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. However, the expected continuity risk comes from an underlying conservative assumption that the correlation between multiple monitors for fault detection is negligible. Thus, we investigate the effect of the cross-correlation across ARAIM solution separation tests on the monitor false alarm probability ( by presenting a higher fidelity methodology to evaluate the based on highly correlated fault detection tests. We carry out a preliminary assessment of ARAIM false alarm performance by using the proposed method. It was found that considering the cross-correlation amongst monitor test statistics reduces the predicted by up to approximately 50% of the predefined requirement (e.g., 10 ) when triple satellite faults were considered. Despite such improvement, the baseline ARAIM implementation does not appear to be overly conservative.

Introduction

Single-frequency receiver autonomous integrity monitoring (RAIM) has been designed to mitigate Global Positioning System (GPS) integrity threats due to measurement faults [START_REF] Lee | Analysis of range and position comparison methods as a means to provide GPS integrity in the user receiver[END_REF]Parkinson and Axelard 1998), and since the mid-1990s GPS with RAIM has been used as a navigation tool in safety-critical civil aviation applications (RTCA Special Committee 159 1991). With the modernization of GPS and the full deployment of new Global Navigation Satellite System (GNSS) constellations including the European Galileo, the Russian Global Orbiting Navigation Satellite System (GLONASS) and the Chinese BeiDou, an increased number of GNSS measurements are expected to be available. Such revolutionary improvements in the satellite constellations have recently drawn strong interest to expand the use of RAIM to more stringent phases of aircraft navigation requiring vertical guidance [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF].

With this goal, the GPS Evolutionary Architecture Study (GEAS) outlined a new dual-frequency multi-constellation Advanced RAIM (ARAIM) concept and a corresponding user algorithm (FAA 2010;Blanch et al. 2007, Lee and[START_REF] Lee | Feasibility Analysis of RAIM to Provide LPV-200 Approaches with Future GPS[END_REF]. Since the GEAS phase II report, there has been a substantial effort on development of a refined reference airborne algorithm, including fault detection and exclusion (FDE) methods, and potential ARAIM architectures in the Working Group C (WG-C) ARAIM Technical subgroup under the EU and U.S. Agreement on GPS-Galileo Cooperation [START_REF]ARAIM Technical Subgroup Milestone 3 Report[END_REF]. Two types of ARAIM service, Horizontal ARAIM (H-ARAIM) and Vertical ARAIM (V-ARAIM), were proposed.

It has been concluded that the ARAIM service should be implemented progressively starting with the horizontal service H-ARAIM to support the near-term multi-constellation applications [START_REF]ARAIM Technical Subgroup Milestone 3 Report[END_REF]. Hence H-ARAIM is of primary interest to this work. The goal of H-ARAIM service is to assure navigation integrity for Required Navigation Performance (RNP) 0.1NM, which corresponds to the most stringent navigation requirement for H-ARAIM operations. V-ARAIM, a target operational service for ARAIM, is intended for Localizer Performance with Vertical guidance which guides an aircraft to 200-feet decision height (LPV-200) [START_REF]ARAIM Technical Subgroup Milestone 3 Report[END_REF].

While many available measurements provide better accuracy and greater redundancy for integrity monitoring capability, the higher likelihood of satellite and constellation faults with newly deployed multi-constellations is likely to lead to a significant rise in ARAIM continuity risk. Therefore, [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF] considered the monitor false alarm (FA) as the loss of continuity (LOC) source and designed the fault detection (FD) algorithm accordingly.

Later works (Zhai et al. 2015(Zhai et al. , 2018;;[START_REF] Bang | ARAIM Test Statistic Correlation[END_REF]) further investigated the impact of exploiting a lot more measurements on overall ARAIM continuity and demonstrated the need of an exclusion function by identifying all the sources of LOC and establishing a method to quantify their contributions to the continuity risk. Zhai et al. (2015Zhai et al. ( , 2018) ) mainly examined the impact of the larger prior probabilities of GNSS faults and unscheduled satellite outages on the overall continuity risk. This is because the continuity risk due to monitor FA, one of the major causes of LOC, can be controlled by setting ARAIM FD threshold under each fault hypothesis such that the continuity and integrity requirement are both met [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF]Zhai et al. 2018).

