result Kind2 Time

[AP-000] Global Unsupported
[AP-001] Roll AP Valid < 1 sec
[AP-002] Roll AP Valid < 1 sec
[AP-
003a]

Roll AP Invalid < 1 sec

[AP-
003b]

Roll AP Invalid < 1 sec

[AP-003c] Roll AP Invalid < 1 sec
[AP-
003d]

Roll AP Valid < 1 sec

[AP-004] Global Unsupported
[AP-005] Global Unsupported
[AP-006] Global Unsupported
[AP-007] Roll AP Valid < 1 sec
[AP-008] Roll AP Valid < 1 sec
[AP-010] Global Unsupported
Total running time CoCoSim: 40.589s

computation of the DCM321 matrix as the product of the 3x3 Eu-
ler Roll Rotation and the 3x3 Euler Pitch Rotation matrices. In or-
der to perform analysis on this requirement, we specified it in fretish
by first decomposing it into nine sub-requirements, i.e., one for each
element of the DCM321 matrix. Such decomposition naturally results
in a considerably larger specification, as compared to the original nat-
ural language requirement.

Non Linear and Non Algebraic Blocks Trigonometric functions, ex-
ponential functions, and the logarithm are typically not supported
by SMT solvers. To be able to perform meaningful analysis on LM-
CPS models that contain trigonometric and square root blocks, we
abstracted their behavior by providing a surrogate version, which is a
sound abstraction. For instance, instead of block sqrt, which defines
the signal x = sqrt(y), we encoded properties x ∗ x = y ∧ x ≥ 0. Sim-
ilarly for trigonometric functions, we provided bounds for the values
depending on the input range.

Continuous time blocks Our analyses are based on the synchronous
dataflow model and can only address discrete-time components.
Thanks to the modular feature of our analyses, requirements asso-
ciated to discrete-time components can be properly addressed. How-
ever, in the case of continuous-time components (defined using con-
tinuous blocks such as Integrators, Transfer functions, or State space
blocks), we first replace them with their discrete counterparts using
Simulink discretization functions.

Complex requirement formalizations As shown in Table 1, some tem-
plate keys like [in, regular, always] correspond to really complex for-
mulas. This template key was used for the specification of require-
ments [AP-004a] and [AP-010a] of the AP challenge. The scope
of these requirements is the top level component of the model, and
thus, they could not be analyzed by Kind2 (due to the algebraic loop)
nor by SLDV, which returned undecided for both requirements. Note
that however even simpler formalizations, such as the ones that corre-
spond to the [null, null, always] key template, could not be analyzed
globally. We also tried to verify specifications that correspond to [in,
regular, always] at a local level and interestingly, we were able to an-
alyze them, which shows that modular verification can be effective
even for complex specifications.

6 Lessons Learned

The application of our framework to an externally-provided and chal-
lenging system has been very informative. We summarize our experi-
ence and lessons learned below.

a) Can LMCPS requirements be captured in fret? We cap-
tured 69 out of 74 LMCPS requirements in fret. As mentioned, we
were not able to formalize requirement [TUI-004] that contains a
temporal condition. Additionally, several requirements refer to the
previous value of a variable (e.g., see [AP-003c-v4]), defined in
pmLTL with the Y operator, in Lustre with the pre operator, and
in Simulink as a delay block. Currently, fretish cannot express ‘pre-
vious value of a variable’. To shortcut this limitation, we used inter-
nal/auxiliary variables which we defined at the cocospec level, but a
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Table 7: LMCPS verification results. NR: #requirements,
NF : #formalized requirements, NA: #requirements
analyzed by Kind2. Analysis results categorized by
Valid/INvalid/UNdecided. Timeout (TO) was set to 2
hours

Name NR NF NA Kind2 V/IN/UN Kind2 t(s)

TSM 6 6 6 5/1/0 37.7
FSM 13 13 13 7/6/0 141.1
TUI 4 3 3 2/1/0 19.2
REG 10 10 10 1/5/4 TO
NLG 7 7 7 0/0/7 TO
NN 4 4 4 0/0/4 TO
EB 5 3 3 0/0/3 TO
AP 14 13 8 5/3/0 40.6
SWIM 3 3 3 2/1/0 25
EUL 8 7 7 1/6/0 43

