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ABSTRACT

We investigate the smooth pursuit eye movement based interac-
tion using an unmodiied of-the-shelf RGB camera. In each pair
of sequential video frames, we compute the indicative direction of
the eye movement by analyzing low vectors obtained using the
Lucas-Kanade optical low algorithm. We discuss how carefully
selected low vectors could replace the traditional pupil centers
detection in smooth pursuit interaction. We examine implications
of unused features in the eye camera imaging frame as potential
elements for detecting gaze gestures. This simple approach is easy
to implement and abstains from many of the complexities of pupil
based approaches. In particular, EyeFlow does not call for either
a 3D pupil model or 2D pupil detection to track the pupil center
location. We compare this method to state-of-the-art approaches
and ind that this can enable pursuit interactions with standard
cameras. Results from the evaluation with 12 users data yield an ac-
curacy that compares to previous studies. In addition, the beneit of
this work is that the approach does not necessitate highly matured
computer vision algorithms and expensive IR-pass cameras.
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· Human-centered computing → Interaction design.
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1 INTRODUCTION

Gaze gestures have been studied for decades in human-computer
interaction. The idea of interacting using eye movements appeared
as early as 1983 [Friedman, 1983]. Recently, advances in calibration-
free eye tracking interaction paved the way for more natural gaze-
input modality. In particular, the introduction of pupil-target cor-
relation produced highly accurate interaction using remote eye
trackers [Pfeufer et al., 2013] and head-worn eye trackers with
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Figure 1: (Left) Pupil center detected from an IR head-worn

eye tracker. (B) Using an unmodiied camera, the eye move-

ments are estimated based on the overall movement of the

eye using the Lucas-Kanade optical low algorithm.

smartwatches [Esteves et al., 2015], mixed reality [Esteves et al.,
2017] and mobile phones [Almoctar et al., 2018, Khamis et al., 2016].
Despite these advances, pursuit interaction still requires the detec-
tion of the pupil center which may be subject to inaccuracy due to
the environment, lighting, head poses and tracking devices. While
remote eye trackers allow estimating user gaze with high accuracy
on computer screens, they are limited to their narrow ield-of-view
and cannot be used with smaller surfaces (e.g., smartwatches). Eye
tracking devices are used in experiments involving humans, even
including infants [Franchak et al., 2011, Nasihati Gilani et al., 2018],
that must not be harmed. Most pupil detection algorithms rely
on head mounted eye cameras using an infrared light emitter at-
tached next to the eye camera in order to seamlessly extract the
pupil from the iris area in the imaging frame (Figure 1). The illu-
minating of these infrared emitters has not been shown to prevent
any occasional harm on human eyes [Aly and Saad, 2011, Soder-
berg et al., 2016]. Additionally, the costs of these devices remain
high, compared to systems based on RGB cameras. Furthermore,
infrared illumination makes eye movement more detectable, but
limits outdoor usage due to the interference from the strong in-
frared in sunlight [Zhang et al., 2017]. Therefore, instead of directly
detecting the pupil center position, our approach relies solely on
the global motion of the eye using an unmodiied camera. However,
a fundamental issue faced when using low-cost RGB cameras is
that state-of-the-art pupil detection algorithms fail to detect the
pupil center since the pupil/iris contrast is often too subtle and
almost nonexistent for the darkest irises. In this work, we propose
a method which obviates the need for detecting the pupil and runs
entirely with an unmodiied camera. Our approach does not require
any infrared illumination or highly developed computer vision tech-
niques. We exploit and carefully select features obtained from the
motion of the eye area in the camera and investigate the global eye
movement from the pixel displacement of the eye camera.

Contribution Statement. The contribution of this paper is three-
fold: (1) we provide the irst attempt of detecting smooth pursuit
movement without explicitly detecting the pupil location, using an
unmodiied camera, (2) we provide technical details of detecting the
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directions of the eye movement based on low vectors obtained us-
ing an optical low algorithm . (3) Finally, we report on a user study
that investigates the accuracy of the proposed approach compared
to current techniques.

2 RELATED WORKS

2.1 Smooth Pursuit Eye Movement Interaction

Pursuit interaction has become the prevailing means of interacting
with moving targets.It consists of displaying and selecting mov-
ing targets by following their movement. Vidal et al. 2013 were
the irst to introduce this approach for public displays. Follow-up
implementations were proposed by the community. In particular,
Esteves et al. 2015 established a remote pursuit based interaction for
smartwatches. The technique was also adopted for semaphoric gaze
gesture through the Hololens [Delamare et al., 2017], augmented re-
ality [Esteves et al., 2017, Kytö et al., 2018], eye tracking calibration
[Celebi et al., 2014, Hassoumi et al., 2018] cognitive workload eval-
uations [Thomas et al., 2018]. In the other hand, Cymek et al. 2014
and Almoctar et al. 2018 used pursuit interaction for authentication.
However, all theses approaches relied on an IR-pass eye tracking
system. In contrast, EyeFlow avoids the diiculty of tracking the
exact pupil location. It is noted that whilst optical low has been
used to track and limbus boundary [Turuwhenua et al., 2014], we
are not aware of a paradigm using this technique for smooth pursuit
movement extraction or eye tracking interaction.

