N
N

N

HAL

open science

Interactive Structure-aware Blending of Diverse Edge
Bundling Visualizations

Yunhai Wang, Mingliang Xue, Yanyan Wang, Xinyuan Yan, Baoquan Chen,
Chi-Wing Fu, Christophe Hurter

» To cite this version:

Yunhai Wang, Mingliang Xue, Yanyan Wang, Xinyuan Yan, Baoquan Chen, et al..
Structure-aware Blending of Diverse Edge Bundling Visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2020, 26 (1), pp.687-696. 10.1109/TVCG.2019.2934805 . hal-02917109

HAL Id: hal-02917109
https://enac.hal.science/hal-02917109

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Interactive


https://enac.hal.science/hal-02917109
https://hal.archives-ouvertes.fr

Interactive Structure-aware Blending of
Diverse Edge Bundling Visualizations

Yunhai Wang, Mingliang Xue, Yanyan Wang, Xinyuan Yan,
Baoquan Chen, Chi-Wing Fu, Christophe Hurter

Abstract— Many edge bundling techniques (i.e., data simplification as a support for data visualization and decision making) exist but
they are not directly applicable to any kind of dataset and their parameters are often too abstract and difficult to set up. As a resuilt, this
hinders the user ability to create efficient aggregated visualizations. To address these issues, we investigated a novel way of handling
visual aggregation with a task-driven and user-centered approach. Given a graph, our approach produces a decluttered view as follows:
first, the user investigates different edge bundling results and specifies areas, where certain edge bundling techniques would provide
user-desired results. Second, our system then computes a smooth and structural preserving transition between these specified areas.
Lastly, the user can further fine-tune the global visualization with a direct manipulation technique to remove the local ambiguity and to
apply different visual deformations. In this paper, we provide details for our design rationale and implementation. Also, we show how
our algorithm gives more suitable results compared to current edge bundling techniques, and in the end, we provide concrete instances
of usages, where the algorithm combines various edge bundling results to support diverse data exploration and visualizations.

Index Terms—path visualization, trajectory visualization, edge bundles

+

1 INTRODUCTION

Edge bundling techniques have received great interest as a data simplifi-
cation tool for supporting decision making and data representation [29].
Such techniques help avoid clutter in dense trail-sets and graphs to
enhance the visual understanding and exploration.

While many edge bundling techniques exist, it is often challenging
for users to produce desirable aggregation results. Some algorithm-
s are too specific to a certain kind of data like small graphs [14] or
large datasets [11,28]. Large graph aggregation methods try to extract
hidden global structures, whereas small dataset aggregation methods
address readability issues. Other algorithms provide good results with
hierarchical data [13], while some are more generally applicable [17].
Besides dealing with this plethora of algorithms, users often struggle to
find suitable algorithm parameters to produce effective visual simplifi-
cations. Parameter modification often has unpredictable impact on the
final edge bundling results and each algorithm produces different visual
results with different aggregation parameters. It remains extremely
hard to find global parameters that best fit user needs for diverse visual-
izations. For instance, dense areas require stronger aggregation, while
sparse ones need less visual simplification to ensure their readability.
Overall, existing techniques are numerous but difficult to understand
with complex parameter settings. This hinders the user ability to create
desired aggregation results that fulfill the user requirements.

To address these issues, we investigated a novel way to handle visual
aggregations with a task-driven [27] and user-centered approach. We
do not consider our approach as a new edge bundling technique, but
rather as an effective means to take advantage of the existing ones.
Since some edge bundling techniques with their associated parameters
can produce suitable local visual results, we explored how to combine

o Y Wang, M. Xue, Y. Wang, and X. Yan, and X. Li are with Shandong
University. Email: {cloudseawang, xml95007, yanyanwang93,
yanxinyuanl } @ gmail.com.

* B. Chen is with Peking University. E-mail: baoquan.chen@gmail.com.

o C.-W. Fu is with the Chinese University of Hong Kong and Guangdong Prov.
Key Lab. of CV and VR Tech., SIAT. E-mail: cwfu@cse.cuhk.edu.hk.

* C. Hurter is with ENAC, France. E-mail: christophe.hurter@enac.fr.

o Y Wang and M. Xue are joint first authors, and C.-W. Fu is the
corresponding author.

these local (good) results together into a single visualization. There-
fore, we developed an algorithm to produce a coherent (preserving the
dataset visual structure), smooth (avoiding significant distortion), and
unambiguous (easing readability) transition between these local visual
aggregations. Based on these requirements, we summarize our design
rationale for our blending algorithm as follows:

* DRI1: preservation of the inherent visual data structure,

* DR2: smooth transition between different aggregated areas to
avoid large distortion,

* DR3: ensure readability of the graph structures, especially for
the regions of interest, and

* DR4: flexible fine-tuning of the end result.

Our approach aims to produce decluttered view for graph analysis.
It works as follows: the user first explores different edge bundling tech-
niques to generate aggregation results for a given graph, and specifies
areas, where specific edge bundling techniques provide good results.
Second, our system then computes a smooth, structural preserving, and
ambiguity-free transition between these specified areas. Lastly, the user
can further apply local edge deformation to fine-tune the end result.

In summary, the main contributions of this paper are as follows.

* We present the first technique to combine edge bundling results
for efficient and coherent data exploration and visualizations. The
key contribution is a novel blending method formulated based on
a global optimization to combine multiple edge bundling results
in a smooth, coherent and ambiguity-free fashion.

* We present three extensions to enable users to further explore
the blended edge bundling visualizations: (i) edge vector inter-
polation to adjust the bundling degree in different regions; (ii)
customized aggregation to smoothly combine the bundling of lo-
cal regions or the links between the source and destination nodes
with the global structure; and (iii) directly fine-tuning the blended
results by interactively manipulating the edges of interest.

* Lastly, we demonstrate the usefulness of our techniques through
three use cases, and develop an efficient GPU-based implementa-
tion, where users can interactively blend and edit graphs as large
as 50K control points in one second.

2 RELATED WORK

In this section, we first review previous work on edge bundling tech-
niques and discuss existing advanced graph visualization techniques.



(@) (b)

() ()

(©)

®

Fig. 1. Transplanting the sub-layout selected by the black box in (a) to the corresponding region of the unbundled layout in (b). (c) Directly replacing
the selected regions results in jagged boundaries; (d) smoothing the layout in (c¢) results in some bundled structures missed; (e) result produced by
our method using the constraints of structural preservation and smoothness; and (f) result produced by our method further using the readability
constraints that relieve visual ambiguity, where the upper and bottom boxes highlight the result changes before and after applying this constraint.

2.1

Many types of edge bundling techniques exist. A survey proposed a
classification based on the type of dataset and on user tasks [29]. In
this section, we will highlight the variety of existing algorithms, while
stressing their best usage for a given data type and user expectation.