Total 74 69 64 23/23/18

fretish solution would be desirable. Additionally, we did not capture
the following requirements: 1) [AP-009] since it was out of scope of
the Simulink model; 2) [EB-003] since it is trivial; 3) [EUL-005] and
[EB-005] were unclear: we were not able to interpret their meaning
even with the help of the domain expert.

b) Is fretish intuitive? fret provides 112 semantic template
keys out of which we used only 7. Among these template keys, the
[null, null, always] key was used the most (75% of the formaliza-
tions). We have had a similar experience with a NASA mission that
we collaborate with: their requirements fall into recurring patterns.
We are currently extending fret with the capability to define typ-
ical requirement patterns within a domain or project, and allowing
users to import and customize patterns within the editor. This makes
requirements capture a more natural and intuitive process.

c) Are fret explanations useful? We extensively relied on the
semantic descriptions and diagrammatic representations, as well as
the fret simulation capabilities in order to understand the meaning of
requirements throughout the LMCPS study. It helped us identify and
understand several semantic nuances of the fretish fields. The use
of modes and condition fields as first-level constructs of the fretish
language was particularly useful. As shown in the elicitation phase of
[AP-003c], unfolding the roll hold engagement subproperty through
the fretish mode field allowed us to elicit the full meaning of the
requirement (see [AP-003c-v2] and [AP-003c-v3] requirements in
Section 4).

d) How effective is the fret-cocosim integration? We were
able to generate specifications and traceability data for all LMCPS
challenges. These were used to automatically generate and attach
monitors on the Simulink models (through cocosim). We found the
ability to interpret and trace counterexamples both at the model and
requirement levels particularly useful. In some cases, counterexamples
uncovered conflicting requirements, and the model was not needed
for understanding the problem (see Section 5). The fret simulator
was particularly useful in understanding these counterexamples. In
other cases, counterexamples needed to be interpreted at the model
level, since they exposed behaviors in the model that violated the
requirements.

e) How did we deal with model and specification complex-
ity? To deal with complexity we performed modular analysis when-
ever possible, i.e., for non-system requirements (requirements that
could be applied locally). Our architectural mapping approach allows
us to deploy cocospec specifications at different levels of the model
behavior. This is especially important for complex models where ver-
ification does not scale for global scopes. We applied modular veri-
fication to 20 out of the 69 requirements. For instance, in the FSM
challenge problem, we generated three different contracts that we de-
ployed at three different hierarchical levels of the model. Similarly,
in the AP challenge we generated two different contracts; one that
we deployed at the top level component of the model and one that
we deployed at a sub-component level. We were able to analyze all
properties that were specified locally, but none of the properties that
were specified globally.

f) Which types of property reasoning/checking did we find
helpful? Having a tight integration between requirement and veri-
fication activities allows us to use different approaches to interpret
violated properties. In particular, we found useful the combination of
reasoning at the level of requirements and counterexample simulation
at the model level. When a property was shown to be invalid, we tried
to understand the reason; i.e., is it because of a faulty requirement

or a faulty model? Since in most cases, our formalized requirements
were invariants of the form H (A ⇒ B), we used two approaches: 1)
check a weaker property, e.g., by strengthening the preconditions, i.e.,
A′ ⊂ A and check whether the invariant H (A′ ⇒ B) is satisfied, and
2) check feasibility of B with bounded model checking, i.e., H (¬B), in
which case the model checker returns counterexamples that could help
construct stronger preconditions for B to be satisfied. Our case study
showed that using these approaches was helpful for reasoning about
violated properties. Furthermore, simulation of counterexamples was
helpful for identifying weaker properties and producing meaningful
reasoning scenarios.

