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Global Propagation of Transition Cost for
Fixed Job Scheduling

Wang Ruixin1 and Barnier Nicolas2

Abstract. We present a new Constraint Programming (CP)
model to optimize the transition cost of Fixed Job Scheduling
(FJS), which improves our previous approach based on per-
resource constraints by orders of magnitude. Our new model
relies on a much tighter relaxation which encompasses all re-
sources to directly propagate on the global cost, thanks to the
MinWeightAllDiff optimization constraint.

We also present several strategies which exploit the opti-
mal matching computed by the MinWeightAllDiff constraint
to efficiently guide the search. The resulting CP solver, us-
ing parallel cooperation between the strategies, consistently
outperforms a state-of-the-art MIP solver on real instances of
an FJS application, the Gate Allocation Problem, at Paris-
Charles-de-Gaulle international airport.

INTRODUCTION
Fixed Job Scheduling (FJS) [7] is an important resource allo-
cation problem with many applications, where jobs, or tasks,
with fixed start and end times must be processed on differ-
ent machines, or resources. Overlapping tasks must execute
on different resources and the set of possible resources for a
given task may be restricted. Standard objectives for the FJS
problem include the maximization of the number of (possi-
bly weighted) processed tasks or the minimization of the cost
associated with assigned resources.

For FJS applications like the Gate Allocation Problem
(GAP) [4], which consists in assigning airport gates to air-
craft, the execution of a plan often deviates from the schedule
because of various unpredictable operational events. In this
context, a more beneficial criterion is to optimize the robust-
ness of the plan to absorb potential delays and avoid costly
disruptions. Despite its practical importance, the research on
the robustness of FJS or the GAP is very limited.

In [16], we presented a standard Constraint Programming
(CP) approach to optimize the robustness of FJS as defined
by [4], which proposes to minimize the variance of idle times,
or equivalently the sum of their squares, to balance and spread
them over time and resources. Our main contribution was
the introduction of the new idlecost constraint to propagate
the idle times costs, or any positive transition cost, on each
resource independently.

However, the corresponding relaxation is not of good qual-
ity w.r.t. the global lower bound, as a task may be simulta-
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neously scheduled on all its compatible resources. Moreover,
our CP approach was not able to compete with the Integer
Linear Programming (ILP) model of [5] in terms of execution
times and size of solvable instances.

To obtain a competitive CP solver, we introduce in this arti-
cle a new model based on the MinWeightAllDiff optimization
constraint [6] to compute the lower bound of a Path Cover
(PC) of the compatibility graph (cf. Section 1.6) of the prob-
lem. This relaxation is much tighter as the constraint directly
propagates on the total cost, considering all resources and all
tasks simultaneously. We also describe how the optimal PC
computed by the constraint can efficiently guide the search
strategy and show that our new approach outperforms our
previous one by orders of magnitude on the GAP, as well as a
state-of-the-art MIP solver on real instances at Paris-Charles-
de-Gaulle (Paris-CDG) international airport.

In the following, we first present an integer model for FJS
with transition cost in Section 1, then we describe in Section 2
our new CP model based on an incremental implementation of
the MinWeightAllDiff constraint and two linked sets of vari-
ables. Section 3 then presents several search strategies and
their parallel cooperation, which is able to outperform our
previous approach and MIP solvers on real instances of the
GAP as shown in Section 4. We conclude and discuss further
works in the last section.

1 FIXED JOB SCHEDULING
The scheduling of tasks with fixed start and end times on
non-identical resources is a versatile NP-complete problem [1]
which occurs in many applications beside the GAP, like pro-
cessors scheduling or staff rostering. Though various objec-
tives can be associated with this problem, our approach is
dedicated to optimize the transition cost between tasks, par-
ticularly to obtain robust solutions w.r.t. delays.

The next sections present the integer model used in our
study (whereas classic ILP approaches consider boolean vari-
ables as in [4]), with the introduction of fictive tasks to model
the opening and closing of resources, and of the compatibility
graph used to define our new CP model in Section 2.

1.1 Instance
An instance of the FJS problem is defined by:

• T = {t1, . . . , tn} a set of n tasks, with ∀ti ∈ T :
– tsi and tei the start and end times of task ti;

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



– Ri ⊆ R a set of compatible resources on which the task
can be executed.

• R = {r1, . . . , rm} the set of m resources, with ∀rj ∈ R:
– rsj and rej the opening and closing times of rj . However,

all resources are considered available during the same
period3 in the following, i.e. ∀j, rsj = rs and rej = re.