The currently proposed ARAIM baseline algorithms [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF][START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF]) take a simple approach to modeling the expected FA rate. In the approach, the continuity budget for the FA event is evenly allocated between monitor statistics at each epoch, neglecting test statistic correlation. Thus, during the ARAIM development, it is crucial to predict and review the monitor performance with respect to integrity in the worst case, i.e., specific risk and continuity in an average risk sense (Zhai et al. 2015). [START_REF] Pervan | Test Statistic Auto-and Cross-correlation Effects on Monitor False Alert and Missed Detection Probabilities[END_REF], in the scope of the Ground Based Augmentation System (GBAS), addressed the autocorrelation of test statistics over time and the cross-correlation between monitors of different forms for the detection of the ionosphere. These results showed that higher FA rates could occur than predicted by the simplest partition of continuity risk between subsequent independent intervals by accounting for temporal correlation. However, to the authors' knowledge, no earlier work on the influence of the relationship amongst monitor statistics on the system performance have been carried out from the viewpoint of ARAIM. Therefore, we investigate the correlation between ARAIM test statistics. If the performance based on the cross-correlation assumption significantly exceeds its requirement, the resulting performance could be then used as a baseline to design more efficiently monitor thresholds to garner better real-time performance.

Otherwise, there would be no need to modify the current ARAIM implementations due to the correlation.

We thus evaluate the false alarm probability ( ) of ARAIM monitoring by taking account of the cross-correlation between FD test statistics. We examine the single satellite fault, double and triple satellite faults, in which a better result is expected for the latter whereby the continuity budget is allocated to a large number of statistics thus increasing the thresholds. For this purpose, we first characterize the cross-correlation between solution separation test statistics for possible fault hypotheses at each satellite geometry. Since the tests are not entirely orthogonal in the parity domain [START_REF] Sturza | Navigation System Integrity Monitoring Using Redundant Measurements[END_REF], it is not easy to directly evaluate a Gaussian multivariate distribution with a singular covariance structure between the correlated tests.

Hence, we need to recognize independent tests to take credit for those test results efficiently.

We identify a more straightforward multivariate normal distribution with reduced size full rank covariance matrix between the orthogonal tests than for the full ensemble of tests. Next, we numerically determine the based on the reduced multivariable Gaussian distribution and compare it with the predefined requirement [START_REF]ARAIM Technical Subgroup Milestone 3 Report[END_REF]. By doing this, we can reduce the complexity of the computation of average continuity risk whilst more appropriately matching the real performance. The mechanisms here require substantial numerical computation load and are not intended for real-time implementation. However, continuity may be assessed offline in an average sense. Therefore, the results could still be employed to modify the continuity allocation to real-time detection thresholds, if necessary. In comparison to results shown in [START_REF] Bang | Sample Temporal Correlation Effect on PHMI[END_REF] and [START_REF] Pervan | Test Statistic Auto-and Cross-correlation Effects on Monitor False Alert and Missed Detection Probabilities[END_REF], it is evident that cross-correlation and temporal correlations have opposing effects. A lower FA rate can be achieved than the predefined requirement by considering the cross-correlation between test statistics. Thus, we examine how much continuity margin can be achieved by considering the cross-correlations between ARAIM monitor test statistics.

The next section introduces the overall ARAIM continuity risk concept proposed in the literature to clarify the continuity risk requirement for ARAIM operations and underlying assumptions used. In the following sections, the least-squares estimation of states of interest and the current ARAIM FD algorithm are reviewed to define the ARAIM solution separation detection test. A methodology we applied for the evaluation of the of ARAIM FD test is detailed next. With the method fully described, example assessments are carried out using simplified cases and the methodology. The parity-space representation [START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF] for the ARAIM FD is also employed to understand the proposed method better. We then present the resulting false alarm performance given simulation conditions, including different combinations of satellite faults, discuss the effect of the test correlation on the continuity performance, and concludes with remarks on future work.

Continuity risk allocation for ARAIM monitor false alarm

This section outlines the continuity risk allocation to ARAIM FA event, which involves the quantification of the impact of GNSS fault on the overall continuity risk for ARAIM. The continuity requirement for ARAIM operation is first described, and an example continuity allocation for this study is then explained. Next, a bound on the is defined. The assumption and the bound in this section will be used in the remainder of the paper. per hour, which accounts for a case of high air traffic density and airspace complexity, as the total continuity risk requirement for H-ARAIM performance simulation. Those works also identified four different source events which lead to unscheduled mission interruptions (i.e., LOC), and comprehensively assessed the average risk of LOC ( ) by quantifying the impact of each event on under several assumptions. We stay consistent with the previously proposed allocation of the continuity risk requirement and categorization of those causes of LOC, which includes monitor FA event, FD and unscheduled satellite outages (Zhai et al.

2016).

Unlike the previous studies, the present work aims to analyze the impact of crosscorrelation between ARAIM monitors on the monitor false alarm rate and examine the gap between the requirement and the actual . Therefore, this work first divides into two main groups: LOC due to false alarm (i.e., ) and all other contributions ( ), as shown in

(1)

More details on other contributions except for those to can be found in Zhai et al. (2016Zhai et al. ( , 2018)).