2.2 Optical Flow

Optical Flow is widely used in motion detection [Yin and Shi, 2018]
action recognition in static [Gao et al., 2018] and video [Choutas
et al., 2018] images, 3D tracking [Wilson and Benko, 2014], etc. A
close work to Eyelow is TraceMatch [Clarke et al., 2016], which
used hand or head movements to simulate remote control inter-
action. Features are detected using the FAST feature detector, in
contrast to our approach which uses the overall indicative motion
of the eye. However, a more reined matching process would be
required for non-circular targets. It is therefore surprising that op-
tical low has attracted little attention in eye movement analysis.
Therefore, it becomes natural to leverage its potential in eye move-
ment. However, optical low is susceptible to noise and uncertainty.
This may be the reason why it has been explored for blink detection
[Radlak and Smolka, 2012] and not for smooth pursuit analysis. We
adopted the Lucas-Kanade (LK) Optical Flow to serve as a basis for
EyeFlow since it is one of the simplest, yet most powerful algorithm
to estimate pixel motions. Other methods such as SimpleFlow [Tao
et al., 2012] or more complex algorithms could be used [Kroeger
et al., 2016]. The LK Optical low is a suitable trade-of between com-
putation cost, and detection speed which is of primary importance
when dealing with motion correlation. The ease of implementation
makes it applicable to any application based on motion detection. In
particular, Smith et al. 2000 manually select skin region in order to
retrieve the eye area, and Bazyluk and Mantiuk 2014 corrected gaze
ixations by tracking targets detected using optical low algorithms.
Most closely related to the present work is Radlak and Smolka’s
approach 2012 which leveraged optical low to divide pixels into
two groups and their respective averages are estimated to detect
blink events. These previous works focused on a speciic issue and

are, thus, not suitable for smooth pursuit interaction. For example,
the two clusters proposed by Radlak and Smolka encompass the
pixels of the upper and lower eyelids. If the eye moves to the right
or left, the movement cannot be tracked. EyeFlow instead allows
detecting the movement of the eye in all directions. In addition, it
encompasses a metric that allows detecting blink events using the
entropy of vector ields.

2.3 Pupil Center Detection and Tracking

The most salient circular group of pixels in the IR eye camera is
the pupil - the contracting aperture through which light penetrates
the eye. There exists a great number of pupil detection methods
based on highly developed computer vision algorithms [Santini
et al., 2018]. As a case in point, in Starburst [Li et al., 2005], an
adaptive threshold was employed on a region of interest to localize
corneal relection. Świrski et al. [2012] proposed the use of a coarse
positioning algorithm using Haar-like features. Thereafter, Kassner
et al. 2014 provided an eye tracking system that exploits the Canny
edge detector and search for darker areas from the lowest spike
in histogram. More recently, Fuhl et al. [2015] introduced ExCuSe
which is based on morphologic operations and Angular Integral
Projections Function to detect pupil contour. Thereafter, they pro-
posed ElSe [Fuhl et al., 2016], a more sophisticated pupil detection
algorithm which uses position reinement. However, though these
aforementioned approaches supply highly accurate pupil center
positions, they still appear to face the same challenges. In particular,
they perform only on modiied IR eye-tracking cameras. They can-
not be applied on of-the-shelf cameras in view of the noise, light
relection contamination and the lack of the pupil/iris contrast.

3 OVERVIEW OF THE APPROACH

EyeFlow matches the movements of the eye with the movements of
a target. The matching is operated using the overall motion of the
pixels in the eye image. By virtue of the absolute position of the eye
camera - i.e. the camera is rigidly attached and ixed near the user’s
eye - every displacement of pixels comes naturally from a motion
in the user’s eye area (Figure 1). Our approach is guided by the
precept that global motions of eye features could replace the pupil
detection in smooth pursuit interaction. Smooth pursuit presents
many beneits for calibration-less interaction. The advantage of
EyeFlow is that the task of detecting the pupil and its center is
obviated. Thus, the approach can be used with unmodiied RGB
eye cameras and may be summarized as follows:

1) Capture eye images from an unmodiied RGB camera and con-
tinually send the images to a PC running the algorithm.

2) Detect eye motion by leveraging changes in position of pixels
using a dense optical low algorithm. Each low vector is assessed
for validity before being used in the next steps.

3) Compute the overall Indicative-Direction of the eye motion and
proceed likewise for the subsequent frames.