– Tj = {ti ∈ T s.t. rj ∈ Ri} the set4 of compatible tasks
that can be executed on resource rj .

Without loss of generality, the tasks of T are supposed to be
numbered by increasing start time, i.e. ∀i < i′, tsi ≤ tsi′ .

1.2 Fictive Tasks and Renumbering
As already mentioned, our model is designed to minimize the
variance of idle times. To obtain a uniform formulation of our
model, even when the idle time considered occurs between
the opening of a resource and its first task or between its last
task and its closing, we introduce 2m additional fictive tasks
with a singleton compatible resource set and null duration
corresponding to the openings and closings of the m resources.

We accordingly renumber the tasks of T and the resource
sets Ri, while preserving the ordering by increasing start time:

• openings: t1, . . . , tm with tsj = tej = rs and Rj = {rj};
• actual tasks: tm+1, . . . , tm+n with Rm+i equal to Ri of Sec-

tion 1.1 (before the renumbering);
• closings: tm+n+1, . . . , t2m+n with tsm+n+j = tem+n+j = re

and Rm+n+j = {rj}.

The task set is therefore redefined by:

T = {t1, . . . , tm︸ ︷︷ ︸
openings

, tm+1, . . . , tm+n︸ ︷︷ ︸
actual tasks

, tm+n+1, . . . , t2m+n︸ ︷︷ ︸
closings

}

We also define the subsets of predecessors T s, successors T e

and actual tasks T a (i.e. T in the previous section):

T s = {t1, . . . , tm+n}
T e = {tm+1, . . . , t2m+n}
T a = {tm+1, . . . , tm+n}

We also extend each set Tj of compatible tasks to include its
fictive opening tj and closing tm+n+j .

1.3 Decision Variables
A solution to an FJS problem consists in assigning a resource
to each task while satisfying the non-overlapping constraints
of equation (1) described in the next section. As the fictive
tasks are already assigned to their associated resource, we
define the set of decision variables over actual tasks only:

Definition 1 (Resource Variables) A solution to an FJS
problem is represented by a set of resource variables:

X = {xi ∈ {j s.t. rj ∈ Ri}, ∀ti ∈ T a}

where xi = j iff task ti is assigned to resource rj.
3 Without loss of generality, as the unavailability of a resource can

be modelled by an additional task with a singleton resource set.
4 Redundantly defined from Ri to simplify notations afterwards.

1.4 Non-Overlapping Constraints
The only type of constraints of this essential version of the
problem is the non-overlapping of the tasks scheduled on the
same resource. As tasks execution times are fixed, we require
that overlapping tasks are assigned to different resources:

xi ̸= xi′ , ∀ti ̸= ti′ ∈ T a s.t. [tsi , tei [∩[tsi′ , tei′ [ ̸= ∅ (1)

However, specific applications of the fixed tasks scheduling
problem like the GAP are often described with many addi-
tional hard and soft constraints to account for operational
requirements (e.g. a large aircraft might occupy two adjacent
stands) or user preferences (e.g. favor terminal gates over re-
mote apron stands).

1.5 Transition Cost
Many different kind of costs can be taken into account to op-
timize the allocation of fixed tasks on non-identical resources.
For our target application, the GAP, one of the most crucial
objectives is the robustness of the schedule, as air traffic op-
erations can be burdened by many uncertainties such as late
arrival or departure. To be able to absorb those possible de-
lays, [4] proposes to minimize the variance of idle times, which
tends to balance them over resources and time while allowing
necessary short or large pauses required by some instances.

Since the mean of the idle times is constant for our problem
(as the overall duration of tasks and availability of resources
are constant, and all tasks must be scheduled), minimizing
their variance amounts to minimizing the sum of their squares:

cost =
∑

∀ti∈T s

(next(ti)s − tei )
2 (2)

where function next : T s 7→ T e returns the successor of a
task, i.e. the next task assigned on the same resource, closings
having no successor and openings no predecessor.

More generally, our approach is generic and able to optimize
the sum of the transition costs cti,ti′ between successive tasks
ti ∈ T s and ti′ ∈ T e, with any positive cost matrix C:

cost =
∑

∀ti∈T s

cti,next(ti) (3)

1.6 Global Compatibility Graph
To model the FJS transition cost in our CP solver, as de-
scribed in Section 2, we define the notion of compatibility on a
pair of tasks, then of the Global Compatibility directed acyclic
Graph (GCG) of the whole problem.

