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Two-stage stochastic mixed-integer programming with
chance constraints for extended aircraft arrival

management

Ahmed Khassiba ∗†‡ Fabian Bastin‡ Sonia Cafieri†

Bernard Gendron‡ Marcel Mongeau†

Abstract

The extended aircraft arrival management problem, as an extension of the classic Aircraft
Landing Problem, seeks to pre-schedule aircraft on a destination airport a few hours before
their planned landing times. A two-stage stochastic mixed-integer programming model
enriched by chance constraints is proposed in this paper. The first-stage optimization
problem determines an aircraft sequence and target times over a reference point in the
terminal area, called initial approach fix (IAF), so as to minimize the landing sequence
length. Actual times over the IAF are assumed to deviate randomly from target times
following known probability distributions. In the second stage, actual times over the
IAF are assumed to be revealed, and landing times are to be determined in view of
minimizing a time-deviation impact cost function. A Benders reformulation is proposed
and acceleration techniques to Benders decomposition are sketched. Extensive results
on realistic instances from Paris Charles-de-Gaulle airport show the benefit of two-stage
stochastic and chance-constrained programming over a deterministic policy.

1 Introduction

Predicted growth in air traffic, capacity limitations of the overall air transportation sys-
tem, environmental and human-factor challenges have been the main motivations for air
transportation experts to formulate and tackle problems arising in Air Traffic Manage-
ment (ATM). At the airport level, landings are considered to be among the most critical,
bottleneck operations, where safety and efficiency are of great importance. Accordingly,
the Aircraft Landing Problem (ALP) was introduced more than four decades ago (see
Dear 12 and, later, Bennell et al. 4). The ALP deals with sequencing and scheduling air-
craft landings optimally on the available runways at a given airport. Sequencing consists
in finding an order among the considered aircraft, while scheduling is related to the timing
of aircraft landings. Optimality criteria usually include maximizing airport throughput
or minimizing aircraft delay, while satisfying operational and safety constraints, mainly
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separation constraints between operating aircraft near the runway threshold, called final-
approach separations. Final-approach separations are based on aircraft wake-turbulence
categories, presented in Table 1, and are expressed as inter-aircraft distances in nautical
miles (NM; 1 NM = 1.852 m) as in Table 2. The difficulty of the ALP is due to the non-
symmetry of the final approach separations, unlike in other flight phases. For example,
in the near-to-airport airspace, called the terminal area, before the final approach phase,
aircraft are horizontally separated by 5 NM.

Table 1: Wake-turbulence categories (WTC) according to the International Civil Aviation
Organization (ICAO).

WTC Max certificated
take-off mass (kg)

Aircraft-type examples

Heavy (H) above 136, 000 A350, A340, B747, B777
Medium (M) between 7, 000 and 136, 000 A320, B737
Light (L) below 7, 000 General aviation and executive jets
source: https://www.skybrary.aero/index.php/ICAO_Wake_Turbulence_Category

Table 2: Minimal final-approach separations (NM) according to ICAO’s wake-turbulence
categories.

Following aircraft
H M L

H 4 5 6
Leading aircraft M 2.5 2.5 4

L 2.5 2.5 2.5
source: de Neufville et al. 11

On the operational side, since the early 90’s in the USA and Europe, air traffic con-
trollers (ATCs), responsible for air traffic flows’ safety and efficiency around major air-
ports, have been using decision-support tools that attempt to sequencing and scheduling
landings optimally at available runways according to ATCs’ input criteria [20, 37, 44, 21].
Nowadays, the main such tool in the USA is known as the Traffic Management Advisor,
while in Europe it is called Arrival Manager (AMAN). Without loss of generality, we will
retain the European naming in the sequel. AMAN typically captures inbound aircraft
at distances under 200 NM from their destination airport i.e., around 40 minutes before
landing [13, 43]. Then, using predicted landing times and aircraft characteristics such as
wake-turbulence categories, AMAN determines an “optimal” landing sequence and target
landing times according to the ATCs’ input criteria. Afterwards, the controllers have
to communicate control actions to pilots in order to enforce this optimal sequence, and
to satisfy as far as possible the target landing times. Apart from recoursing to holding
stacks, where aircraft keep flying in a circle at low altitudes close to the terminal area
(formally called Terminal Control Area (TCA) in the USA, and Terminal Maneuvering
Area (TMA) in Europe), controllers are allowed to change the aircraft speeds and trajec-
tories in order to avoid terminal area congestion. The latter two control actions are more
likely to achieve the so-called linear holding, which is preferred to holding stacks in terms
of safety, ATC workload and eco-efficiency. However, recoursing to linear holding is most
effective when flights are still relatively far from the destination airport, e.g. while still in
their cruise phase.
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These facts motivate the extension of AMAN’s horizon in order to reduce the need for
holding stacks and to rely more on linear holding techniques. Accordingly, important ATM
research and development programs, NextGen in the USA and SESAR in Europe, foresee
their decision support tools’ operational horizons to be extended up to 500 NM, i.e., about
2 hours before landing [43]. The new European decision-support tool is called Extended-
AMAN (E-AMAN). However, with extended horizons come greater uncertainties on the
predicted times, such as those used by AMAN, when optimizing the landing sequence
[34, 43]. A recent attempt to quantify the uncertainty on predicted landing times at a
horizon of three hours, using actual flight data, is presented in Tielrooij et al. 43. To deal
with predicted-time errors, current AMANs rely on regularly re-optimizing the schedule
(for example every time aircraft data are updated). Although it may appear satisfying in
practice, re-optimizing addresses uncertainty by brute force instead of embedding it within
the optimization problem. One of the obvious drawbacks of frequent re-optimization
is the instability of the optimal sequence it produces. With an extended operational
horizon, addressing uncertainty through frequent re-optimizations will, very likely, result
in highly-instable sequences, increasing the workload of ATCs which cannot easily build
and maintain the continuously-changing sequence of aircraft.

To the best of our knowledge, the ALP has been most-commonly studied when con-
sidering the deterministic case [12, 3, 2, 4, 19], while uncertainty has less often been
taken into account. Pioneer studies of the ALP considering uncertainty were conducted
by [34, 9], and [32] who basically added probabilistic considerations to the deterministic
ALP. Stochastic optimization models, including two-stage and multi-stage models, were
applied by [42, 40, 41], and [7] to address a variant of the ALP under uncertainty that
considers departures and surface operations on the airport. Recently, [23, 26], and [22]
proposed various robust optimization models to address the runway scheduling problem
under uncertainty. The aforementioned studies focus on the ALP under uncertainty with
an operational horizon under one hour, whereas [26] investigates the pre-tactical ALP
which starts several hours before the planned landing times. In Kapolke et al. 26, a
simplified one-stage stochastic optimization model is compared with several robust opti-
mization models. Their study tends to show that robust optimization is more promising
than stochastic optimization for solving the pre-tactical ALP. Remark that the proposed
one-stage stochastic optimization model only addresses the “expected-scenario” problem,
i.e., the variant in which uncertain data are replaced by their expected values. However,
as stated by [6]: “planning for the expected case is in fact ‘forgetting’ uncertainty”. We
believe there is room for considering more practical aspects and algorithmic enhance-
ments in order to get the most from stochastic optimization applied to the ALP under
uncertainty.

In this paper, we consider an extended Aircraft Landing Problem, the ALP variant
in which the operational horizon is extended, as for E-AMAN. Moreover, we aim at
embedding the uncertainty within the optimization model. In view of simplifying the
presentation, the scope of this preliminary study is limited to the case involving a single
reference point in the terminal area, called the initial approach fix (IAF), and a single
landing runway. We propose a two-stage stochastic optimization model with recourse,
that is enhanced by probability constraints in the first stage, to mitigate the risk of
separation violations over the IAF. Our two-stage stochastic model seeks to find a schedule
that minimizes both the runway sequence length and the expected time-deviation impact
costs. In a first stage, aircraft are sequenced and scheduled at the IAF so as to minimize
the runway sequence length. In this stage, while IAF target times are decision variables,
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IAF actual times are considered to be random variables. In a hypothetical second stage,
uncertainty is assumed to be revealed and aircraft are scheduled to the runway threshold
so as to minimize the time-deviation impact costs. The first-stage problem boils down
to the classical Asymmetric Traveling Salesman Problem with Time Windows (ATSP-
TW), an NP-hard problem which can be modeled as a mixed-integer linear program
(MILP). Assuming a piecewise linear time-deviation impact cost function, the second-
stage problem reduces to a simple linear program (LP). Hence, in this paper, we propose
a two-stage stochastic mixed-integer programming model, where some first-stage variables
are binary and the remaining first- and second-stage variables are continuous. Such two-
stage stochastic programming models (with integer variables only in the first stage) have
already been considered in the literature (see e.g., Wollmer 45, Laporte and Louveaux
31). In this context, the convexity of the second-stage problem is conserved and much of
the theory and algorithms of two-stage stochastic linear programming are still applicable,
as observed e.g., by Ahmed [1] and Birge and Louveaux [6, Section 3.3]. For our proposed
model, a partially-aggregated Benders reformulation is proposed. The implementation
of Benders decomposition is discussed and some acceleration techniques are sketched.
We present computational results using the state-of-the-art MILP solver CPLEX, which
allows to simplify the development of a Benders decomposition algorithm.

The paper is organized as follows. The problem statement along with the operational
context are introduced in Section 2. In Section 3, we propose a two-stage stochastic
model with recourse. Solution methods are proposed in Section 4. Results of numerical
experiments are discussed in Section 5. Section 6 presents some conclusions and future
research tracks.

2 Problem statement

We consider a set of aircraft planning to land at a given destination airport in two to three
hour look-ahead time. For the sake of simplifying the exposition, in this preliminary study
we make the following two operational assumptions. Firstly, all considered aircraft pass
over the same IAF to prepare for landing. Secondly, all aircraft land on the same runway
of the considered airport. Paris Charles-de-Gaulle airport (CDG) is an illustration of this
simplified setting when arrival flows from North and South are disaggregated, the subset
of aircraft coming from a same corner (north-west, for example) passes over a same IAF
and lands on a same runway.

Our problem involves two types of separations: final-approach separations and sepa-
ration over the IAF. For modeling and optimization purposes, separations expressed in
terms of nautical miles are converted to seconds. Remark that this is a common practice
in the literature; Table 3 shows final-approach separations converted to seconds, as used
in CDG. Detail of such a conversion may be found in de Neufville et al. 11. For the sake
of exposition simplification, we assume that all aircraft ground speeds over the IAF are
equal to 250 knots (1 knots = 1 NM per hour), which is typically the maximal allowed
on-board indicated air speed over the IAF. Hence, the usual 5 NM minimal separation
over the IAF may be converted into 72 seconds.

Given a set of aircraft, we seek to find a target aircraft sequence over the IAF, and
a target time over the IAF for each aircraft. We assume that the target sequence over
the IAF is the same as the target landing sequence. In the sequel, the target sequence
will equivalently designate any of these two target sequences. We aim at finding a target
sequence so as to maximize the runway throughput. Target times over the IAF have
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Table 3: Final-approach separations (seconds) at CDG according to ICAO’s wake-
turbulence categories

Following aircraft
H M L

H 96 157 207
Leading aircraft M 60 69 123

L 60 69 82

to satisfy the separation requirements over the IAF. Actual times over the IAF corre-
spond to the times at which aircraft effectively pass over the IAF. The order in which
aircraft effectively pass over the IAF is called the actual sequence over the IAF. We as-
sume that actual times over the IAF randomly deviate from the target times following
known distributions. These deviations are unknown when the target sequence and the
target times over the IAF are decided. Because of these deviations, actual times may
violate the separation constraints over the IAF, even though aircraft were safely sepa-
rated in terms of target times. Also, the actual sequence over the IAF may differ from
the target sequence. In practice, ATCs have to make control decisions to prevent such
violations over the IAF, and to build the target sequence for landing. To limit subsequent
delay impact costs (such as ATC workload), we consider probability constraints to express
the acceptable rate of separation violations (in terms of actual times) over the IAF (for
instance, one may expect these probability constraints to prevent excessive subsequent
re-sequencing). Furthermore, target times over the IAF have to respect predefined time-
window constraints. These constraints, when correctly defined, will prevent aircraft from
being either excessively delayed or excessively expedited, with respect to their planned
times. As suggested in [4], this may also help fulfill fairness requirements among aircraft,
similarly to the more classical constraint position shifting (CPS) approach (see Balakr-
ishnan and Chandran 2 for a comprehensive study in the deterministic case), where each
aircraft position cannot be shifted by more than a predefined number of positions in the
first-come first-serve sequence. In the case of tactical aircraft scheduling (typically 30 to
45 minutes before landing), the CPS constraints, in addition to being realistic, are known
to reduce significantly the solution space, and thereby the problem complexity. However,
in our operational context of an extended horizon of 2 to 3 hours before landing, we expect
any sequence to be potentially feasible (as long as time-window constraints are satisfied),
which hinders setting of any appropriate “maximum position shifting” parameter. Also,
according to [4], “maximum time shifting” induced by time-window constraints would
be preferable to CPS. For the two reasons mentioned above, we choose not to consider
CPS constraints in our problem statement. Because of the uncertainty on actual times,
decisions over the IAF (target sequence and target times) may result in different air traffic
situations over the IAF (actual sequence and actual times) that are likely to deteriorate
runway throughput and to incur further delay costs.