4) Record targets positions and compute their directions.
5) Insert the eye Indicative-Directions and the target directions in

the Position/Indicative-Direction reference system.
6) As in previous studies, detectmatching between the eye Indicative-

Directions and the target using the Pearson Correlation.
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3.1 Motion Detection

Motion detection has received a sustained attention in computer
vision due to its potential for various applications. In EyeFlow, the
eye movement direction is extracted using the Lucas-Kanade op-
tical low, a diferential technique which supposes that the low
motion is fundamentally constant in the local vicinity of the pixels,
determined by the least square criterion. There are many optical
low algorithms, but the Lucas-Kanade is known to be fast, accu-
rate and widely used [Patel and Upadhyay, 2013]. The pixels that
change position relative to their surroundings are considered as
the moving low vectors [Royden and Moore, 2012] and convey the
essential meaningful information of the eye motion. In head-worn
eye tracking, the eye camera is placed so that the movements of the
user’s head do not afect the capturing area. More speciically, the
camera always captures the eye area even if the user moves their
head, acting like a ixed capturing device. As such, every pixel that
changes position would most likely originate from the eye features,
namely, the eyelashes, the eyelids, the skin, the pupil or the iris.
As such, we restrict to the change in position of these features as
the only source of information. Our implementation searches for
the direction of the pixels using a dense optical low method. For
example, let’s assume that a pixel Pt0 (x ,y, t0) would have moved
by ∆x0, ∆y0 at t1 and become:

Pt1 (x + ∆x0,y + ∆y0, t1)

then have moved by ∆x1, ∆y1 at t2 and the expression became:

Pt2 (x + ∆x0 + ∆x1,y + ∆y0 + ∆y1, t2)

the vectors
−−−−→
Pt0Pt1 = (∆x0,∆x0) and

−−−−→
Pt1Pt2 = (∆x1,∆x1) will give

two diferent records about the displacement of the pixel and its
direction. During an eye movement, many pixels move and provide
a set of local direction which are aggregated and transformed into
a single direction (the Indicative Direction). Namely, the set of the
pixels that moved are used to calculate the principal direction of
the eye. A naive approach would be to store and consider all the
detected low vectors. However, unexpected events such as small
camera drift enable the appearance of noisy displacements at the
edge of the frame. Our method constantly detects and removes
them during the outliers removal phase as shown in Figure 6.

3.2 Eye Area Features Movement

A key beneit of head-mounted eye trackers is that the detected
motions are limited to either the movements of the eye, eyelids or
eyelashes. The motion of the pupil and the iris contributes the most
to the set of detected low vectors. When a user follows a moving
object, his pupil moves in the same direction. Consequently, the
iris which encompasses the pupil proceeds in a similar fashion. As
a result, the iris and the pupil form a compact large object that
can trigger the appearance of low vectors. However, due to the
physiological functions of the eye region, movements of the eye
naturally actuate motions of the eyelids and, consequently, the
eyelashes which grow at their edges. This is especially observed
when the user moves their head upwards and downwards (Figure 2).
As the eye moves away from its initial position, new low vectors
are detected and correspond to a change in position of some pixels.
These low vectors appear whenever the following conditions are

A B C

D E F

Figure 2: Eye pixels when the eye moves upwards (Green).

The blue (red) pixels show the pixels moving to the left

(right). The average vectorwill result in an upward direction,

due to the large number of green pixels and the opposing

blue and red directions.

met: Pixels have moved since the last frame and the displacement
has exceeded a predeined threshold.

3.3 Computing the Indicative Directions

Given a set of low vectors obtained from two successive eye camera
frames, the Indicative Direction of the eye motion can be calculated.

Each low vector yields a vector ®li whose length depicts its magni-

tude ∥ ®li ∥ and its direction gives the orientation θi of the motion of
that single low vector. In order to extract the Indicative Direction
θt of the eye motion, a specialized selection process is performed
at every single low vector. The selection process seeks the low
vectors that most likely appear due to the actual motion of the eye
and rejects the low vectors considered as outliers. The selected
low vector directions are then recorded and the average direction
(Figure 3) is stored as the Indicative Direction of the eye for the two
successive frames. Thus, every pair of frames yields one main eye
motion direction with an angle of:

θt =
1

k

k∑

i=1

αi ,k ⩽ n

Where θt is the angle between the main eye motion ®Vi and the x-
axis. During the smooth pursuit eye movement, a set of Indicative
Directions [θ1,θ2, . . . ,θp ], is stored to calculate the correlation with
the target positions.

A B

C D

Figure 3: Left-to-Right and Right-to-Left directions.

3.4 From Flow Vectors to 1D Time-Series

Let V be a collection of the indicative vectors that describes the
overall movements of the eye. V is then a series of 2-dimensional

mean vectors (
−→
Vi = (∥Vi ∥,θi )) that deines each single movement

of the eye in the eye camera frame between time t1 to tn :

V = [ ®V1, ..., ®Vn ] = [(∥ ®V1∥,θ1), ..., (∥ ®Vn ∥,θn )]
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Where ∥ ®Vi ∥ is the magnitude and θi its angle relative to the positive
x-axis ®i (θi = ∠( ®Vi , ®i)). The angles θi coupled with their position i

are inserted into a Position/Indicative-Direction reference system
(PID) and, thus, converted into time series. Figures 4 and 5 show the
PID space. In the same vein, the spatial 2D coordinates of the target
are transformed into a set of positions/directions and inserted into
the PID reference. Oscillations around the angle 180◦ may appear
when the eye moves to the right. This is due to the fact that when
the eye moves to the right, corresponding to angles of ≈ 180◦, the
small eye drifts give angles of ≈ −180◦, resulting in the appearance
of luctuations in the PID. This could be reduced using iterative
data normalization [Vlachos et al., 2004] and iltering [Casiez et al.,
2012].