The compatibility predicate indicates whether two ordered
tasks can both be scheduled on the same resource:

Definition 2 (Compatibility) The compatibility predicate
γ : T s × T e 7→ B is defined over all pairs of ordered tasks ti
and ti′ s.t. i < i′ by:

γ(ti, ti′) = (Ri ∩Ri′ ̸= ∅) ∧ (tei ⩽ tsi′)

If γ(ti, ti′) holds, then ti and ti′ are said to be compatible.

We can then define the GCG of the whole problem that
represents each task (actual and fictive) as a node and each
ordered pair of compatible tasks as an arc weighted by their
transition cost:
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Definition 3 (Global Compatibility Graph (GCG))
The weighted Global Compatibility Graph G = (V,E) of a
FJS problem is defined by:

• V = {vi,∀ti ∈ T }
• E = {(vi, vi′),∀ti ∈ T s, ∀ti′ ∈ T e, s.t. i < i′ ∧ γ(ti, ti′)}
• w : E 7→ R≥0 with w((vi, vi′)) = cti,ti′

We will take cti,ti′ = (tsi′ − tei )
2 to optimize the robustness

of GAP instances in Section 4. We will also use the following
notation:

• Vj = {vi, ∀ti ∈ Tj}, ∀rj ∈ R, i.e. the set of nodes corre-
sponding to tasks compatible with resource rj ;

• Gj = G[Vj ] the subgraph of the GCG induced by the nodes
of resource rj ;

• V s, V e and V a the restriction of V to T s, T e and T a;
• N+(vi) ⊂ V e the set of successors of node vi.

2 CP MODEL
In [16], we presented a standard CP approach to optimize
the robustness of FJS, with AllDifferent constraints on all
maximal cliques of the interval graph of the tasks to enforce
equation (1), and symmetry breaking among resources and
tasks. Our main contribution was the introduction of the new
idlecost constraint to propagate the idle times cost (or any
positive transition cost), on each resource independently.

Particularly, an incremental shortest path algorithm was
used on the restricted compatibility graph Gj (see Section 1.6)
of the possible (and assigned) tasks of each resource rj to
compute the lower bound of its contribution to the global
cost. However, the resulting CP solver was only able to solve
small instances up to 40 tasks and could not compete with
the ILP model of [5], because the lower bound of the global
cost can be O(m) times worse than the actual bound when
the uniqueness of task assignment is relaxed.

To improve our CP approach, we introduce a new model
based on a much tighter relaxation: we compute the Mini-
mum Weight Path Cover (MWPC) [12] of the GCG (cf. Def-
inition 3) in polynomial time, thanks to an optimization con-
straint that directly propagates on the total cost, consider-
ing all resources and all tasks simultaneously. More precisely,
MWPC in a Directed Acyclic Graph (DAG) can be reduced to
the Linear Assignment Problem (LAP), solvable by the Hun-
garian method [11] in O(|V s||E|), with |V s| = |T s| = n+m.
[14] describes how this algorithm can be used to achieve Gen-
eralized Arc Consistency (GAC) for the MinWeightAllDiff op-
timization constraint which can be posted on successor vari-
ables of the tasks to model the corresponding LAP.

Even if much tighter than the former relaxation, an MWPC
is not in general a solution to FJS, as consistency on resources
along each path is not taken into account. So resource vari-
ables are still necessary in our new model, as well as chan-
nelling constraints to link them with the successor variables.

In the following, we first present how the optimization of
the transition cost of FJS can be relaxed to MWPC, which
is modelled with successor variables and reduced to the LAP.
Then we describe our incremental version of the MinWeight-
AllDiff constraint and the channelling constraints that link
the successor and resource variables. The remaining of our
new model is identical to [16] and therefore omitted.

2.1 Relaxation of FJS to Path Covering
In the GCG, a solution to the FJS problem corresponds to m
vertex-disjoint simple paths (vj , . . . , vm+n+j), ∀j ∈ [1 . . m],
joining the opening vj to the closing vm+n+j of each resource
rj while covering all vertices exactly once. Therefore, an op-
timal solution to the FJS w.r.t. the cost defined by equa-
tion (3) corresponds to a set of m such paths with minimal
total length.