We define the hypothetical second stage in view of taking into account (ideally all)
the different outcomes of the decisions over the IAF, subsequently called the first-stage
decisions. In this second stage, deviations from target times over the IAF are assumed
to be revealed. The second-stage problem consists in finding a target landing time for
each aircraft in order to minimize a second-stage cost, while satisfying realistic flight
times through the terminal area and, more importantly, without violating final-approach
separations. These new scheduling decisions represent the ATCs recourse to handle the
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air traffic situation from the IAF to the runway threshold once uncertainties are revealed.
Therefore, we seek to minimize the expected cost of this recourse through considering
different (eventually all) scenarios, i.e., realizations of the uncertainties. We assume that
second-stage decisions are required only when all uncertainties are revealed. For this
assumption to hold, we have to ensure that the set of considered aircraft will arrive at
the IAF during a reasonably short time frame, so that when the uncertainty of the last
aircraft is revealed, second-stage decisions can still be implemented. Moreover, in more
operational terms, as suggested in [29], the beginning of the second stage can be set to the
entry time of the last considered aircraft to the en-route sector neighboring the terminal
area.

3 A two-stage stochastic optimization model with re-

course

Let A = {1, 2, . . . , n} be the set of aircraft indices to be sequenced and scheduled over
the IAF. The minimal time separation required over the IAF is given and noted SI . The
minimal time separation during the final approach between a leading aircraft i ∈ A and a
following aircraft j ∈ A is also given; it is noted Sij and called final-approach separation
between aircraft i and j. In the first stage, the n aircraft need to be sequenced and
scheduled over the IAF. Let δij be the binary decision variable that takes the value 1
if and only if aircraft i ∈ A directly precedes aircraft j ∈ A in the sequence, and
0 otherwise. These variables are called the sequencing variables. We seek to find the
aircraft sequence with the minimum length in terms of final-approach separations. Such a
sequence can be obtained by solving an (open) Asymmetric Traveling Salesman Problem
(ATSP) instance where the city set corresponds to the aircraft setA and distances between
cities correspond to final-approach separations. Equivalently, we can consider a classical
ATSP instance involving the set A+ = {1, 2, . . . , n+ 1}, where index n + 1 corresponds
to a fictitious extra aircraft to close the Hamiltonian circuit. Then, 2n more sequencing
binary decision variables, δi,n+1, δn+1,i, i ∈ A, are introduced to take into account the
(n+ 1)st aircraft. This spurious aircraft has null minimal time separation with the n
original aircraft. To summarize, the (first-stage) sequencing variables are:

δij =

{
1 if aircraft i directly precedes aircraft j
0 otherwise

(i, j) ∈ A+ ×A+, i 6= j.

The sequence length can then be expressed easily using final-approach separations Sij

and the ATSP-like sequencing variables, as follows:
∑

(i,j)∈A+×A+

i 6=j

δijSij. Remark that with

sequencing variables that express general relative (not necessarily direct) precedence be-
tween aircraft, as used in the literature (Beasley et al. 3), the sequence length would not
be straightforward to express.

At a look-ahead time of two to three hours before landing, every aircraft i ∈ A has a
fixed (given) time window

[
EI
i , L

I
i

]
to pass over the IAF, where EI

i and LIi are respectively
the given earliest and latest times. Let xi be a first-stage decision variable representing
the target time over the IAF of aircraft i ∈ A ; it must satisfy the bound constraints:

xi ∈
[
EI
i , L

I
i

]
, i ∈ A.
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Let ωi be the random variable representing the deviation of the actual time over the
IAF of aircraft i ∈ A with respect to its target time xi. Let ωi be a realization of the
random variable ωi. Then, the actual time over the IAF of aircraft i ∈ A is simply
xi + ωi. Let α ∈ [0, 1] be the lowest acceptable probability that separation over the
IAF is satisfied between the pair of aircraft (i, j) ∈ A × A, i 6= j, once uncertainties are
revealed.

In the hypothetical second stage, actual times over the IAF are assumed to be known
with certainty. Recall that the actual sequence over the IAF might not correspond to
the target sequence. As mentioned in Section 2, we choose to enforce the target landing
sequence to be the same as the target sequence over the IAF, since the latter was computed
so as to minimize the runway sequence length. Hence, no (re-)sequencing variables are
needed in the second stage. However, the n aircraft need to be scheduled at the runway
threshold. Let yi be the decision variable representing the target landing time of aircraft
i ∈ A. These variables are called second-stage scheduling variables and have to satisfy
the time separation constraints during the final approach. In order to keep these target
times realistic, we introduce a landing time window [Ei, Li] for every aircraft i ∈ A so
that second-stage variables must satisfy the bound constraints:

yi ∈ [Ei, Li] , i ∈ A.

For an aircraft i, recalling that the actual IAF time is xi + ωi, the earliest and the
latest landing times can be expressed using (given) minimal and maximal flight times
from the IAF to the runway threshold, Vi and Vi respectively, where 0 < Vi ≤ Vi, as

follows: Ei = (xi + ωi) + Vi and Li = (xi + ωi) + Vi.
Following [5], we define the unconstrained (or uncongested) landing time of aircraft

i ∈ A, noted Ui, to be the landing time of aircraft i as if it were alone in the terminal
area, and the unconstrained flight time V̂i such that Vi ≤ V̂i ≤ Vi and Ui = (xi +ωi) + V̂i.

To stress the difference between unconstrained and minimal flight times, remark that
unconstrained flight time is achieved when an aircraft flies its preferred trajectory at its
nominal speed. On the other hand, minimal flight time can be achieved, for example, if
the aircraft slows down later than expected in the standard procedure (hence, keeping a
high speed for a longer time), or if the approach controller gives a bit earlier the landing
clearance to the pilot. These changes are both undesirable from a fuel-consumption
perspective and in terms of controller workload.

Let f be a function that estimates time-deviation costs incurred in the second stage.
In this study, we propose to model such costs with a convex piecewise linear function.

We introduce the following vector notation: x = (x1, x2, . . . , xn)T . Vectors ω, ω, and
y are defined likewise. We also introduce the matrix notation: δ = (δij)(i,j)∈A+×A+

i 6=j
. Given

the expectation operator Eω[.] over the random vector ω, and a weighting parameter λ, we
propose the following two-stage stochastic optimization model with recourse, also called
the true model :
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min
δ, x

∑
(i,j)∈A+×A+

i 6=j

δijSij + λ Eω[Q(δ, x, ω)] (1)

s.t.
∑
j∈A+

j 6=i

δji = 1 i ∈ A+ (2)

∑
j∈A+

j 6=i

δij = 1 i ∈ A+ (3)

xj ≥ xi + SI −M I
ij(1− δij) (i, j) ∈ A×A, i 6= j (4)

P(xj + ωj ≥ xi + ωi + SI −M Iα
ij (1− δij)) ≥ α (i, j) ∈ A×A, i 6= j (5)

EIi ≤ xi ≤ LIi i ∈ A (6)

δij ∈ {0, 1} (i, j) ∈ A+ ×A+, i 6= j (7)

where:

Q(δ, x, ω) = min
y

f (x , ω , y) (8)

s.t. yj ≥ yi + Sij −Mij(1− δij) (i, j) ∈ A×A, i 6= j (9)

Vi ≤ yi − (xi + ωi) ≤ Vi i ∈ A (10)

The objective function (1) is the weighted sum of: the first-stage objective function,∑
(i,j)∈A+×A+

i 6=j

δijSij, and the expected cost of the second stage, Eω[Q(δ, x, ω)]. The first-

stage problem minimizes the length of the sequence in terms of final-approach separations,
subject to constraints (2) to (7). Given a scenario ω, the cost of the second-stage (so-
called recourse) problem, Q(δ, x, ω), is defined by (8) to (10). Big-M constants appearing
in constraints (4), (5) and (9) will be further commented below.

First-stage model

Constraints (2), (3) and (4) are directly inspired from the classical ATSP formulation.
Constraints (2) and (3) ensure that all aircraft in A+ are sequenced, which corresponds to
visiting all cities in an ATSP. Constraints (4) express the minimal time separation require-
ment over the IAF between any two successive aircraft, where the big-M type constants
M I

ij are large enough so that the corresponding constraint is necessarily satisfied as soon
as δij = 0. Constraints (5) are individual probability constraints that ensure separation
based on actual times over the IAF between two given different aircraft with a probability
higher than some given threshold value α. Under the assumption of independent and
identically distributed (i.i.d.) random variables ωi for all i ∈ A, probability constraints
(5) can be expressed in a deterministic form analogous to the big-M separation constraints
(4). This will be detailed in Subsection 3.2. Remark that α expresses a protection level
against separation loss over the IAF between two given aircraft i and j. To express a
protection level against any separation loss over the IAF (that is, there is no separation
loss over the IAF α% of the time), we should recourse to the so-called joint chance con-
straints (Miller and Wagner 35). Constraints (6) are time-window constraints on target
times over the IAF. Constraints (7) stipulate the binary nature of the δij variables.

Without the probability constraints (5), the first-stage problem defined by the first-
stage objective function and constraints (2) to (4), (6) and (7), reduces to an instance of
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the ATSP with time windows (ATSP-TW). The reduction goes as follows: cities corre-
spond to aircraft, the traveling salesperson corresponds to the IAF, costs of travel between
cities is represented by final-approach separations (Sij), and times of travel between cities
correspond to the IAF separation (SI). Remark, however, that the scheduling part of the
problem is a special simple case, since the IAF separation is not aircraft-dependent, unlike
typical ATSP-TW travel time between cities. Finally, subtour elimination constraints are
not required since the IAF separation constraints (4) play the role of MTZ constraints
[36]. As mentioned above, big-M constants must be large enough for the formulation to
be correct. However, very large big-M values are known to lead to numerical instabilities
during resolution. The best expression (smallest while sufficiently large) for the big-M
constants M I

ij in (4) can easily be shown to be: M I
ij = LIi − EI

j + SI .

Second-stage model

With regard to the second-stage model, the objective function (8) minimizes a cost func-
tion f that represents the impact of time-deviation with respect to unconstrained landing
times. This time-deviation impact can be interpreted as the additional workload of an
approach controller applying AMAN recommendations (in terms of time deviations per
aircraft) to handle the inbound traffic. To illustrate such an impact cost, consider an
approach controller aided by AMAN. Typically, the responsibility of this controller is to
ensure the arrival flow’s safety and efficiency, from the time when inbound aircraft enter
the terminal area until they align with the runway axis for landing. With a look-ahead
time of 30 to 45 minutes (before landing), AMAN, as a decision support tool, computes
a target landing sequence (according to predefined criteria) and provides the approach
controller with recommendations in terms of time to lose or to gain for each aircraft (with
respect to estimated landing times computed internally by AMAN) in order to build the
target landing sequence. The approach controller’s mission is to find adequate control
instructions for each concerned aircraft (speed change, vectoring, holding patterns) in
order to apply the time deviations recommended by AMAN. If AMAN computes no time
to lose or to gain for a given aircraft, then the approach controller has only to supervise
that flight and to give it the landing clearance at the right time, according to a standard
procedure. On the other hand, applying a large time deviation induces a heavy work-
load for the approach controller. In more general terms, the shorter the time deviations
(amounts of time to lose or to gain) displayed by AMAN, the lighter the workload of the
approach controller.

A candidate expression of f is proposed in Subsection 3.1. Constraints (9) ensure final
approach minimal time separation. Minimal and maximal flight times are enforced by
constraints (10). Hence, the second-stage problem consists in finding a landing schedule
for n aircraft that minimizes the cost function f , given a target sequence and landing
time windows. Big-M constants Mij in (9) can be computed as the lowest upper bound to
(yi − yj + Sij). Using constraints (9) and (10) and bound constraints (6) on xi, the best

expression for Mij can be shown to be: Mij =
(
LIi + ωi + Vi

)
−
(
EI
j + ωj + Vj

)
+ Sij.

Note on the recourse type

We remark that for some first-stage solutions (x, δ), the second-stage problem may turn
out to be infeasible: in our problem the recourse is not relatively complete. To give an
example of a first-stage solution appearing to be infeasible for some second-stage scenario
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problem, consider (p1, p2) a subsequence of two consecutive aircraft from a target sequence
found in the first stage. Recall that this target sequence computed in the first stage for the
IAF is intended to hold for landing (second-stage problem). Let xp1 and xp2 be target IAF
times for the two considered aircraft. Consider a second-stage scenario s with IAF time
deviations ωsp1 and ωsp2 for aircraft p1 and p2 respectively, such that xp1 +ωsp1 � xp2 +ωsp2 ,
i.e., aircraft p1 arrives actually to the IAF much later than p2. In such a scenario, the
relative positions of aircraft p1 and p2 close to the IAF are inverted with respect to
the target sequence. Assuming narrow landing time windows

[
Es
p1
, Lsp1

]
and

[
Es
p2
, Lsp2

]
such that

[
Es
p1
, Lsp1

]
∩
[
Es
p2
, Lsp2

]
= ∅, there are no landing times ysp1 ∈

[
Es
p1
, Lsp1

]
and

ysp2 ∈
[
Es
p2
, Lsp2

]
such that ysp2 ≥ ysp1 + Sp1,p2 . In other words, aircraft p1 cannot land

before aircraft p2 in such a scenario, and the target subsequence (p1, p2) is infeasible for
landing. In a real-life context, when the “real” uncertainties are revealed and give rise
to an infeasible second-stage problem, re-sequencing is needed. This can be achieved
by correcting the target sequence (returned by the stochastic program) by solving an
additional deterministic scheduling problem.