Next, we will assume that the contribution of the navigation interruptions due to other events on is negligible, i.e., 0, and we thus consider the FA event as the cause of LOC. Note that this assumption is certainly not realistic because of the impact of FD on could be significant (Zhai et al. 2016(Zhai et al. , 2018)). However, we apply the upper bound of 10 -6 to as an example allocation.

In the current multiple-hypothesis based ARAIM FD mechanism [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF][START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF]), all possible fault hypotheses are investigated to identify and remove a potential satellite fault mode. Therefore, is defined as:

| | ⋃| | ⋃ ⋅⋅⋅ ⋃| | ⋅⋅⋅ ⋃| | | (2)
where is the index denoting a set of mutually exclusive and collectively exhaustive hypotheses and h is the number of the hypotheses (i.e., 0,1, ⋯ , ). represents the fault-free hypothesis and the remaining hypotheses, , for 1, ⋯ , include single satellite fault modes and multiple satellite fault modes. is a prior-probability of the fault-free condition and is set as one. is the FD test statistic under and is the corresponding detection threshold. If any of the test statistics exceed the given threshold, an alarm will be triggered.

The continuity risk requirement for the FA event is then allocated to each of the tests to determine the corresponding test threshold in a conservative way, which will be detailed in the next section.

ARAIM Solution separation threshold test

This section briefly addresses current ARAIM FD method based on the solution separation threshold test [START_REF]ARAIM Technical Subgroup Milestone 3 Report[END_REF][START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF] to determine the . Although ARAIM FDE algorithms have been proposed in the literature [START_REF] Blanch | Exclusion for Advanced RAIM: Requirements and a Baseline Algorithm[END_REF][START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF][START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF][START_REF] Milner | Methods of Integrity Risk Computation for ARAIM FDE[END_REF], the fault exclusion is not covered here. Notations in this section are used in the remainder to describe the evaluation methodology.

Let us assume that we have h different fault hypotheses. For each hypothesis from 1 to h, the solution separation, ∆ , is defined as the difference between the subset solution, , and the all-in-view solution, :

∆ for 1,2, ⋯ , (3) 
where is a measurement vector and indicates the subset solution which is obtained using all satellites except the faulty satellites under the hypothesis, , and designates the full-set estimate based on all-in-view satellites. The matrix is a projection matrix from the measurement domain to the position domain and for each hypothesis is computed by setting the weight of faulty measurements under as zero in the weighted least-squares estimation [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF]. Next, let the index be the index used to represent a state of interest, e.g., the horizontal position coordinate for H-ARAIM. The standard deviation of the solution separation, ∆ , , for the k-th state is then computed:

∆ , (4) 
where is a unit vector whose k-th component is '1' and all other entries are '0' and is the covariance matrix of the measurement vector . More details on the determination of the matrices above and the weighted least-squares method can be found in [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF].

The FD threshold for fault mode and state index is then defined by

∆ , , ∆ , (5) 
The factor , is determined as follows:

, , , ( 6 ) 
• denotes the inverse tail probability distribution of the unit normal distribution and , , is the continuity requirement for the k-th state, and it is evenly allocated into fault hypotheses. All the test statistics in (3) are evaluated and then compared to corresponding thresholds for all hypotheses. If any of the statistics exceed the associated threshold, the fault that makes the test fail is detected. In other words, the fault is detected if the condition in holds:

∆ , , ,
∆ , for any , and 1,2, ⋯ ,

Note that we use the solution separation test statistic, but other, loosely equivalent metrics would produce similar results if not exactly equivalent results [START_REF] Kelly | The Linear Model, RNP, and the Near-Optimum Fault Detection and Exclusion Algorithms[END_REF]Young and McGraw 2003). Based on the FD method explained above, the next section gives some descriptions of of the ARAIM solution separation test.

Methodology

This section outlines a methodology for the evaluation, which is in line with the solution separation threshold test. The is briefly reviewed, followed by a description of crosscorrelation across ARAIM test statistics. Next, the evaluation method for ARAIM solution separation monitor is explained.