Additionally, we used cocospec modes to perform vacuity check-
ing [17]. A cocospec mode has preconditions that describe the ac-
tivation of the mode (Requires) and actual conditions to be checked
(Ensures) of the form H (R ⇒ E). Our case study showed that it is
interesting to check whether the activation of a mode R is reachable.
If not, the property is trivially true. So, in terms of analysis, show-
ing that R is reachable allows us to have a better understanding of
whether the property is meaningful for the current model. For in-
stance, we discovered that in the AP challenge, one of the modes was
never reachable.

g) Were the abstraction techniques useful? We used ab-
stractions of non-linear functions, e.g., trigonometric functions and
the sqrt function, to perform analysis with the Kind2 model checker.
This proved to be helpful for three challenges: REG, SWIM, EUL.
For instance, in the SWIM case study we were able to prove two more
requirements by using a square root abstraction. In other cases, for
instance in the EUL challenge, the abstractions would generate non-
sensical counterexamples. For example, when we abstracted the co-
sine function with the interval [-1,1], we got the following nonsensical
counterexample: cos(0) = 0.

7 Related Work

Our poster paper [15] describes the technical parts of the fret-
cocosim integration: 1) the fret interface through which the ar-
chitectural mapping can be performed, 2) the library of (non-metric)
pmLTL operators that we defined, 3) the generation of Simulink mon-
itors through cocosim. The focus of this paper is very different; it
describes in detail the LMCPS study and discusses challenges and
lessons learned.

The components of the LMCPS challenge have also been analyzed
in [3]. However, that work focused on comparing the efficacy of veri-
fication tools for model testing versus model checking (the latter us-
ing QVtest from QRA Corp). In contrast, our work focuses more
on support for requirements elicitation and formalization, though we
also performed model checking using Kind2 and SLDV. There ap-
pears to be several differences in our formalization of requirements
versus [3]. For example, in their companion material (reference 2 of
[3]), they formalize [AP-003c], which they call R1.3, as the invariant
G{0, T}(Phi > 30 ⇒ PhiRef = 30). We believe that this misrepre-
sents the part of the natural-language requirement that mentions that
the roll angle Phi should be considered at the time of roll-hold engage-
ment, as in our [AP-003c v3]. The capability to explore the exact
meaning of the requirements that are written in fretish through pro-
vided explanations gives us confidence in our requirements capture.
Moreover, our framework formalizes requirements automatically, spar-
ing its users the error-prone effort of producing complex formulas for
elaborate template keys.

Similar to FRET, the SpeAR [18], ASSERT™ [19], STIMULUS [20],
RERD [21] and EARS-CTRL [22] tools provide natural-language like
formal languages to express requirements and properties. The AR-
SENAL tool [23] attempts to formalize general natural language re-
quirements, as opposed to FRET and the others mentioned where a
constrained natural-language like formal language is used to express
requirements. Except for STIMULUS, they do not appear to han-
dle metric time, so would not be able to express some of the neural
network properties. The goal of EARS-CTRL is to synthesize con-
trollers whereas formalizations in this paper are used with cocosim
to verify the Simulink models against requirements. SpeAR and AS-
SERT can perform semantics checks on requirements, such as consis-
tency and entailment, producing counter examples when such checks
are violated. Checking for requirements realizability is in our plans.
ASSERT generates test cases, and STIMULUS simulates sets of re-
quirements. None of the tools automatically synthesize monitors so
that models can be model checked against requirements.
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8 Conclusions

The LMCPS benchmark provides a valuable case study to evaluate
requirements elicitation and analysis tools. We found that using an
end-to-end automatic framework significantly simplifies requirements
elicitation and model analysis. Requirements formalizations can eas-
ily become complex, and writing complex formulas by hand, or trans-
lating them in other logics can be hard and error-prone. Eliciting
requirements with unambiguous and as-intended semantics is not an
easy task. Explanations and interactive exploration of written re-
quirements is a great tool for facilitating this task.

The ultimate purpose of formal requirements is to enable analysis.
Requirements of CPSs can be complex to analyze, so it is important
to provide modular analysis techniques to achieve scalability. Space
projects at NASA Ames are currently starting to use our framework
and we have already received valuable feedback. For example, desired
are customizable requirement patterns and the ability to express that
a condition persists until some event. The advantage of a close col-
laboration with mission scientists during the development of require-
ments will allow us to further evaluate and improve the usability of
our framework.
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