3.1 Second-stage objective function: minimizing total time-deviation
impact cost

A problem-specific second-stage objective is to minimize the total impact cost of time
deviations with respect to unconstrained landing times. Considering a single aircraft
i ∈ A, we assume that a deviation, within predefined bounds, of this aircraft target time
(yi) with respect to its unconstrained landing time (Ui) has an impact cost proportional
to the size of the deviation within these bounds. Larger time deviations are assumed to
generate larger costs. Such a cost function, say fi, can be described by a convex piecewise
linear function of yi that estimates the time-deviation impact cost of aircraft i ∈ A. To
compute the total cost over all the considered aircraft in set A, we consider an additive

total time-deviation impact cost function f =
∑
i∈A

fi. The parameters defining the specific

shape of each convex piecewise linear cost function, fi, are to be defined by the user to
match any stakeholder viewpoint (e.g., airlines, controllers, airports, etc).

To give an example, for a controller relying on AMAN to sequence and schedule
aircraft for landing, this impact cost can be interpreted as a simplified estimation of the
controller’s additional workload. Indeed, a one-minute advance of an aircraft landing time
is almost costless in terms of control workload, since he only has to give “a bit earlier”
one instruction to the pilot, that is to follow the standard approach procedure. However,
for a delay of one to four minutes, the approach controller has to communicate several
instructions to modify the trajectory and/or the speed of the given aircraft. For delays
larger than four minutes, the approach controller has to keep the aircraft in a holding
stack, a predefined circular circuit in a confined space, often seen as an “airborne waiting
room”. Holding patterns are known to generate much more workload for controllers and
for pilots than trajectory and speed changes. This progression of workload in terms
of the delay (the time deviation to be implemented by the controller) can be captured
by a convex piecewise linear cost function, made of three pieces, as formalized below.
However, more sophisticated functions can be elaborated if controllers using AMAN are
more involved in the modeling process.

Given the slopes c1, c2, c3 ∈ R+ such that c2 ≤ c3 and some intermediate landing times
Lmed
i , such that Ui ≤ Lmed

i ≤ Li, the following is an example of time-deviation impact

10



yi

fi(xi, ωi, yi)

0 Ei Ui Lmed
i Li

Figure 1: Time-deviation impact cost function fi of aircraft i ∈ A.

cost function fi for an aircraft i ∈ A (Figure 1):

fi (xi, ωi, yi) =


c1 (Ui − yi) if Ei ≤ yi ≤ Ui
c2 (yi − Ui) if Ui ≤ yi ≤ Lmed

i

c2
(
Lmed
i − Ui

)
+ c3

(
yi − Lmed

i

)
if Lmed

i ≤ yi ≤ Li

For an aircraft i ∈ A, similarly to the definitions of Ei, Ui and Li making use of appropriate
flight times (minimal, unconstrained, and maximal), the intermediate landing time Lmed

i

can be defined using an intermediate flight time V med
i such that 0 < Vi ≤ V̂i ≤ V med

i ≤ V i

and Lmed
i = (xi + ωi) + V med

i .
Given such a separable convex piecewise-linear form, the objective function (8) can

be linearized using, for the example above, three auxiliary variables z−i , z+i and z++
i per

aircraft i ∈ A as follows:

min
y, z−, z+

z++

∑
i∈A

(
c1z
−
i + c2z

+
i + c3z

++
i

)
(11)

yi − Ui = z+i + z++
i − z−i i ∈ A (12)

z+i ≤ Lmed
i i ∈ A (13)

z−i , z
+
i , z

++
i ≥ 0 i ∈ A (14)

3.2 Reformulating probability constraints in the i.i.d. case

The aim of this Subsection is twofold. Firstly, we show that the chance constraints (5)
can be reformulated as deterministic linear constraints analogous to the big-M separation
constraints (4), under the assumption of independent and identically distributed random
variables ωi’s for all aircraft i ∈ A (Proposition 1). Secondly, we show that assuming
normal random variables ωi’s and for values of α ≥ 0.5, the linearized form of probability
constraints (5) can substitute for the IAF separation constraints (4) in the true model
(Proposition 2).

Lemma 1. Consider a couple (i, j) ∈ A×A such that i 6= j and the constraints:

P
(
xj + ωj ≥ xi + ωi + SI −M Iα

ij (1− δij)
)
≥ α (5ij)

xj ≥ xi + SI(α)−M Iα
ij (1− δij) (17ij)

where:

11



• SI(α)
def
= SI + F−1γ (α) is a given time separation,

• and F−1γ (α) is the α quantile of the random variable γ
def
= ωi − ωj.

Assuming i.i.d. random variables ωi and ωj, the chance constraint (5ij) is equivalent
to the deterministic constraint (17ij).

Proof. Proof of Lemma 1
Consider a couple (i, j) ∈ A × A such that i 6= j. Then, the constraint (5ij) can be

re-written as:

P
(
ωi − ωj ≤ xj − xi − SI +M Iα

ij (1− δij)
)
≥ α (15)

Remark that, under this form, the i.i.d. random variables and the decisions are clearly
decoupled. In this special case where the random variables only appear in the right-hand
side of the expression inside the probability operator, the probability constraint can be
re-written as a deterministic constraint using an inverse cumulative distribution function
(Charnes and Cooper 10, Miller and Wagner 35).

As ωi and ωj are i.i.d., (ωi − ωj) is a random variable, that we denote γ
def
= ωi−ωj .

Let Fγ be its distribution function.
Then (15) is equivalent to:

Fγ
(
xj − xi − SI +M Iα

ij (1− δij)
)
≥ α (16)

Let us denote F−1γ (α) the α quantile of the random variable γ and SI(α)
def
= SI +F−1γ (α),

the buffered separation over the IAF.
Remark that, since α is a given parameter, then F−1γ (α) and SI(α) can be computed

beforehand. Finally, (16) is equivalent to:

xj − xi − SI +M Iα
ij (1− δij) ≥ F−1γ (α)

⇔ xj ≥ xi + SI(α)−M Iα
ij (1− δij)

The next Proposition directly follows from Lemma 1, by considering constraints (5ij)
and (17ij) for all couples (i, j) ∈ A×A such that i 6= j.

Proposition 1. The chance constraints (5) in the true model can be replaced by the
following deterministic linear constraints:

xj ≥ xi + SI(α)−M Iα
ij (1− δij) (i, j) ∈ A×A, i 6= j (17)

Remark. The best expression (smallest while sufficiently large) for the big-M constants
M Iα

ij in (17) can easily be shown to be: M Iα
ij = LIi − EI

j + SI(α).

In the following, we show that, for large values of α, the linearized constraints (17)
can replace the original IAF separation constraints (4) in the true model. First, we recall
the definition of a dominance relationship between two linear constraints.

Definition 1. Let a, a′ ∈ Rn and b, b′ ∈ R be given. Let x ∈ X ⊂ Rn be a vector
of decision variables, where X is some given subset of Rn. Then we say that a′Tx ≥ b′

dominates aTx ≥ b with respect to X if:
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• a′Tx ≥ b′ ⇒ aTx ≥ b , ∀x ∈ X

• and ∃ x′ ∈ X such that a′Tx′ ≥ b′ and aTx′ > b.

One can easily prove the following Lemma:

Lemma 2. Consider a couple (i, j) ∈ A×A such that i 6= j and the constraints:

xj ≥ xi + SI −M I
ij(1− δij) (4ij)

xj ≥ xi + SI(α)−M Iα
ij (1− δij) (17ij)

where M I
ij = LIi − EI

j + SI and M Iα
ij = LIi − EI

j + SI(α).

1. When δij = 0, the two big-M constraints (4ij) and (17ij) are redundant.

2. When δij = 1, we have the following relations between the constraints (4ij) and
(17ij):

(a) constraint (17ij) dominates constraint (4ij) if α > P(γ ≤ 0)

(b) constraint (4ij) dominates constraint (17ij) if α < P(γ ≤ 0)

(c) constraint (4ij) is equivalent to constraint (17ij) if α = P(γ ≤ 0)

where γ
def
= ωi − ωj.

Proof. Proof of Lemma 2 When δij = 0, and the two big-M constants M I
ij and M Iα

ij are

respectively equal to
(
LIi − EI

j + SI
)

and
(
LIi − EI

j + SI(α)
)
, then constraints (4ij) and

(17ij) can both be written as: xj ≥ xi − LIi + EI
j . Note that this constraint is always

satisfied, since xj ≥ EI
j and xi − LIi ≤ 0, as expected in this case.

When δij = 1, constraints (4ij) and (17ij) simplify as follows respectively:

xj ≥ xi + SI

xj ≥ xi + SI(α) = xi + SI + F−1γ (α)

Remark that the relationship between the last two constraints is driven by the sign of
F−1γ (α). If F−1γ (α) > 0, which can be equivalently expressed as α > Fγ (0) or α > P(γ ≤ 0)
(using the fact that the cumulative distribution function Fγ is strictly increasing), then
xj ≥ xi + SI(α) > xi + SI , which satisfies the definition of dominance, even in a stronger
sense than introduced in Definition 1. This proves the case 2.(a) of the Lemma. The
remaining two cases 2.(b) and 2.(c) can be deduced easily.

Lemma 2 is instrumental to prove the next Proposition.

Proposition 2. Assume that ω is a vector of n i.i.d. normal random variables. For any
value of α ≥ 0.5, constraints (17) can substitute for constraints (4) and (5) in the true
model.

Proof. Proof of Proposition 2 Using Proposition 1, constraints (17) can substitute for
constraints (5) in the true model. Now, consider ω a vector of n i.i.d. random variables
normally distributed with mean µ and standard deviation σ. Let us note this normal
distribution N (µ, σ2). Then, γ follows the normal distribution N (0, 2σ2) and P(γ ≤ 0) =
0.5. The result follows then from Lemma 2.
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Remark. Proposition 2 may be extended to any probability distribution on an i.i.d. ran-
dom vector ω implying a symmetric distribution (with respect to zero) on the random
variable γ.

In the remainder of this article, we make the following two assumptions under which
Proposition 2 always holds:

Assumption 1. ω is a vector of i.i.d. normal random variables.

Assumption 2. The protection level α from IAF separation violations is always set to
values greater than (or equal to) 0.5.

By integrating the convex piecewise linear second-stage cost function (introduced in
Subsection 3.1), and under Assumptions 1 and 2, due to Proposition 2, the true model
(introduced in the beginning of Section 3) simplifies as follows:

min
δ, x

∑
(i,j)∈A+×A+

i 6=j

δijSij + λ Eω[Q(δ, x, ω)]

s.t. (2), (3), (17), (6), (7)

where:

Q(δ, x, ω) = (11)

s.t. (12), (13), (14), (9), (10)

(True model)

4 Solution methods

The two-stage stochastic program introduced in Section 3 presents two main challenges.
The first challenge is to deal with the probability constraints in the first stage. In Sub-
section 3.2, we have shown that under the assumptions of i.i.d. normal random variables
(Assumption 1) and large protection levels α (Assumption 2), the probability constraints
can be equivalently written as linear constraints. The second challenge comes from the
expectation term in the objective function of the first stage. Since we assume continuous
random variables, the exact expression of the expectation term is a multivariate integral,
often impracticable to compute. One widely-used method to approximate the expecta-
tion term in stochastic programs is to compute a sample average over a finite number of
scenarios, in the context of the so-called Sample Average Approximation (SAA) (see e.g.,
Fu et al. 18) giving rise to the SAA problem. This problem can be seen as a one-stage
mixed-integer linear problem (MILP), called the deterministic equivalent problem, that
can be solved directly by a state-of-the-art MILP solver. Nevertheless, it is well known in
the literature [6] that an efficient solution method to two-stage stochastic linear programs
is the L-Shaped method that derives from Benders decomposition. In the following, we
present the SAA model describing our problem and we focus on Benders reformulations
of such a model.