Cross correlation across test statistics

Let us assume we have h fault hypotheses at a specific satellite geometry. Also, we consider only a single state, , to describe the method instead of the full state vector, , defined in the previous section. Thus, the state index in ( 4) is no longer used in this section. The in (2) can then be given as the following joint probability:

|∆ | ∆ ⋃|∆ | ∆ ⋃ ⋅⋅⋅ ⋃|∆ | ∆ | (8) 
Equation ( 8) can be expressed as:

1 |∆ | ∆ ∩ |∆ | ∆ ∩⋅⋅⋅∩ |∆ | ∆ | 9 1 P ∆ ∆ ∆ |
The multivariate Gaussian distribution needs to be evaluated over constraints based on solution separation thresholds (see ( 5)) to calculate the . The last joint probability in ( 9) can be rewritten as:

P ∆ ∆ ∆ | 10 2 / | | ⋯ ∆ ∆ exp 1 2 ∆ ⋯ ∆ ∆ ∆
where ∆ , ∆ , ⋯ , ∆ follows a h-variate normal distribution with zero mean and covariance , i.e., ~ , . For the evaluation of the probability, we first define the covariance matrix amongst solution separations, , in (10):

∆ ∆ , 1,2, ⋯ , ( 1 1 ) 
where and are respectively defined in (3) and (4). Let us consider two constellations, e.g., GPS and Galileo. Since the number of states in our least-squares estimation is five, i.e., three position coordinates and two clock biases for the two constellations, the covariance matrix is at most of rank h-5., which means we will only be able to extract h-5 orthogonal tests.

Therefore, the covariance matrix, , will be singular in our problem. In order to handle the singular covariance matrix, we propose a computation method which fits such singular multivariate distribution to assess rigorously the .

Evaluation of false alarm probability

As discussed in the previous section, our test statistic domain has at most h-5 dimensions. Thus, for a given covariance matrix based on test statistics, rank ( ) = r < h and its inverse does not exist, (9) would not therefore be well-defined. In addition, the integral for the multivariate Gaussian distribution has no general analytical solution, so it must be evaluated numerically.

Thus, a transformation which is expressed as an h by r matrix, Q, was identified to define a change of variable , , ⋯ , using a method described by [START_REF] Genz | Numerical Evaluation of Singular Multivariate Normal Distribution[END_REF] so that the evaluation of the inverse of the covariance matrix is not required to integrate the distribution after the transformation. The transformation matrix can be obtained by the generalized Cholesky factorization [START_REF] Healy | Algorithm AS 6: Triangular Decomposition of a Symmetric Matrix[END_REF]; Gene and Charles 2013) such that even the singular covariance matrix can be factored as , where is a lower triangular and has some zero entries on the main diagonal. After performing the change of variable, ∆ , the probability in ( 10) can be reduced in the following form:

2 | | ⋯ ∆ ∆ exp 1 2 ∆ ⋯ ∆ ∆ ∆ 12 2 / exp 1 2
where ∆ , ∆ , ⋯ , ∆ and the integration region is still defined by h inequality constraints, . However, the matrix has the lower triangular form where entries 0 for all and the constraints on , , ⋯ , , thus, could contain multiple conditions for each y for 1,2, ⋯ , .

The set of h constraints on can be reorganized by simple algebraic manipulations to generate a single constraint on each y for 1,2, ⋯ , (see Appendix). Thus, a resulting integration with fewer dimension r (i.e., < h) can be reformulated as:

2 exp 1 2 13 2 / exp 2 exp 2 ⋯ exp 2 , ,⋯, , ,⋯,
where and are lower and upper bounds for the transformed , respectively. Also, the lower and upper bounds for i-th integration, for 2, ⋯ , r, are respectively defined as a function of different variables from the i-th variable, y , that is, , , ⋯ , . More details on the development of the integration form and the reorganization of the constraints are described in the Appendix.

Both the integrands within the multiple integrations and the integration bounds can be simplified by exploiting a couple of simple algebraic transformations, such that ( 13) is suitable for standard numerical integration methods. After the conversion, the final form of ( 13) can be reduced:

⋯ , ⋯ , , ⋯ , 14 
and PFA can be calculated as follows:

1 ⋯ , ⋯ , , ⋯ , 15 
Here the new vector u and the corresponding upper ( ) and lower ( ) limits can be expressed as a function of y. More details on the transformations and the relationship between u and y are described in the Appendix. The evaluation of the multiple integrations includes numerical calculations based on the Monte Carlo method, and the results of the numerical computation will be given in the next section.

Simulation results

To examine the actual redefined in the previous section, we conduct simulations based on the proposed method. 

Canonical examples

Three one-dimensional canonical examples were first tested to demonstrate the validity of the evaluation method for the . In these cases, a single scalar state, x, and simple measurement models in Table 2 are assumed. The first example considers two satellites from a single constellation and two single fault modes corresponding to each measurement. As the next steps, two additional 1-D cases were examined: one with three 1-D measurements and three single fault modes and the other one with four measurements and four single failures. Also, unit variances for all measurement noises are assumed. 