3.5 Eyelids/Eyelashes and eye movement

The appearance of potential low vectors is estimated at each pixel
of the eye images (Figure 6b). It may suice to consider all low
vectors if only the pupil and the iris move, but since we consider the
eye movement as a whole, low vectors obtained from the motion
of the eyelids and eyelashes are likely to appear. In particular, when
the eyemoves upwards and downwards, the eyelids/eyelashes move
accordingly (Figure 2). We observed that the motions of the eye-
lid/eyelash low vectors are correlated to the movements of the eye.
This is less obvious when the eye moves in the left/right directions.
Figure 2 shows an upward movement of the eye. We can observe
that, the eyelash left-region low vectors move Up-Right, the center
low vectors move upwards, the eyelash right-region low vectors
move Up-Left and the pupil and the iris move upwards. Integrating
the low vectors of the eyelids/eyelashes does not have an adverse
efect on the calculation of the eye movement because there is a
compensation of the low vectors and the IndicativeDirectionwould
likely be directed upwards. We observed that when the eye moves
in the left/right direction, the low vectors of the eyelids/eyelashes
tend to jitter and move in every direction. This is removed using
a bilateral ilter which blurs the image and reduces noise, making
the iris/pupil more visible as shown in Figure 6a.

A B C

D E F

A B

C D

Figure 6: (a) The high-frequency noise is reduced using a bi-

lateral ilter. The edges of the iris are preserved. Classical

ilters such as the Mean and Gaussian ilters could reduce

noise but also blur the edges. b) Example of outliers not ap-

pertaining to a group of pixels.

3.6 Flow Vectors Filtering

Blink Detection: Blinking and winking could produce a larger
number of low vectors. Winking is a voluntary eye movement and
can be avoided. Blinking cannot be obviated since it is a natural
bodily function. It particularly helps to refocus the eye and protect
the eye from external irritants. This is captured by analyzing the

low ield of the eyelash/eyelid in the images. The upper and lower
lashes generate clusters of opposing low vectors indicating the
presence of a blink event.

Pixel Displacement and Flow Vectors: The pixels that do not ex-
hibit a suicient displacement are discarded. If the displacement
di =

√
xi + yi of the low vector vi = (xi ,yi )⊺ is smaller than the

size of 2 pixels (chosen empirically), vi will not be recorded, since
we consider that the change in position of the pixel is not consider-
able enough to be taken into account. Nevertheless, the remaining
low vectors still contain many resilient outliers.

Outliers Removal and Consecutive Likelihood Preserving. : we need
to evaluate the likelihood that a pixel (or a cluster) is a possible
candidate of the overall motion in order to estimate the current
Indicative Direction. For example, a pixel heading in the opposite
direction of the majority of the low vectors is most likely an outlier
and, thus, could be removed from the dataset. Our approach elimi-
nates any low vector whose direction is not in the interval deined
by µ ± 2σ , where µ is the mean and σ the standard deviation of the
low vector directions. Another consideration could be to reduce
their weight (impact) when calculating the Indicative Direction. As
an example, Figure 7 depicts a set of 50 × 50 low vectors. One can
easily notice the presence of three outliers in the dataset. These
vectors are not in the interval [µ − σ , µ + σ ].

50

50

0
0

µ+2σ

µ+2σ

µ

Figure 7: Outliers removal. (Left) 50 × 50 low vectors. All

vectors have a direction ∈ [−5°, 5°], indicating an overall mo-

tion to the right, except 3 vectors that have a direction of

178°, 155° and −175° (blue ellipse). (Right) The area deined by

[µ−σ , µ+σ ] indicates that the three vectors are not potential
candidates of the overall motion.

3.7 Frame Abandoning

When calculating the sequence of Indicative Directions, if the cur-
rent pair of consecutive frames exhibits pixels heading in all direc-
tions, the older frame is skipped and the Indicative Direction is
not computed. In other words, each pair of consecutive frames is
checked for consistency. This is investigated by considering all
pixels xi that moved as a sequence of a discrete random variable
X = [x1,x2, ...,xn ] and measuring the uncertainty using the Shan-
non’s entropy deined as follows:

E(x) =
n∑

i=1

p(xi ) log2
1

p(xi )

wherep(xi ) is the probability of the direction of a pixel xi . For exam-
ple, let us consider four pixels x1,x2,x3 and x4 with the following
directions represented as polar angles A = [x1 = π ,x2 =

π
2 ,x2 =
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Figure 4: Directions in the Position/Indicative Direction reference system. the white stroke in each eye image shows the fol-

lowed trajectory. Left-the eye moves upwards (≈ 90◦), and then downwards (≈ −90◦). At the positions 180 to 201, oscillations

appear in the recorded data, since when the eye moves to the right corresponding to ≈ 180◦, the small eye drifts and the

uncertainty of the calculations give angles of ≈ −180◦, resulting to the appearance of luctuations around the angle 180◦.

-2
0
0
  
 -

1
0
0
  
  
 0

  
  
  
1
0
0
  
 2

0
0

0             50            100           150          200           250

Figure 5: Smoothing the vector directions considerably re-

duces the oscillations in the original data (Grey) while main-

taining the trend in the series (Black).