Edge Bundling Techniques

Geometric methods. Some edge bundling techniques are analytically-
based, where they first consider the already existing structure of a graph
to best display it. This statement best describes the first edge bundling
technique, which captures the hierarchical structure of a dataset to dis-
play its aggregated visualization [13]. More recent works like the Cac-
tus Tree methods emphasize this type of hierarchical visualization [3]
or the common routes [25]. User evaluations have been conducted
to assess the best hierarchical simplified visualization for given user
tasks [4]. When the statistical inherent data variability of clustered
bundled is significant, functional decomposition can be used [18]. Even
with a given type of dataset, the abundance of edge bundling techniques
might makes it difficult for users to find a suitable one for a given task.
This motivates the present study to find more flexible and task-driven
edge bundling techniques.

Pixel-based methods. Recent advances in edge bundling helped to
visually simplify large datasets [17]. Pixel-based methods do not direct-
ly consider the inherent structure of the data but they make it emerge
thanks to data density computation [40]. Advanced GPU technique
helps overcome the data size limit [48] with a streaming [28] process.
As such, these techniques best fit large datasets. While these techniques
are fast [21], their parameters are considered too abstract, and it remains
difficult and even impossible to find edge bundling parameters that best
fit every aggregated area in a single dataset. This motivates the present
study rationale towards readability issues in some aggregated areas.

2.2 Advanced Graph Visualization

To produce high quality graph visualizations, many different techniques
have been proposed [50]. Here, we briefly review those closest to our
work on constrained graph layout, improving graph readability, and
smooth visual transition.

Constrained graph layout. Many graph layout techniques exist,
such as the traditional spring-electrical model [8, 10] or the stress
model [22]. However, most cannot meet some aesthetic metrics [35,36],
e.g., minimizing edge crossings and minimizing node overlap. To
address this problem and enhance the flexibility, a variety of constrained
graph layout techniques have been proposed [6,7,52]. Among them,
Wang et al. [52] reformulated the stress model into an edge-vector-
based representation, so that various constraints can be modeled. Since
edge vectors enable the users to customize the edge orientation and edge

length, they have been extended for supporting structure-aware fisheye
views [53]. Likewise, we formulate a new optimization model by using
edge vectors to preserve the desired structures, while maintaining the
smoothness and improved readability in the final results.

Improving graph readability. Graph and trail-set readability is an is-
sue for data exploration and understanding [38]. For instance, confluent
drawing uses a power graph decomposition to ensure readability and a
non-ambiguity path following in a bundled dataset [1,43]. Untangling
the hairballs of multi-centric, small-world online social media network-
s [33] has also been studied. Local deformation can be interactively
achieved via interactive link curvature in network diagrams [37]. Local
deformation can also help in obstacle avoidance and for aesthetics pur-
poses [17]. Our work provides additional tools to support graph and
trail-set readability with interactive deformation techniques.

Smooth visual transition. Previous works studied transitions between
graphs or trail-set layouts. Most existing techniques considered dif-
ferent layouts, where nodes do not have fixed locations [19,53]. In
our work, nodes in the given layouts have fixed locations, and only
edges are distorted to ensure a visual simplification. Offline dynamic
graph drawing is also a generalization of the smooth transition problem,
where the temporal coherence constraint [2,53] is often enforced. Sin-
gle [44] or multiple lenses [23] can be used for this purpose of using
animation and interaction [39,45]. The MoleView [19], which uses a
dual layout and animation to show bundled and unbundled transitions
within a lens, adds flexibility in edge bundling techniques. However, it
does not take into account smooth transitions between the dual layouts
and a structure-aware constraint. Kruiger et al. also considered a multi-
layer blending of edge bundling techniques [24] but this technique does
not support the blending of a local area. To the best of our knowledge,
no previous technique has investigated local smooth blending between
bundled results, while this paper fills the gap.

3 SEAMLESS BLENDING OF EDGE BUNDLING RESULTS

Given an unbundled graph drawing or trail set G = {V,E} with vertex
set V and edge set E, each edge ¢; € E connects two nodes in the form
of a straight line by default. Edge bundling techniques often pre-sample
each edge into a set of control points at equal intervals, where each
control point in edge ¢; has a position x; ; € RR2. In this way, we form a
set of edge segments, each in-between a pair of adjacent control points.
From now on, we call the control points between vertices on the edges
as edge points and vertices in V as nodes. Using these notations, we
first briefly describe the straightforward solutions for blending edge
bundling results then formulate the problem as an optimization task
based on the design rationale described in the introduction.



Fig. 2. lllustration of the edge point sets: U for whole graph; S for
user-selected sub-region; and C for connecting edges from U\ S to S.

3.1 Straightforward Solutions

Suppose we have two different bundled results (source and destination
layouts) of the same input graph, i.e., same G = {V,E} but different
edge point locations. Now, the user wants to specify a sub-region
in the source layout and transplant the bundled result inside the sub-
region to the destination layout. To facilitate the discussion, we denote
U= {(l,i)} as the set of edge point indices for the whole graph, and
S C U as the set of edge point indices in the user-selected sub-region.
To achieve this goal, the simplest and most straightforward way is
to replace all x; ; in destination layout with x;‘i in source layout for all

(1,i) € S. However, such an approach might not be able to produce
smooth layouts, especially for the edges near the boundary between
the target sub-region and the remaining region in the layout. Fig. 1
shows an example, where (a) and (b) show the source and destination
layouts, respectively. If we directly copy a sub-region from source
to destination, we will produce (c), where almost all boundary edges
become polylines with large curvatures. Further applying Laplacian
smoothing [49] to this result can reduce the sharp boundary edges, but
it might significantly change the graph structure, since the bundled
structures near the boundary might become unbundled (d). Our method
overcomes this issue (e) and further improves readability (f).

Limitations. Though carefully tuning the smoothing parameters might
alleviate the structure degradation, the above two-step strategy has three
inherent limitations. First, the structures in source and destination lay-
outs often have different degrees of bundling, leading to the challenge
of finding adaptive smoothing parameters. For example, the structure
of the unbundled part shown in Fig. 1(d) is almost retained, whereas the
one in the bundled part is heavily degraded. Second, when two input
visualizations have different scales, it is almost impossible to apply a
direct replacement because of the different coordinate systems; see an
example shown in Fig. 3(a). Lastly, alleviating ambiguities resulting
from bundling is a fundamental problem [30], whereas this straight-
forward solution cannot handle the issue. These limitations motivate
the development of a unified framework to produce structure-aware
blending of edge bundling results for efficient graph exploration.