( , ) 1 1,1 0, 10 -1 2 1,1,1 0, 10 -1 3 1,1,1,1 0, 10 -1
As mentioned earlier, the numerical integration for the probability computation was performed using the Monte Carlo method. For three canonical examples, Monte Carlo iterations of 10 4 were tried to evaluate the probability. Since the likelihood could be differently assessed every trial due to the numerical integration error, the probability calculation is conducted 150 times for each case. Also, the median value of the resulting probabilities is taken to obtain a robust estimate against outliers due to the numerical approach. More discussions on the uncertainty of the numerical approach will be given in the next section. Table 3 shows results obtained by applying geometries and measurement models in Table 2. As seen in Table 3, the obtained by accounting for correlation between tests is decreased (i.e., by 50% compared to the requirement of 10 -1 ) in the first case. In this case, as the rank of the observation matrix is one, with two perfectly correlated tests, such improvement can be expected. Since the number of independent tests is less than the number of the full combination of tests, the actual tends to be less than a given requirement. Like the first example, the number of independent tests in the second case can be expected to be two i.e., the number of measurements minus the number of states of interest. Despite the rank of two, the computed probability of approximately 0.084 is different from the simple guess which is twothirds of the total budget of 10 -1 (i.e., about 0.067). The gap between the expected probability and the computed one can be explained by showing the integration region after the transformation over which the is computed. In particular, the new random vector, , after the transformation has the covariance matrix, , as mentioned in the previous section. Also, the parity vector [START_REF] Sturza | Navigation System Integrity Monitoring Using Redundant Measurements[END_REF]Jeorger et al. 2014) associated with the second example has the same covariance matrix, hence the integration region after the transformation can be expressed in the parity domain.

Let us assume we have measurements and states to be estimated. The dimensional parity vector, , is defined by the transformation from the measurement space to the parity space as expressed in ( 16)

The parity matrix whose row vectors are the orthonormal basis for the parity space, or left null space of , is defined such that and 17

Since the parity vector provides direct observation of the impact of the measurement fault [START_REF] Sturza | Navigation System Integrity Monitoring Using Redundant Measurements[END_REF], we employ the parity space representation in this section to visualize the fault detection mechanism. For the configuration of the second example, we have 3 and 1 those two inequalities have the form:

, , and 
, , (19) 
As for the lower triangular form of the resulting matrix, , in (18), more details can be found in the Appendix. Figure 2 shows bounds in ( 19) in the parity space. In Figure 2, light blue and yellow lines respectively indicate boundaries from the first and the second inequalities defining y in ( 19) given the limits for y in ( 18). A single constraint on y can be determined by identifying the intersection of two regions surrounded by those boundaries. As a result, detection boundaries based on y and y form the blue dotted hexagon in the space that is the same detection region defined by the parity vector (see Figure 1). Since the is the probability that the vector lies outside the hexagon area, the evaluation using the proposed method should be equivalent to that based on the joint probability density of the parity vector.

For better understanding, we compare the pure guess based on the matrix rank and the actual calculation in Figure 3. In the figure, the red square based on the simple rank of two,
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Constraints 2 for Y 2 Intersection the guess, leads to a smaller probability (i.e., two-thirds of P , =10 -1 ) than the computed one in Table 3. However, in reality, the computed probability which accounts for the more complex boundaries, in three directions instead of two, lies between the full allocation (i.e., 10 - 1 ) and the simple guess, as shown in Table 3. Also, since areas of the hexagon and the square are determined by the normalized detection thresholds for the given requirement (i.e., factor in ( 6)), it can be proven easily by the simple geometry that the area of the square is greater than that of the hexagon when those polygons have the same width. We also investigated another example by adding a satellite in the same direction. In the third case, the vector has the covariance matrix, , and the corresponding parity space is three-dimensional. Relevant lower and upper bounds after the transformation are shown in
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In this case, we have four constraints on the vector y , y , y , and L and U respectively Preliminary assessment of for solution separation ARAIM

We have examined some simple examples to evaluate the . In this section, to further extend the understanding of the impact of the correlation across ARAIM test statistics on the false alarm performance, four simulations were conducted assuming different fault modes: single and double satellite failures, a combination of a single and double satellite faults and triple faults. Underlying vital assumptions and parameters specified in WG-C ( 2016) are used to perform the simulations. The dual-frequency 24 GPS/Galileo baseline constellation with formal parameters (WG-C 2016) is used and the results were assessed for H-ARAIM operation. The false alarm requirement is set to be 10 -6 , and 10 8 Monte Carlo trials are carried out to estimate the at each user location and each satellite geometry. Table 4 shows some key simulation parameters. 