π
4 ,x4 =

2π
3 ]. The elements xi have diferent directions. The proba-

bility of appearance of each element xi in the list can easily be cal-
culated, i.e. P(xi ) = 1

4 . In such case, the entropy E(A) = log2(4) = 2
is high and this is the situation of maximum uncertainty where the
exact Indicative Direction cannot be predicted. Now, let us consider
a discrete variable B = [x1 = π ,x2 =

2π
3 ,x3 = π ,x4 = π ]. In this

set, there are three pixels (x1,x3, and x4) that have the same direc-
tion (π ). The variable B can be transformed into a new variable
B̂ = [x̂1, x̂2] where x̂1 = {x1,x3,x4} and x̂2 = {x2}. The probability
of appearance of an element of x̂1 and x̂2 are respectively

3
4 and

1
4 . The entropy of B is then E(B) = 3

4 log2
4
3 +

1
4 log2 4 = 0.811 <

E(A), indicating a low uncertainty. In this situation, the Indicative
Direction could be calculated. Note that in the best case scenario
where all moving pixels head toward the same direction, there is
no uncertainty and the entropy E(X ) = 0. Overall, the Indicative
Direction is calculated if the entropy is less than a threshold. We
deine the threshold as tE =

1
2 [1 + log2(n)] corresponding to the

entropy where at least half of the low vectors head toward the
same directions. EyeFlow algorithm is described in Algorithm 1.

4 EVALUATION

4.1 Replacing Pupil Center with low vectors

We argue that tracking the pupil center location is more challeng-
ing in environments where lighting conditions are not adequate
than tracking the motion of the eye as a whole. Most pupil detec-
tion methods rely on diferent image processing phases which are
intimately dependent on the capturing environment (e.g. image
segmentation and thresholding). By contrast, this is not the case
when considering the global motion of the eye. Moreover, there are
a great number of frames where the user does not move their eyes.
While most of the existing methods will waste their time tracking
the pupil center and providing redundant information about the
pupil center location frame after frame, our approach gives new
values only if a motion is detected, thus reducing redundancy and

Algorithm 1: EyeFlow

Data: Successive frames f1, f2, . . . , fn
Result: an Array Of Indicative Directions

begin

Initialize

ArrayOfIndicativeDirections

for i = 1; i < n; i = i + 1 do
f lowFields ←− computeOptical f low(fi , fi+1)
c ←− count(f lowFields) /* Number of vectors */

tE =
1
2 [1 + log2(c)]

e ←− computeEntropy(f lowFields)
if e < tE then

IndicativeDirection←−
IndicativeDirection(f lowFields)

ArrayO f IndicativeDirections .Add(IndicativeDirection)

end

end

end

data processing time. In order to evaluate the applicability of our ap-
proach, we compared the set of the Indicative Directions θ obtained
from EyeFlow to the standard method (pupil center based). For this
purpose, we needed to transform the pupil center positions in a
reference that is comparable to EyeFlow, namely the PID Reference.
AS such, a pupil center position is extracted in each frame of the
eye camera. The vector of two successive pupil center locations at
time instants ti−1 and ti is deined as: ®Pi = ®pi − ®pi−1. A collection
P of pupil center directions can, thus, be extracted and stored for
comparison with the collection of vectorsV obtained from EyeFlow.

P = [ ®P1, ..., ®Pn ] = [(∥ ®P1∥,θ1), ..., (∥ ®Pn ∥,θn )]

Where ∥ ®Pi ∥ is the vector magnitude and θi its angle with the pos-
itive x-axis ®i (θ = ∠( ®Pi , ®i)). Therefore, we obtain two collections
of position/Indicative Direction, one from EyeFlow directions and
the other from the pupil center directions. The results of a pilot
study showed that the two sets of data were highly correlated,
meaning that both approaches are suitable for pursuit interaction.
To the best of our knowledge, the two most popular methods for
interacting with a system using smooth pursuit eye movement are
those of Vidal et al. 2013 and Esteves et al. 2015. To analyze our
approach, we have conceived a desktop application. Our approach
is evaluated on eight diferent targets displayed on a screen (Figure
8): The circular target proposed in Orbits [Esteves et al., 2015], the
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delete and zig-zag targets of $1 Unistroke Recognizer [Wobbrock
et al., 2007], the spiral used for unsupervised calibration in [Santini
et al., 2017] and [Hassoumi et al., 2019], a custom alpha we add to
investigate the robustness of the algorithm when comparing two
approximately similar targets (delete and alpha), the rectangular
target used in pursuit calibration [Pfeufer et al., 2013] and two
digit targets 2 and 3 recently proposed in PathWord for smooth
pursuit PIN-entry [Hassoumi et al., 2018]. The targets are very
diverse. The circular and the two digit targets were used for eye-
based interaction, the spiral and rectangular targets were used for
eye tracking calibration whereas the delete and zig-zag served for
stroke recognition. In this work, we use the shapes of these targets
as trajectories for the moving stimuli. The goal is to ascertain that
the algorithms of previous studies can leverage the potential of
EyeFlow, i.e. using a normal camera for smooth pursuit interaction.
The application recognizes among diferent targets, the one the user
intends to select. Following Almoctar et al. [2018] and Esteves et al.
[2015], a stimuli moves on the paths deined by each symbol and
the user is requested to select the target by ixating on the stimuli
moving on its trajectory. This application demonstrates the ability
of our approach to leverage the global motion of the user’s eye.
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Figure 8: Diferent targets used in the evaluation.