3.2 Structure-aware Optimization Framework

To smoothly transplant selected points in S from source to destination
layout, while improving readability, we formulate an optimization
framework to solve for edge point positions in the destination layout,
Z = {z;;}V(1,i) € U, using the following three-fold objective:

argmin Y ozl
(1) eU\S
1i+1
+ Y Bllai—z—d
(Li)eS
+ Y 0 )z e — 2l (D)
(Li)eC

where o, 8, and 6 are weights for each term; U\ S is the index set
of the edge points outside the user-selected sub-region (S); C is the
index set of the edge points on the connecting edges that go into the
user-selected sub-region (see Fig. 2 for an illustration; note that we
have to optimize the positions of these points for edge smoothness); x; ;

is an edge point position on the /-th edge in the given destination layout;
whereas dfj;“ and g ; are to be defined in the constraints presented

in the next subsection. Note also that for edge points outside both S

Fig. 3. (a) Blending the edge segments selected by the box (dashed
lines) from source to corresponding region in the destination layout. (b)
avoiding the occlusion between the blue edge and the pink convex hull
by re-routing the blue edges using the readability constraint.

and C, we simply keep their positions as in the given destination layout
according to the first term.

Our optimization model consists of three terms (see Eq. (1)), cor-
responding to two design rationales (DR1: structure preservation and
DR2: smooth transition): the first term penalizes the position change of
points outside S; the second term is a vector constraint that maintains
the structure of the transplanted structures by preserving the edge orien-
tations of the corresponding edge segments; and the last term enforces
the smoothness transition, where the bundles are desired to smoothly
transit from the changed region to the unchanged regions.

Regarding the readability constraint in DR3, it is taken as a post-
processing step that alleviates the ambiguity of the regions of interest
in the final blended result, and thus, Eq. (1) does not have the related
term. In the following, we will describe each term in Eq. (1) and how
the readability constraint is formulated.

3.3 Structural and Smoothness Constraint
This subsection presents the three terms in Eq. (1) successively:

Position-based constraint. To preserve the unselected points in U,
specifically those connected to the edge points in S on the same edge,
we penalize the position change by using the first term in Eq. (1).

Edge-vector-based constraint. We also need to preserve the trans-
planted structures, where the position-based constraint is not in use for
two reasons. First, the absolute positions of the edge points are not
important for this task, which calls for an intrinsic structure representa-
tion. Second, directly inserting the selected regions to the destination
layout is meaningless, if the two layouts have different scales. Here,

we introduce the edge-vector-based constraint by defining
X;,i - X;A,i+1

Lo Y

Li+1
d il —
% =Xl

@

where x| ; is the position of an edge point in the source layout and d
is the edge segment length in the destination layout. In this way, the
transplanted edges can naturally adapt to the scale of the destination
layout, while preserving the original direction. Fig. 3(a) shows an
example, where the source and destination edges have different scales,
and yet, our approach can consistently combine them and produce the
result shown at the bottom of Fig. 3(a).

Smoothness constraint. To follow DR3, we define the smoothness
constraint by using the Laplacian operator:
1—1 r—1 -1
oy )
2= 3

where z ; denotes the position of the i-th node in the /-th edge at the
t-th iteration. However, this scheme assumes all edge segments have



Fig. 4. Improving graph readability by minimizing (a,b) node-edge occlu-
sion and (c,d) edge ambiguity, while maximizing (e,f) the small crossing
angle. (a,b) The occlusion between v and the edge / can be solved
by displacing point i and its neighbors towards target position p; (c,d)
the ambiguity between edges k and / can be resolved by displacing few
nearest points with vectors d; and (e,f) maximizing the edge crossing
angle by rotating the related edge segments.

the same density, which is unlikely the case for layouts with different
degrees of bundling. Accordingly, we define a weight g, ; to take into
account the length difference between adjacent edge segments:

Mg = X=X/t =Xzl (3)

and formulate the smoothness term in the third term of Eq. (1).

Fig. 1(e) shows a result produced by using the three terms in Eq. (1).
We can see that the transplanted structure taken from Fig. 1(a) can
seamlessly blend with the unbundled layout in Fig. 1(b), where only a
small amount of edge points have large curvatures, since they are at the
intersections between many differently-oriented edges.

3.4 Readability Constraint

Graph readability is affected by three major problems [51]: (i) node-
edge occlusion, (ii) edge ambiguity, and (iii) small edge crossing angles
(see Fig. 4 (a,c,e)). As highlighted by the top black box in Fig. 1(f),
the bundled structure in our blended result also suffers from these
problems. To relieve the first problem, Luo et al. [30] detect node-edge
occlusion and then route the edge away from the unrelated nodes during
the edge bundling. Since detecting ambiguity in the whole graph is
very expensive, this technique is mainly applied to small subgraphs
of interest shown in another detailed view. In this work, we extend
our optimization framework to improve the readability of regions of
interest so as to respect the design rationale DR3 (ensure readability of
the graph structures).

In analogy to the blending task, S is the edge point set in the region
of interest and U is the entire edge point set. As illustrated in Fig. 4, to
address these readability problems, we have to manipulate the related
edge points of the edges inside or around the user-selected region.

To do so, we can readily customize x;; and dflj in our optimization
framework (Eq. (1)) for each case as shown in Fig. 4.

Node-Edge occlusion. For each edge ¢; in the region of interest, we
follow Luo et al. [30] to detect if ¢; passes near any unrelated node in
the graph; if it does, we compute the target position (p) for the related
edge point on ¢; (see Fig. 4(a)), map the neighbors of the edge point
to the positions around p, and set them as x; ; using the first term in
Eq. (1). Fig. 4(a) shows an example, where node v is too close to edge
[. After applying our optimization, the occlusion can be avoided in the
refined result (see Fig. 4(b)), while the edge is smooth.

Fig. 5. Convergence of our method. (a) Input layout, and (b)-(d) results
optimized after 5, 10, and 30 iterations, respectively.

Node v can also be generalized as a complex cluster, represented by
a convex hull, where readability might reduce when edges go through
the hull of the cluster. Fig. 3(b) shows such an example, where the
unrelated blue edges might distract the user’s attention. To address this
issue, we project these edges to the boundary of the convex hull and use
the projected edge point as X; ; in the first term of Eq. (1). The bottom
part of Fig. 3(b) shows the optimized result, where the blue edges can
be re-routed to avoid the convex hull.

Edge congestion. Fig. 4(c) shows an edge congestion case, where edge
connectivity becomes ambiguous. To this end, we find edge ey (k # 1)
for each edge point x; ; that meets the following two requirements: (i)
edges e, and ¢; neither cross each other nor have the same endpoints,
otherwise they should be bundled together; and (ii) there exists a point
(say the j-th point) on edge e, such that the distance between x; ; and
X, j is smaller than a given threshold r. If such point X ; is found, we

set its corresponding df"ij in Eq. (1) by

Xk, j —X1,i

k,j
V=
[1%kj — %1411

1= (C))

As shown in Figs. 4(c, d), assigning such vectors to the relevant points
on ¢ (and also ¢;) in the second term of Eq. (1) can displace the two
edges away from each other to resolve the ambiguity.

Edge crossing angle. When two edges cross each other, having a
large crossing angle leads to better graph readability [15]. Hence, we
maximize the crossing angle for such edge pairs in the region of interest.
To do so, we first find the intersecting edge pairs then calculate the
edge crossing angles @ between them. If @ is smaller than a threshold
¢ (¢ = /6 by default), we compute the orientation of the related edge
segments, like the two edge segments defined by points { x;;, X ;41 }
on ey and { X > Xkl } on ¢, we set their corresponding vectors in
Eq. (1) to improve their readability (see also Fig. 4(e)) as

47 = (x4 —x1) © (/4—0/2) ©)
dij,ﬂ = (X j+1 —X,j) © (T/4—0/2), 6)

where @ denotes a clockwise and © a counter-clockwise rotation.
Figs. 4(e.f) show examples, where the two edges become almost per-
pendicular to each other, after the optimization.

It can be noted that two angles in Eq. (5) can be defined in different
ways for different applications. For example, to explore edges of
interest, one would often like to maintain their orientations, while
rotating the intersected edges to maximize the crossing angles.



Fig. 6. These three results (a-c) are produced using the same « and f but different 6: 1, 20, and 400, respectively.

Fig. 7. Edge vector interpolation results in the user-selected region
produced using different o: (a) @ = 0; (b) 0 = 0.35; (c) @ = 0.75; and (d)
o=1.

3.5 Solving the Optimization

To solve for Z in Eq. (1), we can differentiate Eq. (1) with respect to Z,
set the derivative to zero, and produce the following linear system:

(Mp+My +M;s)Z = JD+Q, (7

where Mp, My, Mg are n x n weighted Laplacian matrix, representing
the parameters for the position-based constraints, vector-based con-
straints, and smoothness constraints, respectively; 7 is the number of
edge points in Z; matrix Q represents all the weighted positions of the
unselected points in the destination layout and is defined by the first
term; both matrices D and J are derived from the second term in Eq. (1),

where D stores all the target edge vectors d;frl.

Given the user-selected blending areas, we first solve for Z, which
represents the edge positions in the blended layout. Then, we incor-
porate the readability constraints by looping over all the edge points
and updating the entries in x; ; and d;clj , and then solve for Z again. By
using a conjugate gradient solver, the desired solution can be quickly
obtained. Fig. 5 shows the convergence process, where the result after
30 iterations already satisfies most of the constraints.

The final results are heavily influenced by the weights of the three
terms o, 8, and 0 in Eq. (1). Since the first and second terms both
correspond to DRI and the third term corresponds to DR3, & and f3 are
assumed to be the same and the ratio between « and 6 influences the
final result. When the ratio is too small, the result is similar to the one
produced by the straightforward solution (see Fig. 6(a)); when the ratio
is too large, DR1 might not be fully respected (see Fig. 6(c)). In our
experiment, ¢, 3, and 6 are empirically set as 1, 1, and 20, respectively;
see Fig. 6(b). Note also that both ¢ and 3 correspond to DR1, so we
set =P, since their ratio influences the final result.

4 EXPLORATION OF THE BLENDED RESULT

In this section, we present three extensions that assist users to inter-
actively blend and edit edge bundling visualizations, for supporting
efficient exploration of large graphs and trails.

4.1 Edge Vector Interpolation

A typical interaction for seamless blending of edge bundling results
is to combine parts from different results together in a single layout;
see an example in Fig. 1. To help users explore the blended results, we
introduce edge vector interpolation that allows users to generate results
with varying degrees of bundling in different regions.

Supposing we have a blended layout generated by fusing two bun-
dled layouts, the vector of a certain edge segment inside the user-

selected region is sdéfrl in one layout and tdﬁ’;H in the other. Given

the weight o, the new edge vector of this segment becomes
it = oesd i 4 (1- 1) e td) ®)

By taking dé’;H as the transplanted edge structures into the second
term of Eq. (71) and using the blended results as x; ; to define the first
and third terms, we can produce different degrees of bundling in the
user-selected region. Fig. 7 shows a complex example, where the area
inside the dotted circle is bundled using different weights, increased
from (a) to (d). We can see that the bundles in the dotted circle are
getting tighter while smoothly connecting with the unselected parts.

4.2 Customized Aggregation

By combining the method with an existing edge bundling technique,
the user can analyze the local structures by bundling the edges within
the local regions or between the source and destination nodes.

Fig. 8. (a) The unbundled input; (b) the result generated by global
bundling, where the two edge sets are mixed together; (c) the result
generated by only bundling the segments inside the selected region
(note the discontinuity); and (d) our optimized local bundling result.

Fig. 9. Path bundling. (a) Input unbundled layout (red boxes are the
user-marked origins and destinations); (b) our path bundling result; and
(c) our result further enhanced by applying the readability constraints
to alleviate the node-edge occlusion, edge congestion and small edge
crossing angle issues.



Fig. 10. (a) Pushing the selected edge to position p; (b) three Bézier
curves generated within distance ¢ from p; and (c) the result generated
by using our optimization framework.

Fig. 11. The above plot reports the time taken by our method to compute
the blending between the considered dataset (US-airlines, US-migration,
and France-airlines) over different number of edges. Our method remains
fast (just a few seconds) even for large datasets (3.5k edges).

Local bundling. Directly bundling the whole graph might miss some
local structures, whereas directly bundling the edges of local regions
might lead to broken edges. Fig. 8 shows an example, where neither
global nor local bundling can preserve the structure of the selected

edges. By using the local bundling result to define d;fﬂ in Eq. (1), our

optimization can consistently fuse together the local bundling result
with the unbundled regions in the layout (see Fig. 8(d)).

Path bundling. Following the paths from specific origins to specif-
ic destinations is a common task in exploring trails. To reduce the
visual clutter, bundling the related edges in the paths can help users
identify the major trends. However, only bundling such edges might be
insufficient, especially if there are many intersecting edges along the
paths. Accordingly, we extend our method for path bundling, which is
similar to the graph interaction technique of from Detail to Overview
via Selections and Aggregations [47].

Specifically, we perform the following procedure to generate path
bundling result: (i) given the user-provided origin and destination
regions in layout, find all the associated paths as the foreground (see
Fig. 9(a)); (ii) bundle all the edge segments along these paths (see
Fig. 9(b)); and (iii) further apply the readability constraint (which is
optional) to resolve readability issues and reveal the relevant paths that
go between the origin and destination areas (see Fig. 9(c)).