More generally, a set of vertex-disjoint simple paths that
covers all vertices of an unweighted directed graph is called a
vertex-disjoint Path Cover (PC), whose objective is to mini-
mize the number of paths [12]. For the GCG of an FJS prob-
lem, there must be exactly m paths in any minimal PC, as
there are exactly m sources vj , ∀j ∈ [1 . . m], and m sinks
vm+n+j (corresponding to the opening and closing of all re-
sources). So we can use a variant of the PC problem called
the Minimum Weight Path Cover (MWPC) whose objective
is to produce a cover that minimizes the total weight of its
edges.

We then obtain a relaxation of the FJS problem which is
much tighter than the one of [16] w.r.t. the lower bound of
the total cost, as all tasks are scheduled exactly once, instead
of possibly |Ri| ≤ m times for each task ti. However, an
MWPC is not in general a solution to FJS, as the consistency
on resources along a path is not entailed by the model:

• A path starting at vj , corresponding to the opening of re-
source rj , may end at vm+n+j′ , with j′ ̸= j, the closing of
another resource, e.g. if ∃ti ∈ T a s.t. {rj , r′j} ⊆ Ri.

• More generally, if γ(ti, ti′)∧γ(ti′ , ti′′), nodes vi, vi′ and vi′′

can succeed each other along the same path, even though
it does not imply that Ri ∩Ri′′ ̸= ∅, which is necessary to
assign ti and ti′′ on the same resource

To obtain an exact FJS model, resource variables are kept in
our new model and channelling constraints must be added, as
explained in Section 2.4, to link them with the successor vari-
ables introduced in Section 2.2, which model the MWPC on
the GCG. To implement the minimization constraint between
the successor variables and the cost, we first reduce MWPC
to the Linear Assignment Problem in the next section.

2.2 Successor Variables and Reduction to
the Linear Assignment Problem

A PC in the GCG can be modelled by m+n variables yi that
represent the successor of each node vi in V s, with a domain
equal to the indices of its possible successors:

Definition 4 (Successor Variables) A PC in the GCG of
an FJS problem is represented by the following set of successor
variables:

Y = {yi ∈ {i′, ∀vi′ ∈ N+(vi)}, ∀vi ∈ V s}

where yi = i′ iff next(ti) = ti′ .

We will denote dom(yi) the current domain of variable yi.
Note that the union of the domains of Y must be equal to

the indices of V e, i.e.
∪

yi∈Y dom(yi) = [m+1 . .2m+n], as all
actual tasks (with indices in [m+1 . .m+n]) have at least one
predecessor (the openings of its compatible resources) and all
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closings (with indices in [m + n + 1 . . 2m + n]) as well (its
corresponding opening and compatible tasks).

To obtain a valid PC, the variables of Y must have dis-
tinct values, such that the assignment is a perfect matching
between the m+n variables and the m+n values. So finding
an MWPC on G reduces to the Linear Assignment Problem
(LAP) with cost

∑
∀vi∈V s w((vi, vyi)), i.e. the cost of the FJS

in equation (3).
We can model an MWPC with the MinWeightAllDiff global

optimization constraint introduced by [6], for which [14] pro-
poses a GAC algorithm based on the Hungarian algorithm.

2.3 The MinWeightAllDiff Constraint
To constrain the transition cost of FJS, we add to our model a
MinWeightAllDiff constraint over the successor variables and
the global cost, where the contribution of an assignment yi =
i′ is defined by w′(i, i′) = w((vi, vi′)) = cti,ti′ for all ordered
pairs of compatible tasks ti and ti′ with i < i′:

MinWeightAllDiff(Y, w′, cost) (4)

which is satisfied when variables of Y have distinct values and
cost =

∑
∀yi∈Y w′(i, yi). We will denote [lb . . ub] the current

domain of the cost.
[14] describes how the Hungarian algorithm can be used to

compute lb, then how the variables of Y can be pruned to
withdraw values that only belong to assignments exceeding
ub. To our knowledge, there is no implementation of the Min-
WeightAllDiff constraint in any of the main publicly available
CP solvers. Therefore, we implemented an incremental version
of the Hungarian algorithm for the FaCiLe OCaml constraint
library [2], based on the C ++ source code of [13], to compute lb
in O(|Y|d), with |Y| = n+m and d =

∑
∀yi∈Y |dom(yi)| = |E|.

Our constraint propagates only when edges belonging to the
previous minimal matching are removed: the remaining as-
signments are kept and augmented until a new perfect match-
ing is obtained, then the optimal matching is computed and
a failure is triggered if its weight is strictly greater than ub.