Deinition 1: A pupil motion series P and a target motion series

T are series of real-valued angles αi and βi ∈ [-180,180] : P =
α1,α2, ...,αn and T = β1, β2, ..., βn where n is the length of the
checking window. The igure 9 below depicts an example of a pupil
motion series.

Figure 9: The pupil motion series obtained from a user who

was following a stimuli moving on a rectangular trajectory.

Deinition 2: TheTarдets deine the set of targets displayed on
the screen (T1, T2,..., Tm ) wherem is the number of targets and Ti
corresponds to the target motion series of the i − th target. Note that
the similarity is calculated between the pupil motion series P and
each target motion series Ti . Figure 10 exempliies diferent targets
and their corresponding target motion series.
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Figure 10: Diferent 2D targets and their corresponding rep-

resentation in the motion series space.

Deinition 3: Similarity Measure: given two motion series A and
B of length n, the Similarity Measure c(A,B) is a function which re-
turns the degree of similarity between the two sequences. We used
the correlation coeicient, an intuitive similarity measure proposed
in previous works [Esteves et al., 2015, Hassoumi et al., 2018]. The
measure is a real value ∈ [−1, 1]with 1 indicating a high correlation.
A threshold t indicates the minimum SimilarityMeasure value in
order to validate the similarity of the two motion series. However,

we observed that relying solely on this metric could induce misin-
terpretation issues. As an example, consider the three curves (C1,
C2, andC3) below (Figure 11). While the correlation result indicates
a high similarity, the strokes are quite diferent. In particular, the
correlations between C1 and C2 on x- and y-axes are respectively
rx = 0.99 (p < .001) and ry = 0.77 (p < .001). The correlations
are even higher when we compare C1 and C3 (rx = 0.99, p < .001
and ry = 0.95, p < .001). Taking into account all these issues, we
considered an additional step to validate the result after a high
SimilarityMeasure is found. We used the Dynamic Time Warping
(DTW) which was used for comparing trajectories [Cai et al., 2019],
hand gestures [Tang et al., 2018], time series [Rakthanmanon et al.,
2012], shapes [Zhao and Itti, 2018], accelerometer [Akl and Valaee,
2010], voice [Muda et al., 2010], etc. For an overview of the metric,
we refer the prospective reader to the works of [Rakthanmanon
et al., 2012]

Curve 1 Curve 2 Curve 3

Figure 11: Three diferent strokes with high correlations.

The following studies reports the evaluation of EyeFlow accu-
racy. We irst investigate the robustness of the approach. Then, we
perform a comparison between diferent target sizes. Finally, we
compare EyeFlow with state-of-the-art methods on smooth pursuit
interaction. The default values of the parameters are the checking
window size = 200 ms, target size = L2 and low window size = 5×
pixels unless otherwise speciied.

4.2 Participants, Apparatus and Design

12 users’ ground truth eye videos were recorded for the experi-
ment. One participant wore contact lenses. A 24 inch Dell 2408WFP
screen1 which has a resolution of 1920x1200 pixels and 24 millisec-
ond response time, running on a 64 bits2 XPS 15 Dell Laptop , 16GB
RAM was used. The Pupil Labs headset IR-pass eye camera was
replaced with a full HD Logitech 615 camera (@60Hz, 720 × 480).
A world camera was not necessary since only eye movements are
captured. In addition, the approach does not require prior calibra-
tion. Participants sat ∼75 cm from the screen. A controlled lab in
the local institution was set up for the experiment. All participants
were subjected to the same task. The participant was asked to select
an assigned target, randomly selected among the ones presented in
Figure 8, by following its moving stimuli. We arranged a scenario
in which only a RGB video of the eye movement is captured. The
analysis was performed afterward.

4.3 Procedure

An acquaintance time was given to participants in order to become
familiar with the system. The task began after the detailed proce-
dure has been explained. To reduce fatigue efects, the participants
were asked to take a pause of one minute after each trial. 72 trials
were recorded (3 Moving target speeds × 2 target selections × 12
participants). The experiment spanned a day and lasted ≈ 15 min-
utes for each participant. The order of speeds is chosen randomly
to reduce learning efects.

1L x W x H Dimensions: 22 x 8.17 x 15.62 inches
2Intel(R) Core(TM) I7-4712HQ CPU @ 2.30GHz,2301 MHz, 4 core(s), 8 process
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4.4 Evaluation 1: Accuracy

We start by evaluating the accuracy of EyeFlow. This evaluation
proceeds similarly to Esteves et al. [2015] and Delamare et al. [2017].
It aimed to assess the efectiveness and accuracy of the proposed
approach based on the number of correct recognition. The experi-
ment has two goals. First, we explore the accuracy and robustness
of the proposed approach. Second, we evaluate three diferent speed
conigurations based on recognition rate, in order to determine to
which extent the speed levels alter or impact the accuracy of the
proposed approach.