4.1 Model with Sample Average Approximation

Let S denote the set of nS equally-probable scenarios. We introduce the following scenario-
specific notations for an aircraft i ∈ A and a scenario s ∈ S: ωsi , y

s
i , z

s−
i , zs+i and zs++

i . For
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a given scenario s ∈ S, the corresponding vector notations are naturally deduced: ωs =

(ωs1, ω
s
2 . . . ω

s
n)T , ys = (ys1, y

s
2 . . . y

s
n)T , zs− =

(
zs−1 , zs−2 . . . zs−n

)T
, zs+ =

(
zs+1 , zs+2 . . . zs+n

)T
and zs++ =

(
zs++
1 , zs++

2 . . . zs++
n

)T
. According to the SAA method, for a sufficiently large

number of scenarios, nS , the objective function (1) can be replaced by:

min
δ, x

∑
(i,j)∈A+×A+

i 6=j

δijSij + λ
∑
s∈S

1

nS
Q (δ, x, ωs) (18)

Replacing (1) by (18) in the true model leads to the so-called SAA model. The SAA
method relies on the uniform law of large numbers to prove that, as nS →∞, the SAA-
model optimal objective value converges almost surely to the true-model optimal objective
value [39]. Using the linearized second-stage objective function proposed in Subsection
3.1, we can express the optimal value of the second-stage problem corresponding to a
given scenario s ∈ S, Q (δ, x, ωs), (as appearing in (18)) as follows:

Q (δ, x, ωs) = min
ys, zs−

zs+,zs++

∑
i∈A

(
c1z

s−
i + c2z

s+
i + c3z

s++
i

)
(19)

−ysi + zs++
i + zs+i − z

s−
i = −xi − ωsi − V̂i i ∈ A (βsi ) (20)

−ysi ≥ −xi − ωsi − Vi i ∈ A (σsi ) (21)

ysi ≥ xi + ωsi + Vi i ∈ A (ρsi ) (22)

ysj−ysi ≥ Sij −Ms
ij(1− δij) (i, j) ∈ A×A, i 6= j (πsij) (23)

− zs+i ≥ −xi − ωsi − V med
i i ∈ A (µsi ) (24)

zs++
i , zs+i , zs−i ≥ 0 i ∈ A (25)

where dual variables corresponding to constraints (20) to (24) are shown between

parenthesis. Recall that the big-M constantM s
ij can be set to

(
LIi + ωsi + Vi

)
−
(
EI
j + ωsj + Vj

)
+

Sij.
The SAA model basically describes a deterministic (possibly large-scale) MILP: the

deterministic equivalent problem. The extended formulation of the deterministic equiva-
lent problem is:

min
δ, x

ys, zs−

zs+, zs++

∑
(i,j)∈A+×A+

i 6=j

δijSij + λ
∑
s∈S

1

nS

∑
i∈A

(
c1z

s−
i + c2z

s+
i + c3z

s++
i

)
s.t. (2), (3), (17), (6), (7)

(20), (21), (22), (23), (24), (25)

(Determ. Eq.)

The deterministic equivalent problem can be directly solved using a state-of-the-art
MILP solver. One weakness of the extended formulation is that the problem size can
become very large as the number of scenarios increases. For example, for n = 10 aircraft
and nS = 500 scenarios, there are 20, 000 second-stage variables.

We remark that if the first-stage variables, x and δ, are fixed, then the second stage
turns to be nS separate linear programs that are straightforward to solve. This property
allows us to reformulate our SAA problem using Benders decomposition, as presented in
Subsection 4.2.
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4.2 Benders reformulations

Using Benders decomposition [6, 38], we can decompose our two-stage stochastic inte-
ger problem described by the SAA model into a master problem, called Benders master
problem, and one or many separate subproblem(s), called Benders subproblem(s), corre-
sponding to the second-stage problems. According to the level of aggregation chosen for
the Benders subproblem(s), we can propose different Benders reformulations of our SAA
model.

When the second-stage problems are completely aggregated, we are left with one
Benders subproblem. Then, only one cut can be generated at each iteration. We call this
reformulation: simple-cut Benders reformulation. When the second-stage problems are
completely disaggregated (not aggregated at all), we have one Benders subproblem for
each scenario. Accordingly, at most one cut per scenario can be generated by iteration.
Hence, one can add up to nS cuts at each iteration. We call this reformulation multi-
cut Benders reformulation. When the second-stage problems are aggregated into different
subsets, where each subset corresponds to multiple scenarios, we say that the second-stage
problems are partially aggregated. This yields one Benders subproblem for each subset of
scenarios, called a cluster of scenarios. In this case, at most one cut per cluster can be
generated at each iteration. We call this reformulation: partially-aggregated-cut Benders
reformulation. In the following, we only present the partially-aggregated-cut Benders
reformulation, since it encompasses the other two versions above, that represent the two
extreme cases.

Let C = {c1, c2, . . . cK} be a partition of S, where each ci (i = 1, 2, . . . , K) is a (non-
empty) subset of S, referred to as a cluster of scenarios. Remark that the simple-cut
version corresponds to K = 1, while the multi-cut version corresponds to K = nS . The
second-stage problems corresponding to scenarios belonging to a same cluster are aggre-
gated to form a single Benders subproblem. Hence, there are K Benders subproblems and,
consequently, K additional optimization variables νc (c ∈ C), are introduced to approx-
imate the expected second-stage cost. Following the standard Benders’ decomposition
methodology (e.g., Rahmaniani et al. 38), the initial Benders master problem, in the
partially-aggregated-cut version, is therefore:

min
δ, x, ν

∑
(i,j)∈A+×A+

i 6=j

δijSij + λ
∑
c∈C

νc (26)

s.t. first-stage constraints: (2), (3), (17), (6), (7)

νc ≥ 0 c ∈ C (27)

where ν =
(
ν1, ν2, . . . , νK

)T
. Constraints (27) are obvious bound constraints on variables

νc that strengthen the standard Benders reformulation and can be included directly in
the initial Benders master problem.

Consider a (non-empty) cluster of scenarios c ∈ C. The Benders subproblem corre-
sponding to cluster c consists of nc separate scenario subproblems that can be solved
separately. The results of these nc scenario subproblems are aggregated to compute the
results of the Benders subproblem associated to cluster c (objective-function value, dual-
variables values, etc). Let Rc and T c be respectively the set of extreme rays and the set
of extreme points of the Benders-dual-subproblem polyhedron corresponding to cluster
c. Benders feasibility and optimality cuts for the partially-aggregated-cut version of our
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SAA model are given by constraints (28) and (29) respectively:

0 ≥
∑
s∈c

[
1

nS

∑
i∈A

[(
−xi − ωsi − V̂i

)
βsri +

(
−xi − ωsi − Vi

)
σsri +

(
xi + ωsi + Vi

)
ρsri

+
(
−xi − ωsi − V med

i

)
µsri

]
+

1

nS

∑
(i,j)∈A×A

i 6=j

(
Sij −M s

ij(1− δij)
)
πsrij

]

r ∈ Rc, c ∈ C (28)

νc ≥
∑
s∈c

[
1

nS

∑
i∈A

[(
−xi − ωsi − V̂i

)
βsti +

(
−xi − ωsi − Vi

)
σsti +

(
xi + ωsi + Vi

)
ρsti

+
(
−xi − ωsi − V med

i

)
µsti

]
+

1

nS

∑
(i,j)∈A×A

i 6=j

(
Sij −M s

ij(1− δij)
)
πstij

]

t ∈ T c, c ∈ C (29)

where we use βsi , σ
s
i , ρ

s
i , π

s
ij, and µsi to denote the dual variables associated to constraints

(20) to (24) respectively, to which we add the index r or t depending upon whether we
refer to an extreme ray r ∈ Rc, or to an extreme point t ∈ T c.

Notes on the size of the models

The first-stage problem involves n continuous variables, n (n+ 1) binary variables, and
n (n+ 1) + 2 constraints (apart from the 2n bound constraints on x). Regarding the sec-
ond stage, one scenario subproblem involves 4n continuous variables, and n (n+ 3) con-
straints (apart from the 3n bound constraints on z−,z+, and z++). For nS scenarios, the
model of the deterministic equivalent problem, called the extended formulation, requires
n (4nS + 1) continuous variables, n (n+ 1) binary variables, and n (n+ 3)nS+n (n+ 1)+2
constraints.

Regardless of the degree of aggregation, Benders reformulations comprise the same
number of binary variables (n (n+ 1)) as the extended formulation, since these variables
only appear in the first stage. In terms of continuous variables, the three Benders re-
formulations differ. The general partially-aggregated cut version has n + K continuous
variables, where 1 ≤ K ≤ nS . The simple-cut version has n+1 continuous variables. The
multi-cut version involves n+ nS continuous variables.

Table 4 summarizes the model sizes according to the different formulations. Table 5
gives numerical examples of model sizes for a 10-aircraft instance and two numbers of
scenarios, nS = 100 and 500. The partially-aggregated-cut Benders reformulation version

in Table 5, denoted “5-aggregated-cut Benders”, involves K =
nS
5

clusters.

4.3 Implementing Benders decomposition

In the context of two-stage stochastic programming, Benders reformulation has the merit
of reducing effectively the number of continuous variables, as shown in the previous sub-
section. However, standard implementations of Benders decomposition may fail to reach

17



Table 4: Model sizes for different formulations.

Formulation # bin. var. # cont. var. # constraints

Determ. Eq. n (n+ 1) n (4nS + 1) n (n+ 3)nS + n (n+ 1) + 2
Multi-cut Benders n (n+ 1) n+ nS n (n+ 1) + 2*
Partially-aggregated-
cut Benders

n (n+ 1) n+K n (n+ 1) + 2*

* without Benders cuts. In fact, the initial Benders master problem starts with no Benders cuts. Then,

dynamically, such cuts are generated and added to the Benders master problem.

Table 5: Model sizes for n = 10 and different numbers of scenarios nS .

Formulation # bin. var. # cont. var. # constraints

nS = 100 Determ. Eq. 110 4, 010 13, 112
Multi-cut Benders 110 110 112
5-aggregated-cut Benders 110 30 112

nS = 500 Determ. Eq. 110 20, 010 65, 112
Multi-cut Benders 110 510 112
5-aggregated-cut Benders 110 110 112

the expected performance (in terms of computation time) or even to outperform state-
of-the-art MILP solvers solving the deterministic equivalent problem by Branch-and-Cut.
For that reason, numerous accelerating techniques have been proposed in the literature
to boost the performance of Benders decomposition. For an extensive literature review
on Benders decomposition and accelerating techniques, please refer to [38].

Modern implementations of Benders decomposition rely on a single search tree, where
Benders subproblems are solved at every integer-solution node in the Branch-and-Cut
tree (this can be done through the cut callback functionality of MILP solvers), unlike
traditional implementations where the relaxed Benders master problem is solved to op-
timality at each iteration before solving Benders subproblem. This variant of Benders
decomposition is often called Branch-and-Benders-Cut. Since version 12.7, IBM ILOG
CPLEX implements an automatic Benders decomposition as a Branch-and-Benders-Cut
following a two-phase solution scheme and involving an in-out cut loop strategy (24). In
the following, we present these two acceleration techniques.

Two-phase solution scheme

[33] propose to apply Benders decomposition in two phases. In the first phase, the linear
relaxation of the Benders master problem is solved using Benders decomposition. The
authors show that Benders cuts generated during this first phase are valid for the original
MILP problem. In the second phase, integrality constraints are reintroduced and Benders
decomposition is relaunched with, hopefully, a tighter Benders master problem. Such an
approach can be easily adapted in a Branch-and-Benders-Cut variant by implementing a
traditional Benders decomposition only for the first phase, where Benders cuts are added
explicitly as constraints to the linear relaxation of the Benders master problem, as in a
traditional fractional cutting-plane method.
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In-out cut loop strategy

According to [17], slow convergence of Benders decomposition is very likely caused by the
cut loop’s standard strategy at the root node, also known as Kelley’s loop (28), which
consists of separating the current solution by adding, to the master problem, Benders cuts
violated by the current solution, then re-optimizing the updated Benders master problem.
A more recent strategy, called “in-out search” is introduced in [15] and applied to Ben-
ders decomposition to solve efficiently facility location problems in [16, 17]. In [16], the
“in-out” strategy is applied to generate initial cuts before the Branch-and-Benders-Cut.
Similarly, in [17], this strategy is applied to stabilize the cut loop in the root node. Mainly,
the “in-out” strategy requires two ingredients: an “out point” and an “in point.” The
“out point” corresponds to the current solution (to the relaxed Benders master problem),
while the “in point”, also called the stabilizing point, lies in the interior of the feasible do-
main of the linear relaxation of the original MILP (in our case, the linear relaxation of the
deterministic equivalent problem). Instead of separating the “out point” as in a standard
Kelley’s strategy, an “intermediate point” is built as a convex combination of the “out
point” and the “in point”, and then separated. The generated Benders cut is added, and
the updated Benders master problem is re-solved. Iteratively, the “in point” is updated
and a new “intermediate point” is built and separated. After a fixed number of trials, if
the current solution (“out point”) is not cut, then the “in-out search” is aborted, and the
standard Kelley’s cut loop strategy is applied to effectively cut the current solution. The
“in-out search” is then resumed with a new “out point” and the trial counter is set to zero.