43

To help the user interactively fine-tune the bundling results, we in-
troduce the push operation, where the target positions for some edge
points are specified manually. This interaction adds flexibility for the
user to produce visualization results in a direct manipulation style. As
shown in Fig. 10, the user can intuitively push the edges towards a
target p. Here, we define the area within distance ¢ from p along the
related edges as the target area, and construct a Bézier curve for each
associated edge. By using the Bézier curves to define the associated

Interactive Manipulation

dﬁ’;H in our optimization framework, we can readily produce a smooth
result; see Fig. 10(c) for an example.

5 RENDERING

To add flexibility to our blended results, we adopt an additional post pro-
cessing step for fine-tuning (DR4). Inspired by the first edge bundling
method, which concentrated edges [31] and its extension with Sankey
diagrams [46], we apply the following post-processing techniques to
improve the rendering style of the aggregated edges.

Density computation and rendering. Sankey diagrams [46] visually
encode a specific data dimension using the edge width (i.e., the flow
map of French wine exports (Minard, 1864)). Such visual coding
has been applied to edge bundling techniques with trails, gazes, and
graph data sets, where the edge width depicts the aggregated edge
density [34]. Image-based visualization technique [16] can also be
applied to improve the displayed edge width. Telea et al. [42] used the
distance transformation [41] to emphasize the border of the bundled
edges by darkening edges according to their distances to the center line
of the cluster being considered. While this technique shows relevant
visual improvement, it needs to be applied to each bundle separately,
which is computationally challenging for numerous given clusters. To
address this issue, we extend these previous techniques to make them
flexible for application to complex and dense datasets (see Fig. 12).

First, we compute a density map using kernel density estimation [40].
We use a raster map of 400 by 400 pixels and an 11-pixel-radius
Gaussian kernel (other parameters can apply, we provide here a good
compromise between computation time and rendering quality). Each
edge is then re-sampled with 200 points. Second, we compute the
local edge density and average the raster map density value along the
considered edge. We empirically use three points before and after the
considered local density then map the corresponding average value
with the edge width [17]. Finally, we emphasize the edges by drawing
a one-pixel-width line on its border.

Trail set ordering and transparency. Visualizing complex and dense
datasets might result in heavy visual clutter due to the tangled and
overlapping trails/edges. Our computed density field enables us to
create varying line widths for each edge segment, where the width of
each segment is proportional to its density value. However, simply
rendering such width-varying line segments might cause the thick edge
segments to be occluded by the thin ones. For this reason, we apply a
final edge processing algorithm, where we first sort the edge segments
with respect to their local average density and provide user with two
rendering options: (i) high density on top and (ii) low density on top.
Fig. 12 shows different types of sorting, where one can better see the
main path with high density on top or emphasize small bundles with low
density on top. In addition, we allow users to adjust the transparency of
the whole graph. With low transparency, more small bundles are shown
(see Figs. 12(b,c)); while the main flow is shown with high transparency
(see Fig. 12(d)).

6 IMPLEMENTATION

To support an interactive exploration, we implemented a CUDA-based
conjugate gradient (CG) solver for solving Eq. (7) and used OpenGL
for rendering. For a graph of n edge points, the time complexity of our
method depends on the one of the CG algorithm [55], which is O(n!-%),
while the space complexity is O(n?). For more implementation detail
about CUDA-based CG solver, please refer to Wang et al. [52, 53].
Three edge bundling techniques are employed for graph aggregation,
such as kernel density estimation-based edge bundling (KDEEB) [17],
FFT based edge bundling (FFTEB) [28], and skeleton-based edge
bundling (SBEB) [9]. By running on the NVidia GTX1080 graphics
card with 8GB video memory, our system can handle graphs of up to
3.5K edges and 50K edge points in less than three seconds.

Since the computation time of producing initial edge bundling results
varies too much [29], we only take into account the bundle blending
time to assess the performance of our method. In Fig. 11, we report the



Fig. 12. These visualizations are created using different edge bundling methods and rendering styles for presenting recorded aircraft trajectories over
France during one day. From left to right, the visual simplification varies from no simplification to a significant one. The width of edge segments
encodes the edge density, and the top row displays the edge segments with high densities on top so that the main bundles are more clearly shown,
while the bottom row displays the edges in a reverse way. The last column shows a strong aggregation with high transparency, where the main air
flows are more clearly shown. From these various rendering and edge bundling methods, the user can decide which part of each visualization best
shows the relevant information and combine them together by using our blending method. For example, the regions with labels “2-5” are selected to
blend with the original layout with the label “1” together, formed the result shown in Fig. 13(b).

timing measurements, where three different datasets (US-airlines, US-
migration, and France-airlines) with varying numbers of edges were
tested. We can see that our method proves to be fast with a computation
time of just a few seconds, even for the most complex blending case.
Also, Fig. 11 shows that the algorithm run time scales linearly with the
number of edges, but we cannot consider that our method can handle
any dataset size due to the GPU memory limitation.

7 APPLICATIONS

In this section we demonstrate the usefulness of the proposed technique
to support data exploration and presentation through different use cases.
Every example targets the same issue: how to remove local clutter to
better understand and read the presented information. The first use
case shows how the proposed algorithm can support origin-destination
features to perform a local simplification with different edge bundling
techniques. The next use case presents the visualization of a trail set
and its simplified version with dense and coarse areas. The last example
supports the flexibility of our technique with its applicability to different
graph deformations: edge bundling and fisheye technique.

7.1 Aircraft Trajectories Composition

In this example, we considered the visualization of one day (Friday,
22" of February, 2008) of recorded aircraft trajectories over France.
This dataset contains 17,851 flight trajectories with 427,651 record-
s. This trail set has been intensively explored in the past with many
discoveries in terms of traffic structure and density [16]. Many edge
bundling techniques have also been applied but no previous work has in-
vestigated how to best visualize various aggregated areas. Considering
Fig. 12, some areas with different bundling parameters better display
flow specificity: Paris area (box number 3) with average bundling ag-
gregation and high density on the top, west part of France (box number
2) with low density on the top, Corsica area (box number 4) with strong
bundling, and center of France (box number 5) with high bundling
parameters and high transparency. By using our blending method,
we managed to produce a single aggregated view with smooth and
ambiguity-free transition between different bundling results and their
renderings. Fig. 13 shows the end result, where flow aggregations are
more visible compared to the original flow visualization. Our method
blends all the parts and insures a smooth transition between them.

To assess the quality in terms of the encoded information, we asked
practitioners to comment on Fig. 13. We asked two air traffic controllers
(10 and 15 years of experience) to give their opinions regarding the
veracity of the aggregated flows and also to compare our composed
image with the original one. The main comments were that the aggre-
gated view shows the major air flow but some trails are too distorted
compared to the actual ones. The aggregated view is clear with more
empty space which eases its comprehension. The Corsica area clearly
shows the main flow compared to the original data. The central part
of France also better shows the main flows. Overall, the negative com-
ments are generally applicable to the edge bundling issues but there
are no complaints about the transition between the various aggregated
areas and the resulting view is considered as informative and appealing
in terms of visual quality.

7.2 Origin Destination

Origin-Destination (OD) flows show connections between areas of
interest on a map. Visualization of such subsets may require visual
simplification when the dataset is too large, and thus, create severe
overlap [12,47]. In this example, we show how our algorithm supports
the blending of graph aggregations and OD flow filtering.

Fig. 14 shows the investigation of the US-migration dataset. Here,
users are allowed to select nodes of interest as origin or destination by
adding purple dashed boxes to the original graph (Fig. 14). The user first
investigated the original graph (Fig. 14(a)) with the OD flows between
two major cities in yellow and a global bundled result (Fig. 14(b)).
We can see that the OD flow between the two major cities might be
mis-bundled together with other links, especially the ones in the black
box, since many overlapped edges in Fig. 14(a) disappear.

To further check if edge congestion results in ambiguity, we applied
the path bundling here. Specifically, the algorithm first bundles the OD
flow separately, then bundles the edges going through the region of the
OD flow shown in the blue box, and finally blend these two bundled
results with the fully bundled graph version. This simplified vicinity
ensures a better readability of the investigated OD flow. As a final stage,
the user can further adjust the OD vicinity transparency to even reduce
any unwanted small bundle, and thus, remove extra clutter. Fig. 14(c)
shows the final result of our investigated graph with the highlight of a
specific OD flow.



Fig. 14. This example shows the usage of the origin-destination feature. (a) The original US migration dataset with the links in yellow between
the selected source and destination nodes, and the bounding box of these links in blue; (b) the bundled result generated by applying the KDEEB
algorithm [17] to (a); and (c) further aggregated result by our method, where the ambiguity between edges shown in the black box is resolved.

Fig. 13. (a) Original data of the one-day aircraft trajectory record over
France. Red boxes show areas, where our method blended different
edge bundling results from Fig. 12 to compose the final image shown in
(b). (b) Final result produced by our blending method, which takes into
account the selected area (red boxes in (a)) using different renderings
and edge bundling parameters. Our method insures smooth transitions
between areas and also avoids ambiguity.

7.3 Structure-aware Fisheye Views

In the case of general graph exploration, complicated graph structures
lead to excessive visual clutter for dense regions. To address this issue,
fisheye views [26] have been widely used to show the focal regions
with the global context in a single view via space distortion. Although
a few fisheye techniques [5, 53] have been proposed to reduce the s-
patial distortion and improve graph readability, the occlusion between

Fig. 15. (a) Input unbundled graph. (b) Cluster fisheye lens zoom-in on
the red cluster with black border by (c) bundling the context area while
keeping the focus area unbundled. Route the unrelated edges, which go
through the focused cluster. (d) Multi-focus fisheye lens on the red and
purple clusters, and bundle the associated context area.

unrelated edges and the regions of interest is still an impediment to the
comprehension of local graph structures [51]. Thanks to the blending
method, such occlusion can be readily removed by applying the opti-
mization with the readability constraint. As shown in Fig. 3(b), we can
first bundle the related edges and re-route them along the outline of the
zoomed focal area.

Here, we used the FOOTBALL [51] dataset with 115 players (nodes),
613 relations (edges), and 12 clusters to demonstrate the effectiveness
of our technique in improving the fisheye view. Fig. 15(a) shows the
initial layout generated by Force Atlas2 [20], where the detail of each
cluster cannot be clearly shown. To explore the red cluster in the middle
of the layout, the cluster fisheye lens is applied, resulting in the layout
shown in Fig. 15(b). However, there are many long edges crossing
this cluster, hindering users from discerning the connection between
nodes of this cluster. Accordingly, we applied the technique that further
routes such unrelated edges away from the convex hull of this cluster
and obtained the result as shown in Fig. 15(c).

After examining the red cluster, the user would like to further explore



the gray cluster and compare its local structure with the one in the red
cluster. Hence, we first applied a polyfocal lens [53] to simultaneously
magnify both regions and employed our technique to route the unrelated
edges in both focal areas; see the result in Fig. 15(d). We can see that
although the gray cluster has a similar number of nodes with the red
one, the gray cluster is much denser, which is almost a complete sub-
graph. This example shows how the proposed technique can help graph
exploration with improved graph readability.

8 DISCUSSION

As far as we know, this study provides the first edge bundling composi-
tion algorithm taking into account local constraints. This adds flexibility
for the user to flexibly produce fine-tuned visual aggregation results
that cannot be easily achieved before. Since the algorithm tries to find
a suitable transition between two layouts, the user can easily predict
the end result. As such, the algorithm does not act as a black box and
shows the user expected results as long as the two layouts do not have
larger difference. Even if this algorithm remains relativity intuitive, it
does not solve the edge bundling parameter complexity. Edge bundling
parameters are often obscure and the users often struggle to find suit-
able edge bundling parameters to produce desirable results. These
issues remain pertinent for existing edge bundling techniques [32, 54]
in general, and shall be addressed in the future with more intuitive and
predictive edge bundling algorithms.

It should be noted that this technique does not provide a novel
edge bundling algorithm but rather takes advantage of existing ones.
As such, our method is an edge bundling agnostic technique. It can
handle any kind of distortion techniques. In the flight dataset use
case, we applied the method with common pixel-based edge bundling
technique, but other methods could be readily considered. Our method
can also take into account any kind of layout algorithms, indeed a
use case with a fisheye distortion combined with an edge bundling
technique is shown in Fig. 15. In terms of limitations, our method tries
to find a suitable optimization to fulfill smoothness, coherency, and
ambiguity-free constraints. If there are heavy overlaps among edges
in the destination layout, our method may produce cluttered blending
results (see Fig. 16). In the future, we plan to further model edge-edge
overlap into the readability constraint.

Fig. 16. This figure shows one of our method limitation when blending
too divergent graph layouts. (a) the original US Migration dataset; (b) the
bundled version of this dataset; (c) our output; and (d) a magnified view
of our blending method with strong edge-edge overlap.

9 CONCLUSION

In this paper, we explored how to leverage existing edge bundling
techniques by flexibly aggregating their layout results to produce the
final one. Rather than providing a novel edge bundling technique, we
proposed to take advantage of existing ones and to provide novel tools
to the user to build efficient aggregation results of graphs or trail-sets.
Here, we developed an algorithm and a processing pipeline to blend
subsets of graph or trail-set layout in a smooth and coherent way. The

user can define areas of interest and compose them into a final single
view. The algorithm will then process a smooth transition between the
blended parts with limited edge distortion. Furthermore, we considered
removing ambiguity when edges overlap with nodes and we added three
interactive extensions to locally deform, and thus, fine-tune the end
result with addition distortion. Finally, we provide a post processing
rendering layer to sort the edges and assign edges with a width and a
color coding. Overall, the processing pipeline gives the user further
flexibility as demonstrated through graph and trail-set examples.

While the pipeline is flexible, some additional features may be
considered. Currently, the pipeline only supports the blending of two
layers, and some additional work is needed where more than two
overlapping layers are to be blended. This technique best fits edge
bundling algorithms, since the layout does not differ significantly. We
can extend the algorithm to consider the change of end point location
to be more generally applicable to any kind of graph layout algorithm.
Last, our approach allows users to create a custom edge bundling, but
it has a potential for misuse, where users could only show the bundled
edges that are supportive of their argument/hypothesis. In the future, we
would like to visualize the uncertainty of bundled results by showing
which parts have been bundled and how much.

ACKNOWLEDGMENTS

This work is supported by the grants of the National Key Research &
Development Plan of China (2016YFB1001404), NSFC (61772315,
61861136012), Shenzhen Science and Technology Program (Project no.
JCYJ20170413162617606), the Research Grants Council of the Hong
Kong Special Administrative Region (Project no. CUHK 14203416),
and the French National Agency for Research (Agence Nationale de
la Recherche ANR) under the grant ANR-14-CE24-0006-01 project
“TERANOVA”.

REFERENCES

[1] B. Bach, N. H. Riche, C. Hurter, K. Marriott, and T. Dwyer. Towards

unambiguous edge bundling: Investigating confluent drawings for network

visualization. IEEE Trans. Vis. & Comp. Graphics, 23(1):541-550, Jan

2017. doi: 10.1109/TVCG.2016.2598958

F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of

dynamic graph visualization. Computer Graphics Forum, 36(1):133-159,

2017. doi: 10.1111/cgf. 12791

[3] T.Dang and A. Forbes. Cactustree: A tree drawing approach for hierar-

chical edge bundling. In Proc. IEEE Pacific Visualization Symposium, pp.

210-214, April 2017. doi: 10.1109/PACIFICVIS.2017.8031596

T. Dang, P. Murray, R. Etemadpour, and A. G. Forbes. A user study

of techniques for visualizing structure and connectivity in hierarchical

datasets. In VOILA@ISWC, 2017.

[5] F. Du, N. Cao, Y.-R. Lin, P. Xu, and H. Tong. isphere: Focus+ context
sphere visualization for interactive large graph exploration. In Proc. Conf.
on Human Factors in Computing Systems, pp. 2916-2927, 2017. doi: 10.
1145/3025453.3025628

[6] T.Dwyer. Scalable, versatile and simple constrained graph layout. Com-

puter Graphics Forum, 28(3):991-998, 2009. doi: 10.1111/j.1467-8659.

2009.01449.x

T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa: An incremental

procedure for separation constraint layout of graphs. IEEE Trans. Vis. &

Comp. Graphics, 12(5):821-828, 2006. doi: 10.1109/TVCG.2006.156

P. Eades. A heuristic for graph drawing. Congressus numerantium, 42:146—

160, 1984.

O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea. Skeleton-

based edge bundling for graph visualization. IEEE Trans. Vis. & Comp.

Graphics, 17(12):2364-2373, 2011. doi: 10.1109/TVCG.2011.233

T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed

placement. Software: Practice and experience, 21(11):1129-1164, 1991.

doi: 10.1002/spe.4380211102

E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomerative

edge bundling for visualizing large graphs. In Proc. IEEE Pacific Visu-

alization Symposium, pp. 187-194, 2011. doi: 10.1109/pacificvis.2011.

5742389

A. Graser, J. Schmidt, F. Roth, and N. Brandle. Untangling origin-

destination flows in geographic information systems. Information Vi-

sualization, 18(1):153-172, 2019. doi: 10.1177/1473871617738122

[2

—

[4

fina}

[7

—

[8

=

[9

—

[10]

(1]

[12]



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Trans. Vis. & Comp. Graphics, 12(5):741-748,
2006. doi: 10.1109/TVCG.2006.147

D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):670-677, 2009. doi: 10.
1111/j.1467-8659.2009.01450.x

W. Huang, S.-H. Hong, and P. Eades. Effects of crossing angles. In
Proc. IEEE Pacific Visualization Symposium, pp. 41-46, 2008. doi: 10.
1109/pacificvis.2008.4475457

C. Hurter. Image-Based Visualization: Interactive Multidimensional Data
Exploration. Synthesis Lectures on Visualization. Morgan & Claypool,
2015. doi: 10.2200/S00688ED1V01Y201512VIS006

C. Hurter, O. Ersoy, and A. Telea. Graph Bundling by Kernel Density
Estimation. (31):865-874, 2012. doi: 10.1111/j.1467-8659.2012.03079.x
C. Hurter, S. Puechmorel, F. Nicol, and A. Telea. Functional decompo-
sition for bundled simplification of trail sets. IEEE Trans. Vis. & Comp.
Graphics, 24(1):500-510, Jan 2018. doi: 10.1109/TVCG.2017.2744338
C. Hurter, A. Telea, and O. Ersoy. MoleView: An Attribute and Structure-
Based Semantic Lens for Large Element-Based Plots. IEEE Trans. Vis.
& Comp. Graphics, 17(12):2600-2609, 2011. doi: 10.1109/TVCG.2011.
223

M. Jacomy, S. Heymann, T. Venturini, and M. Bastian. Forceatlas2, a con-
tinuous graph layout algorithm for handy network visualization. Medialab
center of research, 560, 2011. doi: 10.1371/journal.pone.0098679

T. J. Jankun-Kelly, T. Dwyer, D. Holten, C. Hurter, M. Nollenburg,
C. Weaver, and K. Xu. Scalability Considerations for Multivariate Graph
Visualization, pp. 207-235. Springer International Publishing, Cham,
2014. doi: 10.1007/978-3-319-06793-3_10

T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information processing letters, 31(1):7-15, 1989. doi: 10.1016/
0020-0190(89)90102-6

U. Kister, P. Reipschldger, and R. Dachselt. Multilens: Fluent interaction
with multi-functional multi-touch lenses for information visualization. In
Proceedings of the 2016 ACM International Conference on Interactive
Surfaces and Spaces, 1SS °16, pp. 139-148. ACM, New York, NY, USA,
2016. doi: 10.1145/2992154.2992168

J. F. Kruiger, A. Hassoumi, H.-J. Schulz, A. Telea, and C. Hurter. Multidi-
mensional data exploration by explicitly controlled animation. Informatics,
4(3), 2017. doi: 10.3390/informatics4030026

A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges
into bundles. Computer Graphics Forum, 29(3):853-862, 2010. doi: 10.
1111/j.1467-8659.2009.01700.x

J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In CHI, vol. 95, pp.
401-408. Citeseer, 1995. doi: 10.1145/223904.223956

B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Proceedings of the 2006 AVI Workshop on
BEyond Time and Errors: Novel Evaluation Methods for Information
Visualization, BELIV *06, pp. 1-5, 2006. doi: 10.1145/1168149.1168168
A. Lhuillier, C. Hurter, and A. Telea. FFTEB: Edge bundling of huge
graphs by the Fast Fourier Transform. In Proc. IEEE Pacific Visualization
Symposium, 2017. doi: 10.1109/pacificvis.2017.8031594

A. Lhuillier, C. Hurter, and A. Telea. State of the art in edge and trail
bundling techniques. Computer Graphics Forum, 2017. doi: 10.1111/cgf.
13213

S.Luo, C. Liu, and K. L. Ma. Ambiguity-free edge-bundling for interactive
graph visualization. IEEE Trans. Vis. & Comp. Graphics, 18(5):810-821,
2012. doi: 10.1109/tveg.2011.104

F. J. Newbery. Edge concentration: A method for clustering directed
graphs. SIGSOFT Softw. Eng. Notes, 14(7):76-85, Oct. 1989. doi: 10.
1145/73337.73350

Q. Nguyen, P. Eades, and S.-H. Hong. On the faithfulness of graph
visualizations. In Visualization Symposium (PacificVis), 2013 IEEE Pacific,
pp. 209-216. IEEE, 2013.

A. Nocaj, M. Ortmann, and U. Brandes. Untangling the hairballs of
multi-centered, small-world online social media networks. Journal of
Graph Algorithms and Applications : JGAA, 19(2):595-618, 2015. doi:
10.7155/jgaa.00370

V. Peysakhovich, C. Hurter, and A. Telea. Attribute-driven edge bundling
for general graphs with applications in trail analysis. In Proc. IEEE Pacific
Visualization Symposium, pp. 39-46, 2015. doi: 10.1109/PACIFICVIS.
2015.7156354

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

H. C. Purchase. Metrics for graph drawing aesthetics. Journal of Visual
Languages & Computing, 13(5):501-516, 2002. doi: 10.1016/S1045
-926X(02)90232-6

H. C. Purchase, C. Pilcher, and B. Plimmer. Graph drawing aesthetics
created by users, not algorithms. [EEE Trans. Vis. & Comp. Graphics,
18(1):81-92, 2012. doi: 10.1109/TVCG.2010.269

N. H. Riche, T. Dwyer, B. Lee, and S. Carpendale. Exploring the design
space of interactive link curvature in network diagrams. In Proceedings of
the International Working Conference on Advanced Visual Interfaces, pp.
506-513, 2012. doi: 10.1145/2254556.2254652

H.-J. Schulz and C. Hurter. Grooming the hairball - how to tidy up
network visualizations? In INFOVIS 2013, IEEE Information Visualization
Conference. Atlanta, United States, Oct. 2013. Tutorial.

L. Shao, A. Mahajan, T. Schreck, and D. J. Lehmann. Interactive regression
lens for exploring scatter plots. Computer Graphics Forum, 36(3):157-166,
2017. doi: 10.1111/cgf. 13176

B. Silverman. Density estimation for statistics and data analysis. Mono-
graphs on Statistics and Applied Probability, 26, 1992.

R. Strzodka and A. Telea. Generalized distance transforms and skeletons
in graphics hardware. In Proceedings of the Sixth Joint Eurographics
- IEEE TCVG Conference on Visualization, VISSYM’04, pp. 221-230.
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2004.
doi: 10.2312/VisSym/VisSym04/221-230

A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualization
of large graphs. In Proceedings of the 12th Eurographics / IEEE - VGTC
Conference on Visualization, EuroVis’ 10, pp. 843-852. The Eurographs
Association &#38; John Wiley &#38; Sons, Ltd., Chichester, UK, 2010.
doi: 10.1111/).1467-8659.2009.01680.x

N. Toeda, R. Nakazawa, T. Itoh, T. Saito, and D. Archambault. Conver-
gent drawing for mutually connected directed graphs. Journal of Visual
Languages and Computing, 43:83 — 90, 2017. doi: 10.1016/j.jv1c.2017.09
.004

C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann. A
Survey on Interactive Lenses in Visualization. In R. Borgo, R. Maciejew-
ski, and L. Viola, eds., EuroVis - STARs, 2014. doi: 10.2312/eurovisstar.
20141172

C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann. Inter-
active lenses for visualization: An extended survey. Computer Graphics
Forum, 36(6):173-200, 2017. doi: 10.1111/cgt. 12871

E. R. Tufte and P. Graves-Morris. The visual display of quantitative
information, vol. 2. Graphics press Cheshire, CT, 1983.

S. Van den Elzen and J. J. Van Wijk. Multivariate network exploration
and presentation: From detail to overview via selections and aggregations.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2310-
2319, 2014. doi: 10.1109/TVCG.2014.2346441

M. van der Zwan, V. Codreanu, and A. Telea. CUBu: Universal real-
time bundling for large graphs. IEEE Trans. Vis. & Comp. Graphics,
22(12):2550-2563, 2016. doi: 10.1109/TVCG.2016.2515611

J. Vollmer, R. Mencl, and H. Mueller. Improved laplacian smoothing of
noisy surface meshes. Computer Graphics Forum, 18(3):131-138, 1999.
doi: 10.1111/1467-8659.00334

T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk,
J.-D. Fekete, and D. Fellner. Visual analysis of large graphs: State-
of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719-1749, 2011. doi: 10.1111/j.1467-8659.2011.01898.x

Y. Wang, Q. Shen, D. Archambault, Z. Zhou, M. Zhu, S. Yang, and H. Qu.
Ambiguityvis: Visualization of ambiguity in graph layouts. IEEE Trans.
Vis. & Comp. Graphics, 22(1):359-368, 2016. doi: 10.1109/tvcg.2015.
2467691

Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C.-W. Fu, M. Sedlmair,
O. Deussen, and B. Chen. Revisiting stress majorization as a unified
framework for interactive constrained graph visualization. /EEE Trans.
Vis. & Comp. Graphics, 24(1):489-499, 2018. doi: 10.1109/tvcg.2017.
2745919

Y. Wang, Y. Wang, H. Zhang, Y. Sun, C.-W. Fu, M. Sedlmair, B. Chen,
and O. Deussen. Structure-aware fisheye views for efficient large graph
exploration. IEEE Trans. Vis. & Comp. Graphics, 25(1):566-575, 2019.
doi: 10.1109/tveg.2018.2864911

J. Wu, F. Zhu, X. Liu, and H. Yu. An information-theoretic framework for
evaluating edge bundling visualization. Entropy, 20:625, 2018. doi: 10.
3390/e20090625

D. M. Young. Iterative solution of large linear systems. Elsevier, 2014.