The study was structured as a within-subjects design withMov-

ing target Speed as the independent variable. Three levels of speed
were considered. The moving stimulus moved at slow (6°, 7.8 cm,
294.80 pix)/s, medium (10°/s, 13.22 cm, 499.65 pixel/s) and fast (14°/s,
18.69 cm, 706.39 pixel/s) speeds. The order of the conditions was
counterbalance with a partial Latin-square. The dependent variables
were the number of correct and false activations. Each participant
was requested to select the target (the "alpha" shape) twice. Con-
sequently, each participant performed 3 Moving target speeds × 2
targets = 6 trials, for a total of 6 × 12 participants = 72 records.

Results: EyeFlow Accuracy. The Indicative directions, which only
describe the global motion of the eyes, produce good results (87.5%
recognition rate). This supports the importance of low vectors
for eye movement retrieval. Of the recorded videos, two were re-
moved due unwanted eye camera movements. Of the rest, the data
recording lasted ≈ 5 seconds. Consequently, EyeFlow is suitable for
smooth pursuit based interaction which is in line with our expecta-
tions. Descriptive statistics (Figure 12) showed that on average, the
detection rates were 96%, 92% and 75% respectively for the low (6°,
7.8 cm, 294.80 pix/s), medium (10°/s, 13.22 cm, 499.65 pixel/s) and
fast (14°/s, 18.69 cm, 706.39 pixel/s) speed moving stimuli. Using
an ANOVA (α = .05), we found no signiicant efect of Moving

target speed on detected targets (F (2, 69) = 2.760, p = .07). Post-hoc
analysis with Bonferroni test showed that the comparisons between
the level of speeds were not signiicantly diferent (ps1,s2 = 1.00,
ps1,s3 = .089, ps2,s3 = .24).
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Figure 12: Mean recognition rate for the three speed conig-

urations.

4.5 Evaluation 2: The Efect of Parameters

We investigate the efect of two parameters on the recognition rate:

· 3 target sizes (L1 = 7×7cm2, L2 = 14×14cm2, L3 = 21×21cm2)
· 4 inter-low spaces (5× 5, 10× 10, 15× 15, 20× 20 pixels.)

The inter-low space is the space between consecutive vectors,
namely, the minimum number of pixels between two low vectors.
We set the moving stimuli speed to 10°/s and the checking window
to 500 ms for all conditions. The variation of the parameters was or-
ganized through 12 blocks (3 target sizes × 4 inter-low spaces).
Figure 13 illustrates the diferent sizes used in this evaluation. With
all the parameters set to their default values, we investigate the
efect of minimum space between consecutive low vectors that
inluences the detection of the eye movement. For example, if we

Figure 13: Diferent target sizes (small, medium and large)

used in the experiment. One target (α ) is represented for

simplicity purpose. This variable was used to assess whether

the approach could detect a stimuli moving on a diferent

trajectory sizes.

abusively consider that the minimum inter-low space is 30 pixels.
The very small eye movement < 28 pixels would barely be detected.

Results: The Efect of Target Size and inter-low space. Overall, the
targets L3 outperforms L2 and L1 by 6% and 27% respectively. The
lower results of L1 compared to the two others may be explained
by the small pixel displacement of the eye movement. Notice that
in section 3.6, EyeFlow discards all vector low whose change in
position is smaller than a predeined threshold. For all targets, we
observe an increase of the accuracy until L3 since longer trajectories
produce more eye movement pixel displacement. The results show
that reducing the size of the inter-low space improves the detection
rate. In particular, a two-way ANOVA showed a signiicant main
efect of Target Size on detection rate (F (2, 144) = 4.394, p < .05).
No signiicant efect was found for Inter-low space (F (3, 144) =
.379, p = .768) and no Target Size × Inter-low Space interaction
efect was found (F (6, 144) = .095, p = .997). However, the frame
rate decreases with smaller inter-low spaces. We observe that the
checking window size is an unstable parameter. For example, a
checking window of 0.1 s as in [R and David, 1991, Vidal et al.,
2013] would fail to detect a target whereas changing the size to
0.2 s provides high accuracy. The minimum smooth pursuit time is
0.1 s [Vidal et al., 2013]. This corresponds to only 6 frames using a
camera at 60 frames per second, and it is a very small number for
calculating correlation. The highest results are achieved when the
size is greater than 0.3 s (> 300 ms).

4.6 Evaluation 3: Comparison

We compare EyeFlow with Pupil Labs’ pupil center detection [Kass-
ner et al., 2014]. We consider Pupil Lab since many smooth pursuit
based interaction relies on its algorithm to record the pupil cen-
ters [Almoctar et al., 2018, Esteves et al., 2015, 2017]. It is worth
noting that previous works compute two correlations per target,
on x- and y-axis separately, resulting in two correlation values. In
our approach, we use the Motion series of the eye and the target,
hence, we only calculate one correlation in a single pass. An al-
ternative approach would be to use the RV coeicient which is a
multi-dimensional approach of the Pearson correlation. Therefore,
to make the comparison fair and not misleading, we compute the
vectors between each consecutive pupil centers position obtained
from the IR camera of Pupil Labs eye tracker, and record it as the
Indicative Direction. We can therefore create a Motion series M1
from the pupil centers and compare it to EyeFlow Motion series M2.
For each task, a target is displayed on the screen and the participant
is asked to follow it moving stimuli. The independent variables
were:
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· Target type: The 8 targets described in Figure 8
· Camera/algorithm type: Pupil Labs and RGB cameras

Consequently, eye movement videos of 8 targets × 2 cameras × 12
participants were collected for a total of 192 records.