Simulation Time

Step 10 mins Simulation Duration 48 hours Figure 5 shows an example time series of the obtained at a specific user location for over 48 hours with 10 mins time interval. 10 MC trials were performed independently every 10 mins, i.e., at each point in the figure, to assess the likelihood. Due to the convergence performance of the numerical integration using Monte Carlo method, outliers beyond the given requirement of 10 -6 are inevitably involved (approximately 3% of cases over the duration in the example). If the average risk of false alarm over the given time interval is taken, the risk estimate could be biased to some extent due to such outliers. So, this investigation takes the median of probabilities over the given period such that the probability estimation can be robust against outliers from the numerical integration. The first case assesses the of ARAIM integrity monitoring when only a single satellite failure is assumed. A simulation of a two day period is considered to account for the underlying computational uncertainty in the numerical method as well as various geometry conditions. In the simulation, the is estimated at each grid location and epoch. As described above, substantial outliers were observed due to the Monte Carlo method based computational error in all simulations performed. Hence, we take the median of the likelihood estimated over the simulation period (i.e., 48 hours) to obtain the robust measurement against possible outliers.

Figure 6 shows the median of the obtained by applying a single satellite fault to the ARAIM fault monitoring algorithm. The maximum improvement is about 1% compared to the requirement of 10 -6 (i.e., the minimum value is about 9 x 10 -7 ). Such improvement can be achieved in most regions, and it mainly comes from the valid number of orthogonal statistics in the transformed domain which are less than the number of the full ensemble of the statistics by at least five (i.e., the number of estimated states). As in the previous simulation in Figure 6, the same risk evaluation method and simulation parameters are used. Figure 7 shows the result when double satellite faults are applied to the ARAIM fault monitoring algorithm and the median is decreased down to approximately 76% of the requirement of 10 -6 . As discussed in the single failure case, the predetermined continuity risk is allocated to more tests to determine the corresponding detection thresholds.

is more dominant compared to the decrease in the effective amount of independent monitor statistics.

Since the actual tends to be less than the expected one, one can expect the implementation of a lower threshold to reduce the magnitude of HPL or VPL and therefore increase the fraction of the total time that the user's PL is less than a given alert limit. However, the impact of the reduced actual false alarm rate could be more complicated than such an argument would propose since the protection level is not a simple linear function of the detection threshold. The VPL equation employed in the baseline ARAIM user algorithm [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF] is as follows.

, /

, 21

Here • is the tail probability of a zero-mean unit normal distribution, , , and are respectively the prior probability, detection threshold, and the magnitude of nominal bias for the k-th fault mode. The right hand side of the equation is a function of risk requirements: and are integrity risk requirements allocated to vertical and horizontal coordinate, respectively, and _ is the allocation for fault modes that don't need to be monitored because their prior probabilities are too low compared to the risk requirement [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF]. If we have a lower threshold here, the magnitude of VPL should get lower accordingly, such that the VPL equation holds for given integrity risk requirements.

In order to specify a change in VPL due to a change in the detection threshold, Table 2 shows two example calculations. The first column indicates the number of fault modes. With 24 GPS and 24 Galileo constellation, we observed approximately 10 to 15 fault modes on average in our simulations. Let us assume we set a lower threshold to take advantage of the margin in , i.e., half of 10 as shown in our findings. The second and third columns compare the in (6) for 10 to that for 0.5 * 10 . In these examples, the difference in is barely about 0.12, and such a difference would not be that significant in the computation of VPL in (21). Thus, although the minimum of median PFA is decreased up to approximately 50% of the requirement of 10 -6 , such improvement would not dramatically affect the magnitude of the protection level. The impact of the correlation between the solution separation monitors on the ARAIM false alarm rate is shown in this study. Also, it is demonstrated that the previously proposed assumption for the ARAIM continuity risk could not be over-conservative. However, the minimum , which is around half of the requirement might have been observed merely due to chance, because all possible multiple fault modes were not investigated in this investigation. Thus, more different types of satellite failures, including constellation faults, need to be examined.

Conclusion

We conducted a preliminary assessment of the ARAIM false alarm risk by presenting a methodology to evaluate the actual risk based on the test correlation and applying the same ARAIM FD algorithm [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF][START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF] to the risk evaluation.

Using the proposed method and the baseline conditions, we have demonstrated how the crosscorrelation amongst ARAIM test statistics affects the false alarm performance of ARAIM based integrity monitoring. We found that the maximum margin of approximately 30% of the predefined false alarm risk (e.g., 10 ) was observed for the single plus double faults, and the maximum improvement of about 50% was achieved for the triple fault when the crosscorrelation is accounted for. However, despite the approximately half as much improvement in the risk probability under the triple case, regarding the reduction of the magnitude of the horizontal or vertical protection level, the factor of two would not be substantial. Therefore, it was shown that the exact determination does not bring much benefit. This, as a result, is conclusive in verifying that the existing ARAIM implementation, such as the baseline FD algorithm and the continuity allocation (WG-C 2016; [START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF] appears to be not far from being optimal. Also, it is worth noting that the impact of the cross-correlation on the ARAIM false alarm risk might be more significant for multiple fault conditions such as constellation wide failure, but the marginal improvements in the protection bound imply no need of further investigation across a wide range of faults to achieve better performance. This understanding of the predicted system performance assessed from applying predefined design parameters and algorithms could be employed as a feasibility study especially during the initial phase of the ARAIM development and standardization (WG-C 2016) when the system design and the corresponding algorithm development will be carried out.