As the results obtained with the computation of lb alone
outperformed by orders of magnitude our previous ap-
proach [16], we postponed to a later study the implementation
of the pruning of Y described in [14] and the assessment of
potential additional speed-ups for FJS. Note that the Min-
WeightAllDiff constraint is intended for constraint programs
that minimize the assignment cost, so the constraint does not
compute ub (nor prunes successor values w.r.t. lb). However,
the same algorithm could be used to implement a maximiza-
tion version and achieve BC for the cost and GAC for Y.

However, as mentioned in Section 2.1, a solution to the
LAP (therefore an MWPC), is generally not a solution to the
FJS problem and variables of Y must be constrained with the
resource variables X as described in the next section.

2.4 Channelling Constraints
To obtain valid FJS solutions, implication constraints that en-
sure resource consistency along each path of an MWPC must
be added to link successor and resource variables. Moreover,
a task succeeds to another one iff the hole (see Definition 5)
between them is empty, so additional propagation rules can
be associated with each resource to improve our model.

2.4.1 Resource Consistency
As mentioned in Section 2.1, each path of a PC must connect
the opening tj to the closing tm+n+j of a resource rj , and all
tasks in-between must be assigned to rj to obtain a valid FJS
solution. Therefore, the following d channelling constraints
must be added to our model to ensure that successive tasks
are assigned to the same resource:

yi = j ⇒ xi = xj , ∀yi ∈ Y,∀j ∈ dom(yi) (5)

where resource variables xi of X = {xm+1, . . . , xm+n} are
extended to openings, i.e. ∀j ≤ m, xj = j, and closings, i.e.
xm+n+j = j, with bound variables. Note that we use arc-
consistent equality constraints (instead of bound-consistent
ones) on the RHS of the implication to improve the filtering
of successor variables whenever the contraposition holds, i.e.
xi ̸= xj ⇒ yi ̸= j.

2.4.2 Tasks Exclusion
When a successor variable is assigned, i.e. yi = i′, on a known
resource, all tasks that could be scheduled between ti and
ti′ should be removed from the resource. Conversely, when
no task can be scheduled between ti and ti′ , the successor
variable must be assigned yi = i′.

First, we define the notion of hole between assigned tasks
to help specify the tasks exclusion constraints:

Definition 5 (Hole) For any pair of tasks ti and ti′ assigned
on resource rj (i.e. xi = xi′ = j) with no assigned task in-
between (i.e. ∄ti′′ ∈ Tj s.t. xi′′ = j ∧ tei ≤ tsi′′ ∧ tei′′ ≤ tsi′),
hole Hi,i′

j is defined as the set of all unassigned tasks that fit
between ti and ti′ :

Hi,i′

j = {ti′′ ∈ Tj s.t. j ∈ dom(xi′′) ∧ tei ≤ tsi′′ ∧ tei′′ ≤ tsi′}

We denote Hj the set of all holes of resource rj.

For each resource rj , we introduce a new TaskExclusion
constraint on Xj and Yj , the restrictions of X and Y to Tj ,
to remove j from the resource variables of the hole between
connected tasks and, conversely, to chain the sides of holes
that become empty:

TaskExclusion(rj ,Xj ,Yj), ∀rj ∈ R (6)

which is satisfied when yi = i′ ⇔ Hi,i′

j = ∅, ∀Hi,i′

j ∈ Hj .
To propagate constraint (6), the following rules are trig-

gered upon successor assignment or resource modification
(with ti′′ ∈ Hi,i′

j initially):

• yi = i′ ⇒ xi′′ ̸= j, ∀ti′′ ∈ Hi,i′

j

• xi′′ = j ⇒ (Hi,i′′

j = ∅ ⇒ yi = i′′)∧(Hi′′,i′

j = ∅ ⇒ yi′′ = i′)

• xi′′ ̸= j ⇒ (Hi,i′

j = ∅ ⇒ yi = i′)

For each resource, the non-empty holes of Hj (initialized
to {Hj,m+n+j

j }, with Hj,m+n+j
j = Tj \ {tj , tm+n+j}) can be

maintained in logarithmic time with a Binary Search Tree5

(BST) upon a successor assignment (removal of a hole) and a
task assignment (a hole must be divided in two) or exclusion

5 Lexicographically ordered by pair (tei , t
s
i′ ) for each hole Hi,i′

j .
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(the task must be removed from its hole). However, we only
implemented a simple linear algorithm to query holes, letting
the implementation of the BST for a later study, as a similar
optimization of our previous model only improved resolution
times by less than 10 %.

3 SEARCH STRATEGIES
This section presents several search strategies to optimize the
robustness of the GAP instances solved in Section 4, i.e. to
balance the idle times over time and resources. As an MWPC
is a tight relaxation of FJS, all our strategies follow the op-
timal assignment computed by the MinWeightAllDiff con-
straint when trying to assign a successor variable.

The simplest strategy aims at selecting the least loaded
resource, while the second one generalizes the notion of re-
sources to non-empty holes (see Definition 5). Then both first
assign a task on the resource or hole, before assigning its suc-
cessor according to the optimal matching. The third strategy
simply follows the optimal matching on one of the side of the
best selected hole. As no single strategy was robust enough to
efficiently solve our various instances, we eventually obtained
the best results with their parallel cooperation.

3.1 Resource Balancing
In [16], we observed that the resource loads were balanced
in optimal schedules. So the Resource Balancing (RB) strat-
egy selects the least loaded resource rj , i.e. with the greatest
amount of idle time, among the ones where unassigned tasks
can still be scheduled. Then it assigns to rj either the task
with the Earliest Start Time (EST) or the one that improves
the cost the most, noted Best Cost (BC), before assigning the
successor variable of the selected task according to the opti-
mal matching computed by the MinWeightAllDiff constraint.
Note that this second assignment contributes to the reduction
of the search space as one of the channelling constraints (5)
will be able to propagate. We will note:

• RB-EST: least loaded resource, earliest task;
• RB-BC: least loaded resource, best cost.

3.2 Critical Hole
To better take into account the structure of partial solutions
where blocks of successive tasks can be discarded, we may
consider each non-empty hole as an independent resource. So
the Critical Hole (CH) strategy selects the one (among all
resources) with the fewest (noted Min) or the most (noted
Max) tasks, using the largest span to break ties, rather than
the least loaded resource of strategy RB. Then it unfolds iden-
tically. This leads to four variants:

• CH-Min-EST: hole with fewest tasks, earliest task;
• CH-Min-BC: hole with fewest tasks, best cost;
• CH-Max-EST: hole with most tasks, earliest task;
• CH-Max-BC: hole with most tasks, best cost.

3.3 Task Chaining
Instead of selecting a new task to insert into the critical hole
based on its start time or its impact on the cost as the previ-
ous strategy, the Task Chaining (TC) strategy simply follows

the optimal matching provided by the MinWeightAllDiff con-
straint from the beginning of the hole, or backward from its
end, by assigning the corresponding successor variable. We
then choose to extend the side which reduces the most the
span of the hole, called Best Extension (BE), or the one cor-
responding to the successor variable with the smallest domain,
called Next Size (NS), which gives four variants:

• TC-Min-BE: hole with fewest tasks, best hole reduction;
• TC-Min-NS: hole with fewest tasks, smallest domain;
• TC-Max-BE: hole with most tasks, best hole reduction;
• TC-Max-NS: hole with most tasks, smallest domain.

3.4 Parallel Cooperation
Even if the TC-Min-BE strategy gives excellent results with
many instances of the GAP (as shown on Figure 3), solving
them in a few dozens of backtracks, others instances were
more time-consuming and better solved by one of the other
variants. Therefore, we can build a new strategy that benefits
from all of the previous variants by exploring the search space
in parallel while exchanging upper bounds between processes,
provided there are enough available cores on the computer.

The development version of FaCiLe provides a parallel
search goal that forks its process for each strategy and solves
the same model while communicating bounds to all the
children through their parent whenever a better solution is
found. Note that this parallel cooperation of strategies may
be strictly better than any single strategy on some instances
as the acquisition of a new upper bound might shorten its
resolution time. This strategy will be noted COOP.

4 RESULTS
We report in this section the performances of the various tech-
niques described in Sections 2 and 3 to optimize the robust-
ness of FJS, especially the parallel cooperation of strategies
implemented with the FaCiLe CP OCaml library [2].

We first show that our new model based on the MinWeight-
AllDiff constraint outperforms by orders of magnitude our
previously published model using the idlecost constraint [16].
Then we show that our CP approach also outperforms the ILP
model of [5] solved by the state-of-the-art solver Gurobi [9],
on instances recorded from real data6 at Paris-CDG interna-
tional airport.

All experiments were carried out on a standard workstation
with a 2.0 GHz Intel® Xeon® 16-core processor with 48 GB of
RAM running Debian GNU/Linux 9.6 with OCaml 4.05.0 and
Gurobi 8.1. In all our tests, Gurobi and FaCiLe were allowed
to exploit all 16 cores of our workstation, though the CP solver
used only 11, one for the master program and ten for the
parallel cooperation of the various strategies described in the
previous section. Note that all execution times and backtrack
amounts graphs are plotted with a base 10 logarithmic scale.

4.1 Gate Allocation Problem
The GAP mainly focuses on finding an allocation of a given
set of aircraft with fixed occupancy periods to a number of
6 All the data used in our experiments are available at http://

recherche.enac.fr/~wangrx/ecai_gap.
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gates. If there were no compatibility restrictions, this deci-
sion problem could be modelled as the coloring of an interval
graph, which is polynomial [8]. But gates can only accept
a restricted set of aircraft types, so the set of compatible
gates for an aircraft is limited and the decision problem of
the allocation is rather a list-coloring problem, which is NP-
Complete [3]. Moreover, an aircraft with scheduled arrival and
departure times can be considered as a task with fixed start
and end times, and a gate as a specific resource. The GAP
can therefore be considered as an FJS problem as defined in
Section 1.

Furthermore, gates may be associated with other secondary
features (e.g. compatible airlines, domestic vs. international,
terminal gate vs. remote stand, etc.) which should match the
characteristics of the flight and the preferences of airlines as
much as possible. These preferences can be modelled as costs
(or soft constraints) associated with each possible assignment,
and standard GAP objectives usually aim at minimizing their
sum, which is NP-Hard [10]. Other classic objectives include
the walking distance of passengers or other connection means
(e.g. buses), and there can be many side constraints like the
simultaneous occupancy of adjacent gates for large aircraft.

As proposed by [4], we focus here on optimizing the ro-
bustness of the overall schedule, in order to absorb possible
deviations from the original schedule due to traffic delays, se-
vere weather conditions, equipment failures, etc. Hence, our
version of the GAP is an FJS problem where the sum of the
transition costs, defined as the square of idle times (cf. Sec-
tion 1.5), should be minimized. Nevertheless, many of the
aforementioned side-constraints or secondary objectives could
be easily added to our CP model.

Table 1. Number of backtracks and execution time w.r.t. the
number of aircraft to prove optimality for ICTAI and MWAD

with 7 gates.

# a/c # backtracks execution time speed-up
ICTAI MWAD ICTAI MWAD

33 17,925 68 1.41 s 0.06 s 23
34 373,502 22 19.2 s 0.03 s 640
35 516,989 2 39.6 s 0.02 s 1,980
36 6,768,752 24 458.1 s 0.04 s 11,453

4.2 Idlecost vs. MinWeightAllDiff Models
Table 1 and Figure 1 compare the performance of our pre-
viously published CP model, named ICTAI, and our new
model, named MWAD, with the TC-Min-BE strategy (cf. Sec-
tion 3.3). They show the number of backtracks and execution
time (in seconds) to prove optimality w.r.t. the number of air-
craft on instances of the GAP with 7 gates published in [16].
Note that both y-axes are in logarithmic scale.

MWAD systematically outperforms ICTAI by orders of
magnitude in terms of backtracks as well as execution time
with speed-ups exceeding 10,000 for the largest instance.

4.3 Real-Size Instances at Paris-CDG
We present our results on 120 instances of actual traffic
recorded on the busiest month (July) of 2017 at four terminals
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Figure 1. Number of backtracks (solid lines) and execution
time in seconds (dashed lines) w.r.t. the number of aircraft to

prove optimality for ICTAI and MWAD with 7 gates.

of Paris-CDG airport, one of the biggest European airports.
Table 2 shows the mean of the number of flights and gates
per day (as well as their ratio) for each selected terminal.
Figure 2 presents the Gantt diagram of an optimal solution
to an instance with 20 gates and 78 aircraft at terminal J.

We first discuss the performance of the search strategies
mentioned in Section 3, then compare the execution times of
our approach against an ILP model solved with Gurobi.

Table 2. Mean over the days of July 2017 of the number of
aircraft and gates per day for four terminals at Paris-CDG.

terminal # a/c # gates a/c per gate
B 15.4 10 1.5
J 71.7 20 3.6
K 53.4 19 2.8
Q 50.1 17 2.9

Figure 2. Gantt diagram of an optimal solution to an instance
with 20 gates and 78 aircraft at terminal J of Paris-CDG airport.
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4.3.1 Comparison of Search Strategies
To compare the robustness of the search strategies described
in Section 3, Figure 3 gives the percentage of instances that
MWAD is able to optimally solve within 60 s w.r.t. a single
search strategy (grey bars), and for their cooperation (orange
bar), on the four terminals mentioned in Table 2 during the
busiest month of 2017. Each experiment was allowed to use
the 16 cores of our workstation, though FaCiLe is only able
to run a unique thread for single strategies.
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Figure 3. Percentage of optimally solved instances within 60 s
by MWAD for all instances at Paris-CDG, w.r.t. the strategy.

As expected, the CH and TC strategies are more robust
than the simpler RB one, with a success rate of more than
80 % for TC-Min-BE, which is the best variant for our in-
stances. We can also observe that it is more efficient to con-
centrate the search efforts on holes with the fewest number
of compatible flights (or tasks), i.e. the Min variants of CH
and TC, following the “first-fail” principle, than to schedule
more requested ones, as the gate restrictions are generally
not too strict and still leave many assignment opportunities.
However, TC-Min-BE is not systematically the best strategy,
and none of the variants could easily be discarded as each one
occasionally obtained the best results on some instances.

As anticipated, the cooperation of all variants exhibits a
better behavior as it is able to consistently prove optimality
for all instances, while no single strategy could, as depicted
in Figure 3. Note that even though we use 60 s as the time
limit, the average time spent by COOP to solve an instance
is much smaller than 60 s, only slightly less than 10 s for the
most difficult instances as shown in Figure 4.

4.3.2 Comparison with ILP
Finally, we compare our MWAD model using the COOP strat-
egy and solved with the development version of FaCiLe to the
ILP model named “P5” in [5] and solved by the Gurobi Com-
mercial Optimizer 8.1.0 [9], with the same real traffic.

In Figure 4, we show the mean of execution times (in sec-
onds with a logarithmic scale) to prove optimality over all
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Figure 4. Mean of execution times (in seconds) to prove
optimality with the ILP model (solved by Gurobi) and our new

MWAD CP model (solved with FaCiLe) for all instances at
Paris-CDG, w.r.t. the terminal.

the instances w.r.t. each terminal. Our new CP solver largely
outperforms the state-of-the-art ILP solver on all terminals,
up to 6.2 times faster for the busiest terminal (J).

The combination of a tight relaxation (thanks to the Min-
WeightAllDiff constraint), efficient heuristics that follows the
corresponding optimal cover and their parallel cooperation (to
be able to solve instances with distinct features) seems deci-
sive to enable our CP solver to compete and outperform a
state-of-the-art MIP solver.

CONCLUSION AND FURTHER WORKS
In this article, we have presented a new CP model and
search strategies which considerably improves the approach
described in [16] to optimize the transition cost of FJS. The
main contribution of our novel approach consists in a much
better relaxation to constrain the global cost which simultane-
ously takes all resources into account, instead of independent
constraints that propagate the cost for a single resource and
may underestimate the lower bound by far.

We show that FJS can be relaxed to a Path Covering prob-
lem in a DAG and that minimizing the sum of transition costs
corresponds to Minimum Weight Path Covering, which can it-
self be reduced to the Linear Assignment Problem. Therefore,
our model is able to compute a much better lower bound of
the global cost thanks to a MinWeightAllDiff constraint [14]
on successor variables. However, a path cover is generally not
a solution to FJS and the resource variables of our previous
model must be linked by channelling constraints to the suc-
cessor variables in order to obtain a valid schedule.

Our new model, implemented with an incremental version
of the MinWeightAllDiff constraint for the FaCiLe CP library
and solved with a parallel cooperation of various strategies
guided by the optimal covering computed by the constraint,
outperforms our previous approach by orders of magnitude,
as well as the ILP model of [5] on real instances of the GAP.

To further improve our solver, we intend to complete our
implementation of the MinWeightAllDiff constraint, which
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lacks the removal of inconsistent successors w.r.t. the upper
bound of the cost, and to use BSTs to maintain holes for
the TaskExclusion channelling constraint. Our search strat-
egy could also benefit from the reduced costs computed by
the MinWeightAllDiff constraint as suggested by [15], or from
the idlecost constraint [16] of our former model to obtain the
local lower bound for each hole.
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