Results: Comparison with state-of-the-art. A repeated-measures
ANOVA (α = .05) was conducted to analyze the results. We used
Greenhouse-Geisser corrected valueswhen the assumption of spheric-
ity was violated (Mauchly’s test). Pairwise t-tests with Bonfer-
roni corrections were used for the post-hoc test. There was no
signiicant main efect on detection rate for Camera/algorithm
(F (1, 192) = .310, p = .578) and Target type (F (7, 192) = 1.414,
p = .202). No interaction efect of Camera/algorithm × Target type

was found (F (7, 192) = .468, p = .857). As expected, A RGB cam-
era could be an alternative for smooth pursuit interaction using
EyeFlow (mean detection = 83%, Figure 14). We also caluclated
the DTW between the two Motion series M1 and M2. The results
showed a small distance measure for each type of target. For exam-
ple, the distance between the mean EyeFlow motion series and the
mean pupil based approaches motion series is 4.77 for delete and
the highest measure is 8.5. For reference, the distance between the
Motion series of curve 1 and 2 of Figure 11 is 5.3 and 4.5 between
curve 1 and 3.
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Figure 14: Mean recognition rate for the three speeds.

5 DISCUSSION AND LIMITATIONS

While EyeFlow does not call for a speciic eye model, a modiied
camera, or complex pupil center detection algorithms, it requires
the camera to be rigidly attached to the user’s head as for head-
worn eye trackers. Using a remote eye tracker, the eyes appear
still or exhibit hardly noticeable movements when following small
targets. However, recent advances on motion magniication can
help to increase the movements of the eye in a video [Rubinstein
et al., 2013].

Implications for design choices could be deduced from the results
of the evaluations. The speed of the moving stimuli signiicantly
impacts the recognition rate. We noted that at high speed, the
moving stimuli compelled the users to make saccadic eye movement
to stabilize the stimuli in the fovea. We would recommend the use of
stimuli moving at low since, the eyes are able to follow the stimuli
seamlessly, however, some users found it tiring.

In addition, we experienced more blinking in such conditions.
Smooth pursuit interaction is known to cause issues due to the
similarity of targets. EyeFlow is not an exception as the low vectors
cannot diferentiate when the user follows similar targets (e.g. the
"delete" and "alpha" targets). The highest accuracy is found when
the selected target is unique among the others. This result implies
that, when designing a system using Eyelow, it would be more
interesting to consider targets with very diferent shapes or similar
targets having their stimuli moving at diferent phase as in [Esteves
et al., 2015].

Moreover, there are a number of additional processing steps that
may be worth incorporating in the algorithm for higher precision.
For instance, skin-detection algorithms can help to remove pixels
that are likely to not appertain to the iris/pupil area. We envision
integrating retargeting and coarse estimation which provide a pow-
erful means for eye area segmentation.

EyeFlow may be useful in a number of situations where it is
worthwhile using eye tracking systems without resorting to IR
light illumination. For example, for participants who do not tolerate
LED illumination close to the eyes or for studies involving infants.
Additionally, it can be used for diferent applications, for example,
to detect reading events without calibration (Figure 15). Diferent
approaches already exist but this can be an interesting research
question for future works.

Among diferent resolutions, 320×240 presented good correlation
results using EyeFlow. Lower resolutions (e.g., 120 × 90) are the
most eicient. However, they do not allow extracting suicient
features for optical low. Higher resolutions are slower, likely due
to the high number of pixels (388,800 for 720 × 540). They allow
extracting a large number of features. Therefore, the computational
time increases and the quality of the correlation is not improved
since the highest the resolution, the more features and consequently
the more outliers are present in the low ields.
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Figure 15: Reading events detected using EyeFlow.

Our approach cannot be used for ixation-based applications
since it does not allow obtaining the 2D pupil center position.

6 CONCLUSION

This paper has presented an alternative to pupil center location
previously used for smooth pursuit interaction for head-worn eye
trackers using unmodiied cameras. Rather than tracking the pupil
with 3D models or 2D complex computer vision approaches as used
in often-cited applications, we consider an alternative approach
that focuses only on the movement of the eye as a whole.

Since EyeFlow matches eye movement and the target trajectory,
it is no longer necessary to know the exact pupil center location.
Instead, EyeFlow makes an assumption that the change in position
of pixels in the eye image provides a clue to the direction of eye
movement. These eye movement directions suice to know the
target the user is following by matching their movements. This
paper details the approach which uses the Lucas-Kanade optical
low algorithm to detect motion low vectors with an unmodiied
camera.

The results of a study showed that the approach was able to
detect targets reliably (87.5% recognition rate). While there are
a number of scenarios to improve this approach for remote and
mobile eye tracking devices, we believe that EyeFlow is a promising
advance towards afordable eye tracking systems.
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