Most notably, this is the first work to the author's knowledge to investigate the crosscorrelation effect of the ARAIM solution separation test on the actual ARAIM false alarm rate.

Our results provide compelling evidence for the current continuity allocation and the ARAIM FD mechanism with a high level of accuracy and suggest that the current analysis seems to be more or less complete. However, it was found that the cross-correlation and temporal correlation of monitor statistics have opposing effects, as described in the previous related work [START_REF] Pervan | Test Statistic Auto-and Cross-correlation Effects on Monitor False Alert and Missed Detection Probabilities[END_REF]. Continuing research, therefore, will include the follow-up work designed the subscription for 1, ⋯ , denotes the number of inequalities in each group of (i.e.,

∑

). Only , , ⋯ , variables have constraints whilst the remaining hr variables , , ⋯ , are not constrained, so integrations in (12) which are related to those unconstrained variables should be all equal to 1 and those terms thus are not included in the equation. Therefore, the integration is reduced to r dimensional one in (13).

Next, normalization can be performed such that the matrix has the form in (22) where entries corresponding to each group of (e.g., , , ⋯ , , for in the light blue colored box in Figure 10) are all ones and * could be a zero or nonzero component. In the process, if an inequality needs to be divided by a negative number, the order of the inequality must be changed so that after division by a negative number, a scaled lower limit becomes an upper limit, and a scaled upper limit becomes a lower limit.

1 , 0 0 ⋯ ⋯ 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 , 0 0 ⋯ ⋯ 0 ⋯ 0 * 1 , 0 ⋯ ⋯ 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ * 1 , 0 ⋯ ⋯ 0 ⋯ 0 ⋮ ⋱ ⋱ ⋱ ⋱ 0 ⋯ 0 * * ⋯ * 1 , 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ * * ⋯ * 1 , 0 ⋯ 0

22

L and U designate the new limit vectors after permutations, normalizations, and interchanges of the original limit vectors -T and T (see ( 13)), such that the new set of constraints for the integration region takes the following form:

, ,⋯,

23

We can now produce explicit expressions for the limits of the continuous integration variables.

For instance, let ∑ , then the revised limits for in (23) can be determined by constraints for as shown in ( 24) and (25). Here is the index for the row of the matrix .

, , ⋯ , min ,

25

By applying these bounds, the resulting expression of the integration in ( 12) becomes the expression in (13).

Second, the form of integration in ( 13) is further simplified using the transformation in ( 26), such that standard numerical integration methods are easily applied to the evaluation of the probability. , ⋯ , , ⋯ , 28

, ⋯ , , ⋯ , 29

Lastly, let us put for 1, ⋯ , so that integration limits all have an interval 0,1 . From , equation ( 27) can be expressed in the form of (14) in the previous section:

  First, some simple examples, which are called 'canonical example'(Eugene et al. 2018;[START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF] are addressed, showing how the proposed method works. Second, an analysis based on a combination of GPS and Galileo constellation is carried out using the proposed method. The baseline simulation conditions which are specified in some earlier works[START_REF]ARAIM Technical Subgroup Milestone 3 Report[END_REF][START_REF] Blanch | Baseline Advanced RAIM User Algorithm and Possible Improvements[END_REF] are applied to the analysis, and those conditions will also be shown in the following sections.

Fig. 2

 2 Fig. 2 Detection boundaries (yellow and light blue parallelograms) defined by two constraints on the new random variable (y ) after the transformation in the parity space. A single constraint on y , the intersection of two regions, is the same as the detection bounds based on the parity vector (dotted blue hexagon)

Fig. 3

 3 Fig. 3 Comparison of detection bounds by two independent tests, initial guess (red square), and that based on the transformation (blue dotted hexagon)

Fig. 5

 5 Fig. 5 Time series of the evaluated at a specific location over 48 hours. Outliers beyond the requirement (10 -6 ) within the circular dotted line

Fig. 6

 6 Fig. 6 Median obtained by considering single satellite failures and correlated ARAIM monitor test statistics.

Fig. 7

 7 Fig. 7 Median of the of ARAIM fault monitoring when cross-correlations amongst test statistics are considered. Double satellite failures are applied to ARAIM FD algorithm

Fig. 9

 9 Fig. 9 Median of of ARAIM solution separation test when triple satellite faults are applied to the fault detection

•

  designates the Gaussian cumulative distribution function (CDF). By definition, ϕ where ϕ indicates the Gaussian probability density function (PDF) and (for , and are derived based on (26).