CPLEX automatic Benders decomposition implements the above acceleration tech-
niques (among others, see e.g., [30]). Furthermore, this solver proposes a Benders strat-
egy parameter that guides the MILP partitioning into a master Benders problem and one
or many Benders subproblems. In the scope of this study, we use two such strategies:
FULL and USER. According to CPLEX documentation [25], when the Benders strategy
parameter is set to FULL, CPLEX automatically decomposes a given MILP by putting all
integer variables in the Benders master problem and all continuous variables in a Benders
subproblem. Then, CPLEX tries to refine the decomposition of the Benders subproblem.
When the Benders strategy parameter is set to USER, CPLEX decomposes the given
MILP according to the partition specified by the user by means of variable and constraint
annotations. Remark that this user-specified partitioning feature is, in fact, crucial for
use cases where the most interesting partitioning does not correspond to the one CPLEX
automatically applies under the strategy FULL.

Given that CPLEX proposes an efficient automatic Benders decomposition, and more
importantly, that it allows user-specified partitioning, we exploit this solver to test the
Benders reformulation with multiple levels of subproblem aggregation, proposed in Sub-
section 4.2.

5 Computational study

This section aims firstly at showing the viability of our proposed model. The benefit
of taking uncertainty into account is highlighted through the value of stochastic solution
metric [6]. Secondly, we compare the different solution methods presented in Section
4, in terms of computational time. The remaining of this section is organized as follows.
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Instances and parameter values are presented in Subsection 5.1. The methodology used to
determine an appropriate number of scenarios, as well as our main computational results
are presented in Subsection 5.2. In Subsection 5.3, we discuss the viability of our approach
through an analysis of the value of stochastic solution under different test settings. A
comparison of the performance of four solution methods is presented in Subsection 5.4.
All results are obtained on a Linux platform with 8 x 2.66 GHz Xeon processors, 32 GB
of RAM, and using CPLEX version 12.7.1.

5.1 Instances and parameter values

We construct ten instances from real arrival data corresponding to Paris CDG airport,
May 15, 2015, covering a one-hour time frame (from 5:59 AM to 6:59 AM). During this
time frame, 30 aircraft planned to cross three different IAFs (named MOPAR, LORNI,
and OKIPA) and landed on runway 27 R afterwards. In order to match with our problem
statement where we consider a single IAF, the three IAFs are merged, but no changes are
made on IAF planned times. We construct five planned schedules as follows. The first
planned schedule, named 10 559 618, corresponds to the first ten aircraft, and spans from
5:59 AM to 6:18 AM. We construct the second planned schedule, named 10 607 623, by
shifting the first five aircraft and then considering the next 10 aircraft. Accordingly, the
planned schedule 10 607 623 is made of the 6th through the 15th aircraft (in the 30-aircraft
raw schedule), and spans from 6:07 AM to 6:23 AM. The following planned schedules,
named 10 619 634, 10 624 640, and 10 634 659 respectively, are constructed using the
same shifting procedure, while the number of aircraft per instance is kept fixed (n = 10).
The five planned schedules can be visualized in Figure 2. Two problem instances are
constructed from each planned schedule according to the IAF time window width (narrow
or wide). The main characteristics of the ten instances that constitute our test bed are
shown in Table 6. In the following, we present in more details the parameter values that
are related to: IAF time windows, uncertainty, protection level against IAF separation
violation (α), IAF and final-approach separations, and landing time windows.

Table 6: Test bed summary description.

Instance Id time span n by original IAF WTC mix TWI

(min) MOPAR LORNI OKIPA H% M%

10 559 618 N 19′ 6 2 2 60 40 Narrow
10 559 618 W 19′ 6 2 2 60 40 Wide
10 607 623 N 16′ 5 4 1 40 60 Narrow
10 607 623 W 16′ 5 4 1 40 60 Wide
10 619 634 N 15′ 5 5 0 30 70 Narrow
10 619 634 W 15′ 5 5 0 30 70 Wide
10 624 640 N 16′ 4 6 0 30 70 Narrow
10 624 640 W 16′ 4 6 0 30 70 Wide
10 634 659 N 25′ 3 7 0 30 70 Narrow
10 634 659 W 25′ 3 7 0 30 70 Wide

WTC: Wake-turbulence category; H: Heavy; M: Medium; TW I : IAF time-window width.
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Figure 2: Visualization of the five planned schedules.

IAF time windows: We consider two possibilities for the IAF time-window width:
narrow and wide time windows yielding two different types of instances. In the narrow
instances, the aircraft IAF time window is given by EI

i = P I
i − 1 min and LIi = P I

i + 5
min, where P I

i is the planned IAF time for aircraft i ∈ A. In the wide instances, the IAF
time window is given by EI

i = P I
i −1 min and LIi = P I

i +15 min. These IAF time window
widths are motivated as in [29]. A one-minute advance can be achieved by speeding up
the aircraft, while 5 minutes of delay can be absorbed by speed reduction, both over
300 nautical miles, according to the concept of E-AMAN. Note that speed reduction is
known as a “linear holding” technique, that is considered as a fuel-consumption-friendly
control technique. Larger delays require different air traffic control techniques, like path
stretching for example.

Uncertainty: The random variables ωi’s are i.i.d. following the normal distribution
N (0, σ2), with mean zero and standard deviation σ = 30 seconds. According to this
value of standard deviation, most of the time (with probability greater than 0.99), the
actual arrival of an aircraft to the IAF will not deviate more than ±3σ = ±90 seconds
from its target time. The assumption of independent and identically distributed random
variables can be supported by the fact that we consider a relatively small number of
aircraft (n = 10) coming from different directions.

Protection level against IAF separation violation: In compliance with Assump-
tion 2 (see Subsection 3.2), we only study values of α greater than or equal to 50%. Three
values for the protection level α are considered: 50%, 90%, and 95%. The lowest value of
α corresponds to the situation where an airborne conflict near the IAF between two given
aircraft i and j is likely to happen at most 50% of the time (and consequently air traffic
controllers must intervene to solve this conflict). The largest value of α (95%) corresponds
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Table 7: Rounded buffered separation SI(α) (in seconds) for uncertainty σ = 30 sec

α 50% 90% 95%
SI(α) 72 126 142

to a rare IAF separation violation between two given aircraft i and j (at most 5% of the
time).

Separations: Final-approach time separations (Sij), and minimum separation over the
IAF

(
SI
)

are as indicated in Section 2. The buffered IAF separation SI(α) (defined in
Subsection 3.2) depends on the value of the protection level α, as shown in Table 7.

Landing time windows: Each landing time window is piecewise defined over three
time intervals related to the unconstrained landing time of each aircraft according to the
form of the second-stage objective function introduced in Subsection 3.1. In our tests,
deviation costs incurred within the first time segment: [−1 min ; 0 min] are proportional
to the weight −c1. Delays within [0 min ; +4 min] yield costs proportional to the weight
c2. Finally, delays within [+4 min ; +19 min] are proportional to the weight c3.

Second-stage time-deviation weights: Values of second-stage time-deviation weights,
c1, c2, and c3, should reflect the amount of workload required from air traffic controllers
to implement each category of time deviations displayed by AMAN (time to gain up to 1
minute, time to lose up to 4 minutes, and time to lose greater than 4 minutes). Achieving
a delay smaller than 4 minutes in the terminal area is common, and its workload impact
cost per second can be set to the normalized value c2 = 1.0. Since time advance is almost
costless, c1 should be set to a smaller value. We choose c1 = 0.5. Finally, delaying an
aircraft by more than 4 minutes should be avoided as much as possible, since it requires
resorting to holding patterns. The corresponding workload cost per second, c3, must be
relatively high compared with c1 and c2. We set c3 = 4.0. Note that the studied values
(c1 = 0.5, c2 = 1.0, c3 = 4.0) satisfy 0 < c1 < c2 < c3, so that the resulting functions, fi’s,
for i ∈ A, are convex piecewise linear.

Weighting parameter λ: We keep the weighting parameter λ fixed to the value 1 in
our computational study, except in Subsection 5.3 where we study the trade-off between
the first-stage and the expected second-stage objectives, and its effect on the benefit of
two-stage stochastic programming to tackle our problem.

Common features across the ten instances are summarized in Table 8.

5.2 Determining an appropriate number of scenarios

In order to verify whether a given number of scenarios is sufficiently large, we use the
out-of-sample validation technique that consists in computing a validation score and a
validation gap of an SAA problem’s solution using a large sample of scenarios called the
validation set. By definition, the validation set should not contain any of the scenarios
used during optimization. In our computational study, the validation set is sampled
using a seed different from all seeds used to generate scenario sets for optimization. Let
S and Sv be two sets of scenarios, where S is used for optimization and Sv is used for
validation. By definition, the validation set Sv should contain many more scenarios than

22



Table 8: Instances common features.

Total number of aircraft n = 10

IAF time windows* (TW I)
Narrow: [−1 min ; +5 min]
Wide : [−1 min ; +15 min]

Uncertainty standard deviation σ = 30 sec
Landing time window [−1 min ; +4 min ; +19 min]

Second-stage unitary impact costs
c1 = 0.5
c2 = 1.0
c3 = 4.0

* Narrow/Wide yields two different instances

the optimization set S, i.e., nSv � nS . Let (δ?S , x
?
S) be a (first-stage) optimal solution for

the two-stage stochastic program obtained with the set of scenarios S, noted SP(S). Let v?S
be the optimal objective-function value of SP(S). Let SP(Sv) be the two-stage stochastic
program obtained with the set of scenarios Sv. The validation score of (δ?S , x

?
S), noted

vSv , is defined as the objective-function value of SP(Sv) corresponding to the solution
(δ?S , x

?
S). Remark, here, that we implicitly assume that (δ?S , x

?
S) is feasible for SP(Sv),

although theoretically infeasibility may arise for some scenarios since the recourse is not
relatively complete. The validation gap corresponding to the solution (δ?S , x

?
S) is computed

as the relative difference between the SAA-problem objective-function optimal value v?S ,
and the validation score vSv :

Validation gap
def
=

v?S − vSv
vSv

× 100

The validation gap is a normalized quantity that helps to estimate whether a number of
scenarios nS “approximates well enough” the reference set of scenarios Sv, also called the
“reference tree” as mentioned in [27]. In order to find an appropriate number of scenarios,
nS , we propose to solve the deterministic equivalent problem using CPLEX for increasing
values of nS ranging from 10 to 500. For each number of scenarios, 10 replications of
the SAA problem are constructed and solved. For each replication, a validation score is
computed using a validation set of 10, 000 scenarios, and a validation gap is deduced. For
a given number of scenarios, an average validation gap is computed (over the validation
gaps of the 10 replications). As computation time increases rapidly with the number
of scenarios, we are content with an appropriate number of scenarios chosen to be the
smallest number of scenarios that yields an absolute average validation gap smaller than
0.15%, and a corresponding 95%-confidence interval radius less than 0.15%.

Extensive results are given in the appendix. Table 9 summarizes the appropriate
number of scenarios n∗S for each instance, and recalls the number of different sequences
“# Seq.” corresponding to each n∗S over the 10 replications.

Effect of α on the appropriate number of scenarios

In Table 9, we observe that the appropriate number of scenarios, n∗S , generally decreases,
if not maintained, when increasing α. For α = 50%, the appropriate numbers of scenarios
range from 100 to 500 scenarios, while for α = 95%, 50 to 200 scenarios are sufficient
to approximate satisfactorily the reference problem (i.e., the problem with the validation
set). We conclude that buffering the IAF separation (by increasing α) not only simplifies
the problem from a combinatorial point of view (by decreasing the number of feasible
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solutions, and thereby the computational time) but also helps to limit the number of
scenarios needed to estimate appropriately the expected second-stage cost. However, for
dense planned schedules (like 10 607 623 and 10 619 634), enforcing large IAF separations
may cause some instances to become infeasible.

Effect of IAF time window width on the appropriate number of scenarios

We remark that the appropriate number of scenarios for any given instance with wide
IAF time windows is always smaller than or equal to the appropriate number of scenarios
for its counterpart with narrow IAF time windows.

Effect of IAF time window width on the optimal objective-function value

In line with Khassiba et al. 29, extensive results (see the appendix) show that optimization
problems with narrow IAF time windows are easier to solve as more time windows are
likely to be disjoint, reducing the number of feasible sequences. This may, in turn, reduce
the solution space for the (NP-hard) first-stage problem. On the other hand, optimal
objective-function values are slightly smaller with wide IAF time windows as the problem
features more feasible candidate solutions of a potentially better quality. As a drawback,
the problem is more combinatorial and therefore harder to solve. From an operational
viewpoint, if more degrees of freedom are available to schedule flights on the IAF, then
uncertainty can be better absorbed (i.e., less last-minute control workload to sequence
landings is needed), and better sequences can be built (i.e., sequences that yield higher
landing rate).

Note on the stability of the problem

Based on the extensive results reported in the appendix, when increasing the number
of scenarios nS for a given instance, the average objective-function optimal value first
increases, then stagnates more or less early depending on the instance. Also, the variance
of the average objective-function optimal value decreases sharply. On the contrary, the
average validation score first decreases then stagnates more or less early depending on
the instance, while its variance decreases rapidly. These remarks hold for the average
validation gap. This illustrates the fact that an SAA-problem optimal value (estimated
by the average objective-function optimal value) is negatively biased, and that the bias
decreases when increasing the number of scenarios [39].

As for the solution stability of a given instance, we remark that the number of different
sequences across the optimal solutions of the 10 replications (recall that only one solution
is retained for each replication) decreases when increasing the number of scenarios nS .
Nevertheless, in many test cases, even for nS = 500, there is still many different optimal
sequences across the replications. This may be due to the fact that there is not a unique
optimal sequence.

With respect to the IAF target times, that represent the continuous part of our mixed-
integer problem’s solution, instability across the replications remains, even when nS in-
creases. This may be explained partially by the fact that the sequences are not stable
themselves. Another explanation may come from the fact that the convergence rate of

the continuous components of the solution is governed by the “rather-slow” O
(
n
−1/2
S

)
SAA-convergence rate [39].
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Table 9: Appropriate number of scenarios, n∗S , for each instance.

α

50% 90% 95%

Instance Id n∗S # Seq. n∗S # Seq. n∗S # Seq.

10 559 618 N 200 2 100 2 50 1
10 559 618 W 100 7 100 10 50 10
10 607 623 N 500 7 500 2 NA NA
10 607 623 W 100 2 100 9 100 9
10 619 634 N 200 1 NA NA NA NA
10 619 634 W 100 5 100 6 100 4
10 624 640 N 200 6 100 6 200 5
10 624 640 W 100 9 100 10 100 10
10 634 659 N 100 2 100 2 50 2
10 634 659 W 100 10 100 3 50 2

In the remainder of this computational study, we keep the number of scenarios fixed
to n∗S for each instance, as shown in Table 9.

In the next Subsection, we quantify the benefit from solving a two-stage stochastic
program over a deterministic-optimization approach. We also study the characteristics of
some stochastic solutions, and we compare them with their deterministic counterparts.

5.3 Value of the stochastic solution

The value of the stochastic solution (VSS) expresses the benefit of solving a two-stage
stochastic problem, where uncertain data are assumed to follow known random distri-
butions, over solving a deterministic problem, where uncertain data are reduced to their
average values.

Let (δSP, xSP) be a retained solution of the two-stage stochastic problem (SP), and v?SP
its validation score over a given validation set of scenarios Sv, assuming that (δSP, xSP) is
feasible for all scenarios in Sv. We shall refer to (δSP, xSP) as the stochastic solution. Let
us define the expected-value problem (EP) as the two-stage “stochastic” problem, where
the only second-stage scenario considered is the average (or expected-value) scenario.
Remark that, reducing uncertain problem data to their average values corresponds to
a full deterministic approach that completely overlooks uncertainty. Let (δ?EP, x

?
EP) be

an optimal solution of (EP), and v?EP be its validation score over the validation set Sv,
assuming that (δ?EP, x

?
EP) is feasible for all scenarios in Sv. We shall refer to (δ?EP, x

?
EP) as

the deterministic solution.
To quantify the advantages of the stochastic solution over its deterministic counterpart,

we may rely on the validation score as an expected quality metric. In our context, the
validation score v?SP expresses the expected quality of the stochastic solution, while the
validation score v?EP estimates the expected quality of the deterministic solution over
the validation set Sv. Accordingly, we define the relative VSS as the relative difference
between the validation scores of the stochastic and the deterministic solutions as follows:
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VSS(%)
def
= 100× v?EP − v?SP

v?EP

Note that, since we solve a minimization problem, and since the stochastic solution is
expected to be better than its deterministic counterpart (i.e., v?SP ≤ v?EP), we expect the
relative VSS to be non-negative.

Relative VSS for each instance for different values of protection level α are reported in
Table 11. The difference in length between the stochastic and the deterministic sequences,
noted ∆Seq., is also reported. We remark that the highest relative values of the stochastic
solutions (10.21% and 10.79%) correspond to instances 10 607 623 W and 10 619 634 W
with the test parameter α = 50% and λ = 1. These instances have the two most dense
planned schedules and both feature wide IAF time windows. However, as the protection
level against IAF separation loss α increases, VSS sharply decreases for all instances, and
almost vanishes for instance 10 624 640 with α = 95% (VSS = 0.05%). Recall that for
high values of α (typically 90% or 95%), the IAF separation is enlarged, as shown in Table
7. Such buffered separations contribute to hedge against uncertainty as follows. If target
IAF times are spaced out more than the minimal requirement SI , the actual IAF times are
expected to be less disrupted when the uncertainty is revealed. Therefore, the recourse
cost to restore the target sequence while not deviating much from the unconstrained
landing times, is expected to be smaller, yielding a small expected second-stage cost.

We conclude that the benefit of solving a two-stage stochastic program is more promi-
nent in the situation of high-density air traffic, and when aircraft and controllers have
many degrees of freedom for re-scheduling. Also, hedging against uncertainty using
buffered separations may lead to a better performance of a deterministic scheduling policy.

In order to study further the features of the stochastic solutions with the highest VSS,
we display in Figures 3 and 4 the planned, deterministic, and stochastic IAF schedule
for instances 10 607 623 W and 10 619 634 W with the test parameter α = 50%. In
these figures, high-turbulence-category-aircraft time plots are shown in red color, while
those of medium-turbulence-category aircraft are in black color. Also, when an aircraft
changes its relative position in the subsequence of aircraft of the same turbulence category
between the planned and the studied IAF schedule (stochastic or deterministic), we use
dashed lines to link that aircraft time plots in the two schedules. For example, in instance
10 607 623 W, aircraft 1 is from a medium-turbulence category and was planned first to
cross the IAF. In the deterministic schedule, this aircraft is scheduled fourth behind three
medium aircraft (4, 6 and 8). Accordingly, the two time plots of aircraft 1 are linked
with a dashed line in Figure 3a. For aircraft that do not change their relative position, a
continuous line is drawn.

Firstly, we remark that in both stochastic and deterministic solutions aircraft are
sequenced according to the rule “lighter aircraft first”. Indeed, in both instances, all
heavy-turbulence-category aircraft are delayed and put at the end of the sequence. This
sequencing yields a minimum first-stage cost (i.e., minimum sequence length in terms of
final-approach separations). However, IAF target times in stochastic schedules are more
spaced out than in deterministic schedules, although only the minimum IAF separation
SI is required (since for α = 50% no buffer is added). Here, let us stress that larger
pairwise separations over the IAF help to limit IAF schedule disruptions, and thereby
IAF separation loss, once the uncertainty is revealed. Moreover, stochastic schedules ex-
hibit fewer position shifts among aircraft from the same turbulence category than their
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(a) Planned vs Deterministic

(b) Planned vs Stochastic

Figure 3: Planned, deterministic, and stochastic schedule for instance 10 607 623 W and
α = 50%.

deterministic counterparts, which ensures fairness among aircraft. As a drawback, we re-
mark that stochastic schedules span over longer time frames than deterministic schedules,
which may decrease the arrival/landing rate in low-to-moderate density traffic situations,
as observed in Khassiba et al. 29.

From an operational viewpoint, we conclude that an efficient solution to our two-stage
stochastic problem may be obtained first by building a sequence using the rule “lighter
aircraft first” and where the relative positions of aircraft from the same wake-turbulence
category are conserved. Remark that a similar optimality property is proved in the context
of a deterministic version of the aircraft landing problem (see Briskorn and Stolletz [8,
Lemma 1]). Once the target sequence is fixed, IAF target times can be deduced recursively
by enforcing a buffered IAF separation between successive aircraft.

Effect of the weighting parameter λ to trade off first-stage and second-stage
costs

We run a subsidiary numerical experiment where the weighting parameter value λ is
increased to 4.0. More focus is thereby put on the expected second-stage cost, compara-
tively to the baseline test case where λ = 1.0. We limit our experiment to the instance
607 623 10 W, with α = 50%. The main results are given in Table 10. We remark that:
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(a) Planned vs Deterministic

(b) Planned vs Stochastic

Figure 4: Planned, deterministic, and stochastic schedule for instance 10 619 634 W and
α = 50%.

• more scenarios are needed to satisfy the required stability condition (n∗S = 500
versus 100 scenarios);

• larger VSS are observed (30.28% versus 10.21%), suggesting that two-stage stochas-
tic programming is more relevant when the second-stage cost is of high importance.

Regarding the difference between the stochastic and the deterministic solutions, we
remark that, unlike previous tests, sequences with different lengths (in terms of the sum of
final-approach separations) are returned. In the stochastic solution, the target sequence is
745-second long, while in the deterministic solution, the sequence is shorter (693 seconds).
This experiment recalls that the deterministic approach overlooks the variability of second-
stage outcomes, while the stochastic approach proposes a solution that is “suboptimal”
for the first-stage problem (the sequence is not the shortest one) but that appears to be
better when we take into account both the first and the second stages. Figure 5 displays
the planned, deterministic, and stochastic IAF schedules for instance 10 607 623 W with
test parameter values α = 50% and λ = 4.0.

Finally, computation times exhibit a dramatic increase as λ increases. This is partially
due to the fact that the appropriate number of scenarios also increases with λ, yielding
a larger problem to solve. However, we remark that even for nS = 500, the computation
time for 607 623 10 W with α = 50% and λ = 1.0 is 466.99 seconds (see the appendix),
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Table 10: Main results on instance 607 623 10 W with α = 50% for different values of λ.

λ = 1.0 λ = 4.0

n∗S 100 500
VSS 10.21% 30.28%
CPU (sec) 19.46 1737.82

CPU times are obtained by solving the deterministic equivalent problem directly by CPLEX and

averaged over 10 replications.

Table 11: Relative VSS (and ∆Seq.) for different values of α.

α

Instance Id 50% 90% 95%

10 559 618 N 4.74% (0) 2.81% (0) 1.93% (0)
10 559 618 W 9.79% (0) 2.78% (0) 1.83% (0)
10 607 623 N 2.24% (0) 1.49% (0) INF
10 607 623 W 10.21% (0) 2.51% (0) 1.70% (0)
10 619 634 N 7.54% (0) INF INF
10 619 634 W 10.79% (0) 1.29% (0) 0.25% (0)
10 624 640 N 8.09% (0) 1.81% (0) 0.05% (0)
10 624 640 W 6.40% (0) 2.30% (0) 1.53% (0)
10 634 659 N 6.24% (0) 1.48% (0) 1.59% (0)
10 634 659 W 8.61% (0) 2.18% (0) 0.40% (0)

For each instance, the stochastic solution corresponds to the solution with the highest validation score

obtained when solving 10 replications of the SAA-problem formulated using the appropriate number of

scenarios n∗S from Table 9.

which is three times shorter than with λ = 4.0.
We conclude that as the importance of the second-stage cost increases from the stake-

holder viewpoint, the benefit of two-stage stochastic programming increases. Meanwhile,
the problem becomes more difficult in two senses: more scenarios are needed to reach the
desired level of stability, and computation times to reach optimality are longer. These
facts express the need for fast solution methods. In the next subsection, we compare
different solution methods for our two-stage stochastic programs in terms of computation
time.

5.4 Solution-method performance comparison

This subsection aims at comparing the performance of the following solution methods
applied to our two-stage stochastic program:

1. solving the deterministic equivalent problem with CPLEX using default parameters;

2. applying CPLEX automatic Benders decomposition with Benders strategy FULL;
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(a) Planned vs Deterministic

(b) Planned vs Stochastic

Figure 5: Planned, deterministic, and stochastic schedule for instance 10 607 623 W,
α = 50% and λ = 4.0.

3. applying CPLEX automatic Benders decomposition with Benders strategy USER
and specifying completely disaggregated Benders subproblems;

4. applying CPLEX automatic Benders decomposition with Benders strategy USER
and specifying partially-aggregated Benders subproblems, where every nc second-
stage scenario problems are aggregated into a single Benders subproblem.

In our two-stage stochastic mixed-integer program, there are both binary and contin-
uous variables in the first stage (δ and x), while all second-stage variables are continuous
(ys, zs−, zs+, and zs++ for s ∈ S). We expect that under Benders strategy FULL, CPLEX
is not able to decompose the problem according to its two-stage structure: the Benders
master problem will only contain the binary variables δ, while the linking continuous vari-
ables, x, will be put inappropriately in the Benders subproblem, and thereby will hinder
any further decomposition of the subproblem. With Benders strategy USER, we add
annotations to our variables specifying that the first-stage variables (both the binary and
the continuous ones) must be kept in the master problem, while second-stage variables
must be in one or different subproblems, according to the specified level of aggregation.

In Table 12, we report average solution times obtained applying the above four solution
methods. “Determ. Eq.” stands for CPLEX solving the deterministic equivalent with
default parameters. “Auto. Benders Disagg” and “Auto. Benders 5-Agg” correspond
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to using CPLEX automatic Benders decomposition with Benders strategy USER. In the
former, a complete disaggregation by scenarios is specified for the Benders subproblem,

while in the latter, a partial aggregation every five scenarios is considered (K =
nS
5

clusters; the first cluster contains scenarios 1 to 5, the second cluster contains scenarios
6 to 10, and so on). “Auto. Benders FULL” refers to using CPLEX automatic Benders
decomposition with Benders strategy FULL. Results for two instances from our test bed,
10 634 659 N and 10 634 659 W, are not reported because very short computation times
are achieved by the four solution methods, which makes the instances not relevant for the
comparison.

As expected, the computation times obtained with Benders strategy FULL are the
worst. This bad performance is surely due to the inappropriate automatic partitioning
that CPLEX applies. Based on this, we conclude that tackling a two-stage stochastic pro-
gram with a bad decomposition can be even worse than solving it without decomposition.

On the other hand, we remark that clearly CPLEX automatic Benders decomposition
under Benders strategy USER (that follows any of our two user-defined decompositions),
performs the best for most of the test cases. In fact, both disaggregated and partially-
aggregated versions perform better than CPLEX Branch-and-Cut in 16 cases out of 21.
This confirms that the structure must be exploited to develop efficient solution methods
for two-stage stochastic programs. In addition, the partially-aggregated version ranks as
the best solution method among the four studied ones, in 15 cases. This indicates that
partially aggregating Benders subproblems may be a successful approach to improve com-
putation times. Hence, subproblem clustering strategies are worthwhile to be explored.

6 Conclusion and perspectives

In this paper, we propose a chance-constrained two-stage stochastic mixed-integer pro-
gramming model for the extended aircraft arrivals management problem under uncer-
tainty. In the first stage, aircraft are captured 2 to 3 hours away from the IAF. The
first-stage problem finds a target sequence and target times of aircraft arrival over the
IAF so as to minimize the landing sequence length. First-stage constraints are IAF time
windows and IAF separation constraints. The first-stage problem is enriched by chance
constraints to limit the risk of IAF separation violations (once uncertainties are revealed)
to an acceptable level, that we call the protection level. The second-stage problem con-
siders aircraft shortly before arriving at the IAF up to landing, when actual IAF times
become known with certainty. It aims at finding target landing times so as to minimize a
time-deviation impact cost function. Second-stage constraints are landing time windows
and final-approach separations. The two-stage stochastic program minimizes the weighted
sum of the landing sequence length, and the expected second-stage time-deviation impact
cost function. We show that under mild conditions first-stage chance constraints can be
transformed into linear separation constraints with a buffered minimal IAF separation
that depends on the protection level. Also, we approximate the expectation term in the
true model using a sample average. We are then left with a large-scale deterministic
mixed-integer linear problem. In addition to the extended formulation of the determinis-
tic equivalent problem, we propose a partially-aggregated Benders reformulation, and we
explore some acceleration techniques of Benders decomposition.

We carry out an extensive computational study on a realistic test bed consisting of
10 instances corresponding to aircraft arrivals on Paris Charles-de-Gaulle airport. The
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Table 12: Performance comparison between CPLEX B&C, CPLEX automatic Benders
with disaggregated and partially-aggregated subproblems.

Auto. Benders Auto. Benders Auto. Benders
Determ. Eq. Disagg 5-Agg FULL

Instance Id α n∗S CPU CPU CPU CPU

10 559 618 N 50% 200 3.51 10.47* 7.56*2 14.35
90% 100 1.07 2.92* 2.19*3 3.14
95% 50 0.46 0.90 0.63 0.88

10 559 618 W 50% 100 9.05 7.69 5.89 36.73
90% 100 7.33 4.17 3.65 14.86
95% 50 2.35 1.43 1.14 3.12

10 607 623 N 50% 500 186.58 88.07*3 32.06*8 585.57
90% 500 27.63 15.13 11.64* 96.57
95% INF - - - -

10 607 623 W 50% 100 21.90 9.90*2 8.40*3 162.67
90% 100 13.88 4.64 3.61 61.57
95% 100 9.65 4.62 3.50 43.34

10 619 634 N 50% 200 14.31 25.87* 11.49*2 88.05
90% INF - - - -
95% INF - - - -

10 619 634 W 50% 100 31.42 7.63 7.39 133.20
90% 100 13.34 6.22 5.76 41.13
95% 100 34.08 7.02 6.63 71.99

10 624 640 N 50% 200 14.06 10.43* 14.16* 56.56
90% 100 1.41 2.61 2.02 5.01
95% 200 2.63 4.79 3.25 10.75

10 624 640 W 50% 100 67.21 15.01* 9.38*2 405.57
90% 100 35.48 6.51 5.91 97.26
95% 100 39.61 5.30 4.82 63.73

CPU times (seconds) are obtained using a Python 2.7 code with DOCplex package and CPLEX 12.7.1.

The label (*k) indicates that there are k replications (over 10) not solved to optimality and for which

CPLEX stopped raising a computational error. The value of k is dropped from the label when k = 1.
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analysis of the value of stochastic solution leads to the conclusion that the benefit of solving
a two-stage stochastic program is more prominent in the situation of high-density air
traffic, and when aircraft and controllers have many degrees of freedom for re-scheduling.
Also, since a deterministic approach to our problem overlooks the variability of second-
stage outcomes, the benefit of two-stage stochastic programming is shown to increase
when the second-stage cost has a great importance for the stakeholder. In this case,
the stochastic approach may propose an arrival schedule for the first-stage problem that
appears “suboptimal” but that is indeed better when we take into account both the first
and the second-stage costs. Moreover, we observe a sharp decrease of the VSS with the
presence of chance constraints. This indicates that hedging against uncertainty using
buffered separations leads to a better performance of the deterministic approach. We also
observe that as the benefit of two-stage stochastic programming increases, computation
times to reach optimality increase. This fact expresses the need for fast solution methods.

We compare the performance of several solution methods applied to our two-stage
stochastic program: CPLEX with default parameter values, automatic Benders decom-
position by CPLEX with two Benders strategies, and different Benders subproblem aggre-
gation levels. We remark that clearly CPLEX automatic Benders decomposition, under
Benders strategy USER, that follows the user-defined decomposition, performs the best
for most of the test cases. Also, partially aggregating Benders subproblems is shown to
be a successful approach to improve computation times.

Future work will focus on extending the proposed model to the case with multiple
IAFs and multiple runways. Our perspectives also include solving the dynamic case
where the arrival set evolves in time. Also, while in this paper we focus on Monte-
Carlo sampling, more scenario-generation techniques can be explored in an attempt to
reduce the appropriate number of scenarios to reach a satisfying level of stability. In
terms of solution methods based on partially-aggregated-cut Benders decomposition, more
scenario-subproblems clustering policies can be explored. Finally, as suggested by an
anonymous referee, the particular structure of the Benders subproblem could be exploited
to solve it more efficiently. As a matter of fact, a recent work of Faye [14] proposes
a dynamic-programming approach to solve the problem of determining aircraft landing
times, given a fixed sequence. A work is in progress to adapt these algorithms to a manual
implementation of Benders decomposition for further acceleration.
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7 Appendix: Extensive results

Tables 13 to 22 report extensive results of tests carried out on the ten instances from our
test bed for a number of scenarios nS ranging from 10 to 500, and for three values of the
protection level α against IAF separation loss (50%, 90%, and 95%). In column “CPU”,
the average CPLEX solving time over 10 replications is expressed in seconds. Column
“v̄ ± I95%” gives the average objective-function value, v̄, over the 10 replications as well
as the mid-length Student-based 95% confidence interval (I95%). Likewise, the columns
“Validation score” and “Validation gap” report respectively the average validation score
and the average validation gap over the 10 replications as well as the mid-length Student-
based 95% confidence intervals. The last column “# Seq.” reports the number of different
sequences over the solutions of the 10 replications (given that only one solution is retained
per replication).

Table 13: Results of instance 10 559 618 N.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.16 Opt. (0.0%) 812.2 ±3.5 822.3 ±3.3 -1.22% ±0.63 3
90% 0.13 Opt. (0.0%) 854.4 ±2.1 858.4 ±0.5 -0.46% ±0.28 3
95% 0.10 Opt. (0.0%) 857.8 ±4.0 858.3 ±0.6 -0.05% ±0.50 1

50

50% 0.58 Opt. (0.0%) 813.5 ±1.9 816.4 ±0.4 -0.36% ±0.24 2
90% 0.53 Opt. (0.0%) 855.2 ±0.7 857.1 ±0.3 -0.21% ±0.07 2
95% 0.37 Opt. (0.0%) 857.1 ±0.9 857.7 ±0.2 -0.08% ±0.11 1

10
0

50% 1.18 Opt. (0.0%) 814.5 ±1.1 816.0 ±0.1 -0.19% ±0.13 2
90% 1.06 Opt. (0.0%) 855.7 ±0.5 856.7 ±0.2 -0.11% ±0.07 2
95% 0.88 Opt. (0.0%) 857.4 ±0.6 857.6 ±0.1 -0.02% ±0.07 1

20
0

50% 4.49 Opt. (0.0%) 814.8 ±0.9 815.9 ±0.1 -0.13% ±0.11 2
90% 2.51 Opt. (0.0%) 856.0 ±0.4 856.5 ±0.2 -0.07% ±0.05 2
95% 1.96 Opt. (0.0%) 857.3 ±0.4 857.5 ±0.1 -0.03% ±0.05 1

50
0

50% 32.22 Opt. (0.0%) 814.9 ±0.4 815.7 ±0.1 -0.09% ±0.05 2
90% 16.58 Opt. (0.0%) 856.1 ±0.1 856.3 ±0.1 -0.03% ±0.02 2
95% 13.45 Opt. (0.0%) 857.3 ±0.1 857.5 ±0.0 -0.02% ±0.02 1

Solution method: Deterministic equivalent problem solved by CPLEX
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Table 14: Results of instance 10 559 618 W.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.76 Opt. (0.0%) 751.1 ±3.0 756.5 ±2.0 -0.71% ±0.45 6
90% 0.55 Opt. (0.0%) 799.0 ±0.0 805.0 ±1.1 -0.74% ±0.13 3
95% 0.52 Opt. (0.0%) 799.0 ±0.0 803.3 ±1.3 -0.54% ±0.16 4

50

50% 3.98 Opt. (0.0%) 751.9 ±1.0 753.1 ±0.2 -0.16% ±0.13 6
90% 2.38 Opt. (0.0%) 799.0 ±0.0 800.3 ±0.4 -0.17% ±0.05 10
95% 2.11 Opt. (0.0%) 799.0 ±0.0 800.2 ±0.4 -0.15% ±0.05 10

10
0

50% 9.86 Opt. (0.0%) 752.0 ±0.8 752.8 ±0.1 -0.11% ±0.11 7
90% 6.78 Opt. (0.0%) 799.0 ±0.0 799.6 ±0.1 -0.07% ±0.01 10
95% 7.28 Opt. (0.0%) 799.0 ±0.0 799.5 ±0.1 -0.06% ±0.01 10

20
0

50% 31.75 Opt. (0.0%) 752.3 ±0.6 752.7 ±0.1 -0.05% ±0.08 4
90% 23.17 Opt. (0.0%) 799.0 ±0.0 799.3 ±0.1 -0.04% ±0.01 10
95% 23.64 Opt. (0.0%) 799.0 ±0.0 799.4 ±0.1 -0.05% ±0.01 10

50
0

50% 138.39 Opt. (0.0%) 752.2 ±0.3 752.6 ±0.0 -0.05% ±0.05 7
90% 150.40 Opt. (0.0%) 799.0 ±0.0 799.1 ±0.0 -0.01% ±0.00 8
95% 93.28 Opt. (0.0%) 799.0 ±0.0 799.1 ±0.0 -0.02% ±0.00 8

Solution method: Deterministic equivalent problem solved by CPLEX

Table 15: Results of instance 10 607 623 N.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.48 Opt. (0.0%) 812.7 ±7.3 824.8 ±3.0 -1.50% ±0.89 8
90% 0.21 Opt. (0.0%) 863.9 ±7.2 862.8 ±1.1 0.12% ±0.78 2
95% INF ± ± %

50

50% 2.59 Opt. (0.0%) 813.6 ±2.7 819.8 ±0.1 -0.76% ±0.34 7
90% 0.83 Opt. (0.0%) 860.8 ±2.0 862.2 ±0.1 -0.16% ±0.23 2
95% INF ± ± %

10
0

50% 6.48 Opt. (0.0%) 815.6 ±2.5 819.5 ±0.2 -0.48% ±0.32 6
90% 1.38 Opt. (0.0%) 861.5 ±1.8 862.1 ±0.1 -0.07% ±0.21 2
95% INF ± ± %

20
0

50% 24.19 Opt. (0.0%) 816.6 ±2.3 819.5 ±0.3 -0.36% ±0.28 7
90% 3.54 Opt. (0.0%) 861.3 ±1.6 862.0 ±0.1 -0.08% ±0.18 2
95% INF ± ± %

50
0

50% 179.82 Opt. (0.0%) 817.6 ±1.0 819.3 ±0.2 -0.20% ±0.12 7
90% 27.19 Opt. (0.0%) 862.0 ±0.9 862.0 ±0.0 0.00% ±0.11 2
95% INF ± ± %

Solution method: Deterministic equivalent problem solved by CPLEX
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Table 16: Results of instance 10 607 623 W.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 1.05 Opt. (0.0%) 705.8 ±1.2 711.7 ±2.3 -0.83% ±0.42 4
90% 0.85 Opt. (0.0%) 745.0 ±0.0 751.5 ±1.2 -0.86% ±0.16 10
95% 0.75 Opt. (0.0%) 745.0 ±0.0 748.1 ±0.7 -0.41% ±0.09 10

50

50% 7.10 Opt. (0.0%) 706.7 ±1.3 707.4 ±0.3 -0.09% ±0.20 2
90% 4.88 Opt. (0.0%) 745.0 ±0.0 746.6 ±0.3 -0.21% ±0.04 10
95% 4.70 Opt. (0.0%) 745.0 ±0.0 746.2 ±0.3 -0.16% ±0.04 10

10
0

50% 19.46 Opt. (0.0%) 707.0 ±1.0 707.1 ±0.3 -0.02% ±0.13 2
90% 14.04 Opt. (0.0%) 745.0 ±0.0 745.7 ±0.2 -0.10% ±0.02 9
95% 10.65 Opt. (0.0%) 745.0 ±0.0 745.7 ±0.1 -0.09% ±0.02 9

20
0

50% 76.26 Opt. (0.0%) 706.6 ±0.5 707.0 ±0.1 -0.05% ±0.07 1
90% 156.63 Opt. (0.0%) 745.0 ±0.0 745.4 ±0.1 -0.05% ±0.01 9
95% 84.80 Opt. (0.0%) 745.0 ±0.0 745.4 ±0.1 -0.06% ±0.01 10

50
0

50% 466.99 Opt. (0.0%) 706.9 ±0.4 706.8 ±0.0 0.01% ±0.06 1
90% 1446.55 Opt. (0.0%) 745.1 ±0.0 745.3 ±0.0 -0.03% ±0.01 10
95% 973.40 Opt. (0.0%) 745.1 ±0.0 745.3 ±0.0 -0.03% ±0.01 10

Solution method: Deterministic equivalent problem solved by CPLEX

Table 17: Results of instance 10 619 634 N.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.29 Opt. (0.0%) 778.7 ±5.8 784.4 ±2.0 -0.73% ±0.73 1
90% INF ± ± % ±
95% INF ± ± % ±

50

50% 1.53 Opt. (0.0%) 778.4 ±1.8 780.1 ±0.3 -0.22% ±0.23 1
90% INF ± ± % ±
95% INF ± ± % ±

10
0

50% 3.69 Opt. (0.0%) 779.5 ±1.3 780.0 ±0.1 -0.07% ±0.17 1
90% INF ± ± % ±
95% INF ± ± % ±

20
0

50% 12.33 Opt. (0.0%) 779.0 ±0.8 779.9 ± 0.1 -0.11% ±0.11 1
90% INF ± ± % ±
95% INF ± ± % ±

50
0

50% 106.28 Opt. (0.0%) 779.3 ±0.7 779.7 ±0.0 -0.06% ±0.08 1
90% INF ± ± % ±
95% INF ± ± % ±

Solution method: Deterministic equivalent problem solved by CPLEX
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Table 18: Results of instance 10 619 634 W.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.51 Opt. (0.0%) 666.0 ±0.0 672.5 ±2.4 -0.96% ±0.35 9
90% 0.42 Opt. (0.0%) 666.0 ±0.0 670.6 ±0.9 -0.69% ±0.13 8
95% 0.94 Opt. (0.0%) 666.0 ±0.0 668.6 ±0.5 -0.39% ±0.08 5

50

50% 12.27 Opt. (0.0%) 666.4 ±0.1 667.8 ±0.3 -0.21% ±0.04 5
90% 8.79 Opt. (0.0%) 666.4 ±0.1 667.7 ±0.2 -0.20% ±0.03 5
95% 10.86 Opt. (0.0%) 666.5 ±0.2 667.5 ±0.1 -0.16% ±0.03 5

10
0

50% 38.84 Opt. (0.0%) 666.8 ±0.2 667.5 ±0.1 -0.11% ±0.03 5
90% 19.84 Opt. (0.0%) 666.8 ±0.2 667.5 ±0.1 -0.11% ±0.03 6
95% 37.38 Opt. (0.0%) 666.8 ±0.2 667.4 ±0.1 -0.09% ±0.03 4

20
0

50% 90.81 Opt. (0.0%) 666.9 ±0.1 667.4 ±0.1 -0.08% ±0.03 4
90% 63.78 Opt. (0.0%) 667.1 ±0.4 667.6 ±0.3 -0.07% ±0.03 6
95% 137.41 Opt. (0.0%) 666.9 ±0.1 667.3 ±0.0 -0.07% ±0.03 4

50
0

50% 404.1 Opt. (0.0%) 667.1 ±0.1 667.3 ±0.0 -0.03% ±0.02 4
90% 266.02 Opt. (0.0%) 667.1 ±0.1 667.3 ±0.0 -0.03% ±0.02 4
95% 500.38 Opt. (0.0%) 667.1 ±0.1 667.3 ±0.0 -0.03% ±0.02 4

Solution method: Deterministic equivalent problem solved by CPLEX

Table 19: Results of instance 10 624 640 N.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.31 Opt. (0.0%) 809.3 ±2.2 819.4 ±1.9 -1.23% ±0.28 7
90% 0.17 Opt. (0.0%) 812.7 ±3.0 818.6 ±2.5 -0.72% ±0.53 9
95% 0.12 Opt. (0.0%) 828.8 ±4.8 833.7 ±2.1 -0.59% ±0.55 7

50

50% 1.83 Opt. (0.0%) 812.2 ±1.1 815.0 ±0.4 -0.34% ±0.14 7
90% 0.63 Opt. (0.0%) 814.8 ±1.3 816.1 ±0.3 -0.16% ±0.14 8
95% 0.53 Opt. (0.0%) 830.5 ±2.4 832.1 ±0.1 -0.19% ±0.27 4

10
0

50% 4.67 Opt. (0.0%) 813.0 ±0.6 814.6 ±0.2 -0.20% ±0.08 7
90% 1.37 Opt. (0.0%) 815.4 ±0.9 816.0 ±0.2 -0.07% ±0.12 6
95% 0.98 Opt. (0.0%) 831.0 ±1.7 832.0 ±0.1 -0.12% ±0.20 5

20
0

50% 13.66 Opt. (0.0%) 813.4 ±0.6 814.5 ±0.2 -0.13% ±0.09 6
90% 3.65 Opt. (0.0%) 815.4 ±0.8 815.9 ±0.2 -0.06% ±0.10 7
95% 2.40 Opt. (0.0%) 831.2 ±1.3 832.0 ±0.0 -0.10% ±0.15 5

50
0

50% 61.91 Opt. (0.0%) 813.7 ±0.2 814.2 ±0.1 -0.07% ±0.03 6
90% 26.84 Opt. (0.0%) 815.6 ±0.4 815.8 ±0.0 -0.02% ±0.05 5
95% 26.56 Opt. (0.0%) 831.8 ±0.8 831.9 ±0.1 -0.01% ±0.09 5
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Table 20: Results of instance 10 624 640 W.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 2.32 Opt. (0.0%) 718.0 ±0.0 724.7 ±2.1 -0.93% ±0.29 10
90% 1.29 Opt. (0.0%) 718.0 ±0.0 722.3 ±1.1 -0.59% ±0.15 10
95% 1.00 Opt. (0.0%) 718.0 ±0.0 722.4 ±1.5 -0.60% ±0.21 10

50

50% 17.00 Opt. (0.0%) 718.0 ±0.0 719.3 ±0.2 -0.18% ±0.03 10
90% 6.00 Opt. (0.0%) 718.0 ±0.0 719.4 ±0.3 -0.19% ±0.03 10
95% 5.39 Opt. (0.0%) 718.0 ±0.0 719.2 ±0.2 -0.17% ±0.02 10

10
0

50% 63.56 Opt. (0.0%) 718.0 ±0.0 718.9 ±0.1 -0.13% ±0.01 9
90% 35.66 Opt. (0.0%) 718.0 ±0.0 719.0 ±0.1 -0.13% ±0.02 10
95% 29.48 Opt. (0.0%) 718.0 ±0.0 718.9 ±0.1 -0.12% ±0.01 10

20
0

50% 536.53 Opt. (0.0%) 718.2 ±0.1 718.8 ±0.0 -0.09% ±0.01 10
90% 284.40 Opt. (0.0%) 718.2 ±0.1 718.8 ±0.0 -0.09% ±0.01 10
95% 230.54 Opt. (0.0%) 718.2 ±0.1 718.8 ±0.1 -0.09% ±0.01 10

50
0

50% 3164.99 9 Opt. (0.0%) 718.3 ±0.1 718.7 ±0.0 -0.05% ±0.01 10
90% 1540.18 Opt. (0.0%) 718.3 ±0.1 718.7 ±0.0 -0.06% ±0.01 10
95% 1056.55 Opt. (0.0%) 718.3 ±0.1 718.7 ±0.0 -0.05% ±0.01 10
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Table 21: Results of instance 10 634 659 N.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.09 Opt. (0.0%) 770.0 ±0.0 777.5 ±1.6 -0.97% ±0.20 6
90% 0.07 Opt. (0.0%) 770.0 ±0.0 772.9 ±0.5 -0.38% ±0.06 5
95% 0.06 Opt. (0.0%) 770.0 ±0.0 772.2 ±1.2 -0.28% ±0.16 2

50

50% 0.34 Opt. (0.0%) 770.0 ±0.1 771.3 ±0.2 -0.16% ±0.04 2
90% 0.27 Opt. (0.0%) 770.0 ±0.1 771.4 ±0.3 -0.18% ±0.04 3
95% 0.18 Opt. (0.0%) 770.0 ±0.1 771.0 ±0.1 -0.12% ±0.02 2

10
0

50% 0.85 Opt. (0.0%) 770.1 ±0.1 770.8 ±0.2 -0.10% ±0.02 2
90% 0.62 Opt. (0.0%) 770.1 ±0.1 770.8 ±0.1 -0.09% ±0.02 2
95% 0.47 Opt. (0.0%) 770.1 ±0.1 770.7 ±0.1 -0.08% ±0.02 2

20
0

50% 2.01 Opt. (0.0%) 770.1 ±0.1 770.4 ±0.1 -0.04% ±0.01 2
90% 1.27 Opt. (0.0%) 770.1 ±0.1 770.4 ±0.1 -0.04% ±0.01 2
95% 0.99 Opt. (0.0%) 770.1 ±0.1 770.4 ±0.0 -0.04% ±0.01 2

50
0

50% 12.56 Opt. (0.0%) 770.2 ±0.1 770.3 ±0.0 -0.01% ±0.01 2
90% 4.32 Opt. (0.0%) 770.2 ±0.0 770.3 ±0.0 -0.01% ±0.01 2
95% 2.99 Opt. (0.0%) 770.2 ±0.0 770.3 ±0.0 -0.01% ±0.01 2
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Table 22: Results of instance 10 634 659 W.

nS α CPU (s) Status (Gap) v̄ ± I95% Validation
score

Validation
Gap

# Seq.

10

50% 0.15 Opt. (0.0%) 718.0 ±0.0 725.6 ±1.4 -1.05% ±0.19 10
90% 0.09 Opt. (0.0%) 718.0 ±0.0 722.2 ±0.6 -0.58% ±0.08 2
95% 0.10 Opt. (0.0%) 718.0 ±0.0 720.8 ±0.5 -0.39% ±0.07 3

50

50% 0.39 Opt. (0.0%) 718.0 ±0.0 719.2 ±0.4 -0.16% ±0.06 6
90% 0.21 Opt. (0.0%) 718.0 ±0.0 719.3 ±0.3 -0.18% ±0.04 2
95% 0.20 Opt. (0.0%) 718.0 ±0.0 719.1 ±0.2 -0.15% ±0.03 2

10
0

50% 0.87 Opt. (0.0%) 718.0 ±0.0 718.5 ±0.1 -0.08% ±0.02 10
90% 0.50 Opt. (0.0%) 718.0 ±0.0 718.7 ±0.2 -0.09% ±0.03 3
95% 0.48 Opt. (0.0%) 718.0 ±0.0 718.6 ±0.1 -0.09% ±0.02 3

20
0

50% 2.23 Opt. (0.0%) 718.0 ±0.0 718.3 ±0.1 -0.04% ±0.01 10
90% 1.58 Opt. (0.0%) 718.0 ±0.0 718.3 ±0.1 -0.05% ±0.01 6
95% 1.60 Opt. (0.0%) 718.0 ±0.0 718.3 ±0.1 -0.05% ±0.01 6

50
0

50% 11.56 Opt. (0.0%) 718.0 ±0.0 718.1 ±0.0 -0.02% ±0.00 10
90% 6.39 Opt. (0.0%) 718.0 ±0.0 718.1 ±0.0 -0.02% ±0.00 6
95% 6.95 Opt. (0.0%) 718.0 ±0.0 718.1 ±0.0 -0.02% ±0.01 6
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