  

Table 1

 1 

	lists integrity and continuity requirements (ICAO 2014) for different types
	of operations, which ARAIM is intended to support: RNP 0.1 and LPV-200. These are expected
	to be the most stringent level of navigation service that H-and V-ARAIM respectively target
	(WG-C 2016). Horizontal operations have more straightforward requirements and can be
	supported with today's RAIM; hence the first form of ARAIM implementation, which is a

airspace around an airport and the availability of alternative navigation aids. Recent works

(Zhai et al. 2016(Zhai et al. , 2018) ) 

on ARAIM continuity risk evaluation set the intermediate value of 10 -6

Table 2

 2 Measurement models for three canonical examples and the continuity budget

	Measurement model	Case	( Observation matrix	( Measurement noise	Continuity budget

Table 3

 3 Simple single constellation based canonical example

	Case	Fault mode	(median)
	1	Single satellite fault	0.0500
	2	Single satellite fault	0.0842
	3	Single satellite fault	0.0890

Table 2

 2 Comparison of Kfa (Pfa=10 -6 ) and Kfa (Pfa=0.5 10 -6 )

	No. of	P FA,REQ in (6)		∆
	fault modes (h)	10	0.5 10	
	10	K fa =5.3267	=5.4513	0.1246
	15	=5.3999	=5.5230	0.1231
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and thus two-dimensional parity space, as shown in Figure 1. Black lines are three fault mode lines on which the mean parity vector exists as the magnitude of the fault (Jeorger et al. 2014) and blue lines correspond to the normalized solution separation detection thresholds, represented as T, for their corresponding fault modes. Those normalized detection thresholds are expressed as ∆ / ∆ , for 1,2,3 instead of those in (5). More details on the parity vector and the corresponding parity space can be found in earlier works [START_REF] Sturza | Navigation System Integrity Monitoring Using Redundant Measurements[END_REF]Jeorger et al. 2014). If we consider the even continuity allocation, the detection boundaries are a hexagon, as shown in the figure, and no detection region is defined as the inner part of the hexagon (Jeorger et al. 2014).

Fig. 1 Fault detection boundaries for the solution separations in the parity space Next, to show how the detection boundaries for the random vector form during the transformation, we first consider the lower and the upper bounds in (13) for the canonical example as follows:

where two constraints on y and associated lower bounds (i.e., L 2 and L 3 ) and upper bounds (i.e., U 2 and U 3 ) are functions of y and represent lines in the parity space. More specifically, indicate the corresponding lower and upper bounds obtained by the transformation. Like the second case, the upper and lower bounds on y are all functions of y , and those bounds form lines in the three-dimensional parity space. Also, bounds on y are identified by both y and y , and thus those bounds become surfaces in the parity space. The no-detection region, which is defined by the combination of the given constraints, is shown in Figure 4. and the corresponding thresholds in the parity space [START_REF] Joerger | Fault Detection and Exclusion Using Solution Separation and Chi-Squared ARAIM[END_REF]. Like the previous two-dimensional parity space case, a higher probability (see Table 3) was observed than the initial guess (i.e., three-fourths of the requirement) where the detection boundaries look like a cube in the parity space. For the sake of simplicity, the cube is not represented in Figure 4.

Thus, greater monitor thresholds are generated compared to the single fault case, resulting in improvement of the performance. However, the estimated probability is still quite close to the expected performance of 10 -6 .

Next, the increased number of fault modes is considered in the FD test by applying both a single satellite fault and double failures in the same way as the previous simulations in Figures 6 and7. Figure 8 represents the median value of when more fault modes are assumed. Since the greater number of fault hypotheses lead to reduced continuity risk allocation for each test, the minimum median value for the combined fault mode drops down to approximately 7 x 10 -7, which is about 8% improvement compared to that for the double fault case shown in Figure 7. 

Appendix

This section gives some elements for the development of ( 13) and ( 15). The derivation of the equations is based on the method in [START_REF] Genz | Numerical Evaluation of Singular Multivariate Normal Distribution[END_REF]. First, the reduction of the integration dimension is discussed. In ( 12), the integration region is represented as , , ⋯ , , and the matrix has the lower triangular form whose elements 0 for all . Here let us assume that a rearrangement of the inequalities has been completed such that the matrix has the following form: