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Abstract 

The requirement for ARAIM continuity risk due to the monitor false alarm has been outlined 

in earlier works for ARAIM development (WG-C 2016). However, the expected continuity risk 

comes from an underlying conservative assumption that the correlation between multiple 

monitors for fault detection is negligible. Thus, we investigate the effect of the cross-correlation 

across ARAIM solution separation tests on the monitor false alarm probability ( ிܲ஺ሻ by 

presenting a higher fidelity methodology to evaluate the ிܲ஺ based on highly correlated fault 

detection tests. We carry out a preliminary assessment of ARAIM false alarm performance by 

using the proposed method. It was found that considering the cross-correlation amongst 

monitor test statistics reduces the predicted ிܲ஺ by up to approximately 50% of the predefined 

requirement (e.g., 10ି଺) when triple satellite faults were considered. Despite such 

improvement, the baseline ARAIM implementation does not appear to be overly conservative. 

 

Introduction 

Single-frequency receiver autonomous integrity monitoring (RAIM) has been designed to 

mitigate Global Positioning System (GPS) integrity threats due to measurement faults (Lee 

1986; Parkinson and Axelard 1998), and since the mid-1990s GPS with RAIM has been used 

as a navigation tool in safety-critical civil aviation applications (RTCA Special Committee 159 

1991). With the modernization of GPS and the full deployment of new Global Navigation 

Satellite System (GNSS) constellations including the European Galileo, the Russian Global 

Orbiting Navigation Satellite System (GLONASS) and the Chinese BeiDou, an increased 

number of GNSS measurements are expected to be available. Such revolutionary 

improvements in the satellite constellations have recently drawn strong interest to expand the 
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use of RAIM to more stringent phases of aircraft navigation requiring vertical guidance (Blanch 

et al. 2015). 

 With this goal, the GPS Evolutionary Architecture Study (GEAS) outlined a new 

dual-frequency multi-constellation Advanced RAIM (ARAIM) concept and a corresponding 

user algorithm (FAA 2010; Blanch et al. 2007, Lee and McLaughlin 2007). Since the GEAS 

phase II report, there has been a substantial effort on development of a refined reference 

airborne algorithm, including fault detection and exclusion (FDE) methods, and potential 

ARAIM architectures in the Working Group C (WG-C) ARAIM Technical subgroup under the 

EU and U.S. Agreement on GPS-Galileo Cooperation (WG-C 2016). Two types of ARAIM 

service, Horizontal ARAIM (H-ARAIM) and Vertical ARAIM (V-ARAIM), were proposed. 

It has been concluded that the ARAIM service should be implemented progressively starting 

with the horizontal service H-ARAIM to support the near-term multi-constellation applications 

(WG-C 2016). Hence H-ARAIM is of primary interest to this work. The goal of H-ARAIM 

service is to assure navigation integrity for Required Navigation Performance (RNP) 0.1NM, 

which corresponds to the most stringent navigation requirement for H-ARAIM operations. V-

ARAIM, a target operational service for ARAIM, is intended for Localizer Performance with 

Vertical guidance which guides an aircraft to 200-feet decision height (LPV-200) (WG-C 

2016). 

 While many available measurements provide better accuracy and greater redundancy 

for integrity monitoring capability, the higher likelihood of satellite and constellation faults 

with newly deployed multi-constellations is likely to lead to a significant rise in ARAIM 

continuity risk. Therefore, Blanch et al. (2015) considered the monitor false alarm (FA) as the 

loss of continuity (LOC) source and designed the fault detection (FD) algorithm accordingly. 

Later works (Zhai et al. 2015, 2018; Bang et al. 2018) further investigated the impact of 

exploiting a lot more measurements on overall ARAIM continuity and demonstrated the need 

of an exclusion function by identifying all the sources of LOC and establishing a method to 

quantify their contributions to the continuity risk. Zhai et al. (2015, 2018) mainly examined the 

impact of the larger prior probabilities of GNSS faults and unscheduled satellite outages on the 

overall continuity risk. This is because the continuity risk due to monitor FA, one of the major 

causes of LOC, can be controlled by setting ARAIM FD threshold under each fault hypothesis 

such that the continuity and integrity requirement are both met (Blanch et al. 2015; Zhai et al. 

2018). 
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 The currently proposed ARAIM baseline algorithms (Blanch et al. 2015; Joerger et 

al. 2016) take a simple approach to modeling the expected FA rate. In the approach, the 

continuity budget for the FA event is evenly allocated between monitor statistics at each epoch, 

neglecting test statistic correlation. Thus, during the ARAIM development, it is crucial to 

predict and review the monitor performance with respect to integrity in the worst case, i.e., 

specific risk and continuity in an average risk sense (Zhai et al. 2015). Pervan et al. (2017), in 

the scope of the Ground Based Augmentation System (GBAS), addressed the autocorrelation 

of test statistics over time and the cross-correlation between monitors of different forms for the 

detection of the ionosphere. These results showed that higher FA rates could occur than 

predicted by the simplest partition of continuity risk between subsequent independent intervals 

by accounting for temporal correlation. However, to the authors’ knowledge, no earlier work 

on the influence of the relationship amongst monitor statistics on the system performance have 

been carried out from the viewpoint of ARAIM. Therefore, we investigate the correlation 

between ARAIM test statistics. If the performance based on the cross-correlation assumption 

significantly exceeds its requirement, the resulting performance could be then used as a 

baseline to design more efficiently monitor thresholds to garner better real-time performance. 

Otherwise, there would be no need to modify the current ARAIM implementations due to the 

correlation. 

 We thus evaluate the false alarm probability ( ிܲ஺) of ARAIM monitoring by taking 

account of the cross-correlation between FD test statistics. We examine the single satellite fault, 

double and triple satellite faults, in which a better result is expected for the latter whereby the 

continuity budget is allocated to a large number of statistics thus increasing the thresholds. For 

this purpose, we first characterize the cross-correlation between solution separation test 

statistics for possible fault hypotheses at each satellite geometry. Since the tests are not entirely 

orthogonal in the parity domain (Sturza 1988), it is not easy to directly evaluate a Gaussian 

multivariate distribution with a singular covariance structure between the correlated tests. 

Hence, we need to recognize independent tests to take credit for those test results efficiently. 

We identify a more straightforward multivariate normal distribution with reduced size full rank 

covariance matrix between the orthogonal tests than for the full ensemble of tests. Next, we 

numerically determine the ிܲ஺ based on the reduced multivariable Gaussian distribution and 

compare it with the predefined requirement (WG-C 2016). By doing this, we can reduce the 

complexity of the computation of average continuity risk whilst more appropriately matching 

the real performance. The mechanisms here require substantial numerical computation load 
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and are not intended for real-time implementation. However, continuity may be assessed offline 

in an average sense. Therefore, the results could still be employed to modify the continuity 

allocation to real-time detection thresholds, if necessary. In comparison to results shown in 

Bang et al. (2019) and Pervan et al. (2017), it is evident that cross-correlation and temporal 

correlations have opposing effects. A lower FA rate can be achieved than the predefined 

requirement by considering the cross-correlation between test statistics. Thus, we examine how 

much continuity margin can be achieved by considering the cross-correlations between 

ARAIM monitor test statistics. 

 The next section introduces the overall ARAIM continuity risk concept proposed in 

the literature to clarify the continuity risk requirement for ARAIM operations and underlying 

assumptions used. In the following sections, the least-squares estimation of states of interest 

and the current ARAIM FD algorithm are reviewed to define the ARAIM solution separation 

detection test. A methodology we applied for the evaluation of the ிܲ஺ of ARAIM FD test is 

detailed next. With the method fully described, example ிܲ஺ assessments are carried out using 

simplified cases and the methodology. The parity-space representation (Joerger and Pervan 

2016) for the ARAIM FD is also employed to understand the proposed method better. We then 

present the resulting false alarm performance given simulation conditions, including different 

combinations of satellite faults, discuss the effect of the test correlation on the continuity 

performance, and concludes with remarks on future work. 

 

Continuity risk allocation for ARAIM monitor false alarm 

This section outlines the continuity risk allocation to ARAIM FA event, which involves the 

quantification of the impact of GNSS fault on the overall continuity risk for ARAIM. The 

continuity requirement for ARAIM operation is first described, and an example continuity 

allocation for this study is then explained. Next, a bound on the ிܲ஺ is defined. The assumption 

and the bound in this section will be used in the remainder of the paper. 

 Table 1 lists integrity and continuity requirements (ICAO 2014) for different types 

of operations, which ARAIM is intended to support: RNP 0.1 and LPV-200. These are expected 

to be the most stringent level of navigation service that H- and V-ARAIM respectively target 

(WG-C 2016). Horizontal operations have more straightforward requirements and can be 

supported with today’s RAIM; hence the first form of ARAIM implementation, which is a 
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natural evolution of RAIM, will be H-ARAIM (WG-C 2016), and RNP 0.1 will be considered 

in this work. 

 

Table 1 Navigation Requirement for RNP 0.1 and LPV-200 

Type of Service Alert Limit 
Integrity risk 

requirement 

Continuity risk 

requirement 

RNP 0.1 185 m (HAL) 10-7 per hour 
10-4 per hour to 

10-8 per hour 

LPV-200 
40 m (HAL) / 

35 m (VAL) 
10-7 per approach 

10-4 per hour to 

10-8 per hour 

 

 According to International Civil Aviation Organization (ICAO) (ICAO 2014), the 

continuity of service of a system is defined as the capability of the system to perform its 

function without unscheduled interruptions during the intended operation and it should be 

understood in an average sense. ICAO (2014) specifies the requirement on an hourly basis in 

a certain range rather than a single value, as shown in Table 1. This is because the continuity 

requirement is dependent upon several factors, including the traffic density and complexity of 

airspace around an airport and the availability of alternative navigation aids. Recent works 

(Zhai et al. 2016, 2018) on ARAIM continuity risk evaluation set the intermediate value of 10-6 

per hour, which accounts for a case of high air traffic density and airspace complexity, as the 

total continuity risk requirement for H-ARAIM performance simulation. Those works also 

identified four different source events which lead to unscheduled mission interruptions (i.e., 

LOC), and comprehensively assessed the average risk of LOC ( ௅ܲை஼) by quantifying the impact 

of each event on ௅ܲை஼ under several assumptions. We stay consistent with the previously 

proposed allocation of the continuity risk requirement and categorization of those causes of 

LOC, which includes monitor FA event, FD and unscheduled satellite outages (Zhai et al. 

2016). 

 Unlike the previous studies, the present work aims to analyze the impact of cross-

correlation between ARAIM monitors on the monitor false alarm rate and examine the gap 

between the requirement and the actual ிܲ஺. Therefore, this work first divides ௅ܲை஼ into two 

main groups: LOC due to false alarm (i.e., ிܲ஺) and all other contributions ( ௢ܲ௧௛௘௥௦), as shown 
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in  

 

  ௅ܲை஼ ൌ ிܲ஺ ൅ ௢ܲ௧௛௘௥௦ (1) 

 

More details on other contributions except for those to ிܲ஺ can be found in Zhai et al. (2016, 

2018). 

 Next, we will assume that the contribution of the navigation interruptions due to other 

events on ௅ܲை஼ is negligible, i.e., ௢ܲ௧௛௘௥௦ ൌ 0, and we thus consider the FA event as the cause 

of LOC. Note that this assumption is certainly not realistic because of the impact of FD on ܲ ௅ை஼ 

could be significant (Zhai et al. 2016, 2018). However, we apply the upper bound of 10-6 to 

ிܲ஺ as an example allocation.  

 In the current multiple-hypothesis based ARAIM FD mechanism (Blanch et al. 2015; 

Joerger and Pervan 2016), all possible fault hypotheses are investigated to identify and remove 

a potential satellite fault mode. Therefore, ிܲ஺ is defined as: 

 

  ிܲ஺ ൌ ܲሺ|ݍଵ| ൒ ଵܶ⋃|ݍଶ| ൒ ଶܶ⋃ ⋅⋅⋅ |௜ݍ|⋃ ൒ ୧ܶ ⋅⋅⋅ |௛ݍ|⋃ ൒ ௛ܶ|ܪ଴ሻ ுܲబ (2) 

 

where	݅ is the index denoting a set of mutually exclusive and collectively exhaustive hypotheses 

and h is the number of the hypotheses (i.e., ݅ ൌ 0,1,⋯ ,  ଴ represents the fault-freeܪ .(݄

hypothesis and the remaining hypotheses, ܪ௜, for ݅ ൌ 1,⋯ , ݄ include single satellite fault 

modes and multiple satellite fault modes. ுܲబ is a prior-probability of the fault-free condition 

and is set as one. ݍ௜is the ݅௧௛ FD test statistic under ܪ଴ and ௜ܶ is the corresponding detection 

threshold. If any of the test statistics exceed the given threshold, an alarm will be triggered. 

The continuity risk requirement for the FA event is then allocated to each of the tests to 

determine the corresponding test threshold in a conservative way, which will be detailed in the 

next section. 

 

ARAIM Solution separation threshold test 

This section briefly addresses current ARAIM FD method based on the solution separation 
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threshold test (WG-C 2016; Blanch et al. 2015) to determine the ிܲ஺. Although ARAIM FDE 

algorithms have been proposed in the literature (Blanch et al. 2014, 2015; Joerger and Pervan 

2016; Milner et al. 2017), the fault exclusion is not covered here. Notations in this section are 

used in the remainder to describe the ிܲ஺ evaluation methodology.   

 Let us assume that we have h different fault hypotheses. For each hypothesis from 1 

to h, the solution separation, ∆࢞ෝ௜, is defined as the difference between the subset solution, ࢞ෝ௜, 

and the all-in-view solution, ࢞ෝ଴: 

 

ෝ௜࢞∆   ൌ ෝ௜࢞ െ ෝ଴࢞ ൌ ሺ܁௜ െ ݅	for														ܡ଴ሻ܁ ൌ 1,2,⋯ , ݄ (3) 

  

where ܡ is a measurement vector and ࢞ෝ௜ indicates the subset solution which is obtained using 

all satellites except the faulty satellites under the hypothesis, ܪ௜, and ݔො଴ designates the full-set 

estimate based on all-in-view satellites. The matrix ܁ is a projection matrix from the 

measurement domain to the position domain and ࢏܁ for each hypothesis ܪ௜ is computed by 

setting the weight of faulty measurements under ܪ௜ as zero in the weighted least-squares 

estimation (Blanch et al. 2015). Next, let the index ݇ be the index used to represent a state of 

interest, e.g., the horizontal position coordinate for H-ARAIM. The standard deviation of the 

solution separation, ߪ∆௫ො೔,௞, for the k-th state is then computed: 

 

௫ො೔,ೖ∆ߪ   ൌ ට࢛௞
்൫ሺࡿ௜ െ ௜ࡿ଴ሻ۱ሺࡿ െ  ௞ (4)࢛଴ሻ்൯ࡿ

 

where ࢛௞ is a unit vector whose k-th component is ‘1’ and all other entries are ‘0’ and ۱ is the 

covariance matrix of the measurement vector ܡ. More details on the determination of the 

matrices above and the weighted least-squares method can be found in Blanch et al. (2015). 

 The FD threshold for fault mode ݅ and state index ݇ is then defined by 

 

  ∆ܶ௫ො೔,ೖ ൌ  ௫ො೔,௞ (5)∆ߪ௙௔,௞ܭ

  

The factor ܭ௙௔,௞ is determined as follows: 
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௙௔,௞ܭ   ൌ ܳିଵ ቀ
௉ಷಲ,ೃಶೂ,ೖ

ଶ௛
ቁ (6) 

 

ܳିଵሺ∙ሻ denotes the inverse tail probability distribution of the unit normal distribution and 

ிܲ஺,ோாொ,௞ is the continuity requirement for the k-th state, and it is evenly allocated into fault 

hypotheses. All the test statistics in (3) are evaluated and then compared to corresponding 

thresholds for all hypotheses. If any of the statistics exceed the associated threshold, the fault 

that makes the test fail is detected. In other words, the fault is detected if the condition in holds: 

 

  ห∆ݔො௜,௞ห ൌ หݔො௜,௞ െ ො଴,௞หݔ ൒ ∆ܶ௫ො೔,ೖ  for any ݅, and ݅ ൌ 1,2,⋯ , ݄ (7) 

 

Note that we use the solution separation test statistic, but other, loosely equivalent metrics 

would produce similar results if not exactly equivalent results (Kelly 1998; Young and McGraw 

2003). Based on the FD method explained above, the next section gives some descriptions of 

ிܲ஺ of the ARAIM solution separation test. 

 

Methodology 

This section outlines a methodology for the ிܲ஺ evaluation, which is in line with the solution 

separation threshold test. The ிܲ஺ is briefly reviewed, followed by a description of cross-

correlation across ARAIM test statistics. Next, the ிܲ஺ evaluation method for ARAIM solution 

separation monitor is explained. 

 

Cross correlation across test statistics 

Let us assume we have h fault hypotheses at a specific satellite geometry. Also, we consider 

only a single state, ݔ, to describe the method instead of the full state vector, ܠ, defined in the 

previous section. Thus, the state index ݇ in (4) is no longer used in this section. The ிܲ஺ in (2) 

can then be given as the following joint probability: 

 

  ிܲ஺ ൌ ܲ൫|∆ݔොଵ| ൒ ∆ܶ௫ොభ⋃|∆ݔොଶ| ൒ ∆ܶ௫ොమ⋃ ⋅⋅⋅ |ො௛ݔ∆|⋃ ൒ ∆ܶ௫ො೓|ܪ଴൯ (8) 

 

Equation (8) can be expressed as: 
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ிܲ஺ ൌ 1 െ ܲ൫|∆ݔොଵ| ൏ ∆ܶ௫ොభ ∩ |ොଶݔ∆| ൏ ∆ܶ௫ොమ ∩⋅⋅⋅∩ |ො௛ݔ∆| ൏ ∆ܶ௫ො೓|ܪ଴൯ ሺ9ሻ        

ൌ 1 െ P ൥ሩ൫െ ∆ܶ௫ො೔ ൏ ො௜ݔ∆ ൏ ∆ܶ௫ො೔൯

௛

௜ୀଵ

 ଴൩ܪ|

 

The multivariate Gaussian distribution needs to be evaluated over ݄ constraints based on 

solution separation thresholds (see (5)) to calculate the ܲ ி஺. The last joint probability in (9) can 

be rewritten as: 

  

P ൥ሩ൫െ ∆ܶ௫ො೔ ൏ ො௜ݔ∆ ൏ ∆ܶ௫ො೔൯

௛

௜ୀଵ

଴൩ܪ| ሺ10ሻ 

ൌ
ሺ2ߨሻି௛/ଶ

ඥ|઱|
න ⋯
்∆ෝೣభ

ି்∆ෝೣభ

න exp ൤െ
1
2
ሺઢ்܆઱ିଵઢ܆ሻ൨ ො௛ݔ∆݀ ොଵݔ∆݀⋯

்∆ෝೣ೓

ି்∆ෝೣ೓

 

 

where ઢ܆ ൌ ሾ∆ݔොଵ, ⋯,ෝଶݔ	∆ ,  ෝ௛ሿ் follows a h-variate normal distribution with zero mean and	ݔ∆

covariance ઱, i.e., ઢ܆~ ௛ܰሺ૙, ઱ሻ. For the evaluation of the probability, we first define the 

covariance matrix amongst solution separations, ઱, in (10): 

 

  ઱୧୨ ൌ ො௝ݔ∆ො௜ݔ∆ൣܧ
்൧ ൌ ሺࡿ௜ െ ௝ࡿ଴ሻ۱൫ࡿ െ ଴൯ࡿ

்
       ݅, ݆ ൌ 1,2,⋯ , ݄ (11) 

 

where ۱ and ࡿ are respectively defined in (3) and (4). Let us consider two constellations, e.g., 

GPS and Galileo. Since the number of states in our least-squares estimation is five, i.e., three 

position coordinates and two clock biases for the two constellations, the covariance matrix is 

at most of rank h-5., which means we will only be able to extract h-5 orthogonal tests. 

Therefore, the covariance matrix, ઱, will be singular in our problem. In order to handle the 

singular covariance matrix, we propose a computation method which fits such singular 

multivariate distribution to assess rigorously the ிܲ஺.  

 

Evaluation of false alarm probability 

As discussed in the previous section, our test statistic domain has at most h-5 dimensions. Thus, 
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for a given covariance matrix ઱ based on test statistics, rank (઱) = r < h and its inverse does not 

exist, (9) would not therefore be well-defined. In addition, the integral for the multivariate 

Gaussian distribution has no general analytical solution, so it must be evaluated numerically. 

Thus, a transformation which is expressed as an h by r matrix, Q, was identified to define a 

change of variable ઢ܆ ൌ ܡۿ ൌ ,ଵݕሾۿ ⋯,ଶݕ ,  ௥ሿ் using a method described by (Genz andݕ

Kwong (2000) so that the evaluation of the inverse of the covariance matrix is not required to 

integrate the distribution after the transformation. The transformation matrix ۿ can be obtained 

by the generalized Cholesky factorization (Healy 1968; Gene and Charles 2013) such that even 

the singular covariance matrix can be factored as ઱ ൌ  is a lower triangular and ۿ ୘, whereۿۿ

has some zero entries on the main diagonal. After performing the change of variable, ∆܆ ൌ  ,ܡۿ

the probability in (10) can be reduced in the following form: 

   

ሺ2ߨሻି
௛
ଶ

ඥ|઱|
න ⋯
்∆ෝೣభ

ି்∆ෝೣభ

න exp ൤െ
1
2
ሺઢ்܆઱ିଵઢ܆ሻ൨ ො௛ݔ∆݀ ොଵݔ∆݀⋯

்∆ෝೣ೓

ି்∆ෝೣ೓

ሺ12ሻ 

ൌ ሺ2ߨሻି௥/ଶ න exp ൤െ
1
2
ሺܡ்ܡሻ൨ ܡ݀

܂ழܡۿழ܂ି
 

 

where ܂ ൌ ൣ ∆ܶ௫ොభ, ∆ܶ௫ොమ,⋯ , ∆ܶ௫ො೓൧
்
and the integration region is still defined by h inequality 

constraints, െ܂ ൏ ܡۿ ൏  has the lower triangular form where entries ۿ However, the matrix .܂

௜௝ݍ ൌ 0 for all ݆ ൐ ܡ and the constraints on ݎ ൌ ሾݕଵ, ⋯,ଶݕ ,  thus, could contain multiple ,ࢀ௥ሿݕ

conditions for each y௜ for ݅ ൌ 1,2,⋯ ,  .ݎ

 The set of h constraints on ܡ can be reorganized by simple algebraic manipulations 

to generate a single constraint on each y௜ for ݅ ൌ 1,2,⋯ ,  Thus, a resulting .(see Appendix) ݎ

integration with fewer dimension r (i.e., < h) can be reformulated as: 

   

ሺ2ߨሻି
௥
ଶ න exp ൤െ

1
2
ሺܡ்ܡሻ൨ ܡ݀

܂ழܡۿழ܂ି
ሺ13ሻ 

ൌ ሺ2ߨሻି௥/ଶ න expቆെ
ଵݕ
ଶ

2
ቇ

௎భ

௅భ

න expቆെ
ଶݕ
ଶ

2
ቇ

௎మሺ௬భሻ

௅మሺ௬భሻ
⋯න expቆെ

௥ଶݕ

2
ቇ

௎ೝሺ௬భ,௬మ,⋯,௬ೝషభሻ

௅ೝሺ௬భ,௬మ,⋯,௬ೝషభሻ
 ܡ݀

 

where ܮଵ and ଵܷ are lower and upper bounds for the transformed ݕଵ, respectively. Also, the 

lower and upper bounds for i-th integration, for ݅ ൌ 2,⋯ , r, are respectively defined as a 
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function of different variables from the i-th variable, y௜, that is, ܮ௜ ൌ ݂൫ݕଵ, ,ଶݕ ⋯ ,  ௜ିଵ൯. Moreݕ

details on the development of the integration form and the reorganization of the constraints are 

described in the Appendix. 

 Both the integrands within the multiple integrations and the integration bounds can 

be simplified by exploiting a couple of simple algebraic transformations, such that (13) is 

suitable for standard numerical integration methods. After the conversion, the final form of 

(13) can be reduced: 

 

ሺ ഥܷଵ െ തଵሻනܮ ൫ഥܷଶሺݑଵሻ െ ⋯ଵሻ൯ݑതଶሺܮ
ଵ

଴
න ൫ഥܷ௥ሺݑଵ,⋯ , ௥ିଵሻݑ െ ⋯,ଵݑത௥ሺܮ , ௥ିଵሻ൯නݑ ࢛݀

ଵ

଴

ଵ

଴
ሺ14ሻ 

 

and PFA can be calculated as follows: 

 

1 െ ሺഥܷଵ െ തଵሻනܮ ൫ഥܷଶሺݑଵሻ െ ⋯ଵሻ൯ݑതଶሺܮ
ଵ

଴
න ൫ഥܷ௥ሺݑଵ,⋯ , ௥ିଵሻݑ െ ⋯,ଵݑത௥ሺܮ , ௥ିଵሻ൯නݑ ࢛݀

ଵ

଴

ଵ

଴
ሺ15ሻ 

 

Here the new vector u and the corresponding upper ( ഥܷ) and lower (ܮത) limits can be expressed 

as a function of y. More details on the transformations and the relationship between u and y 

are described in the Appendix. The evaluation of the multiple integrations includes numerical 

calculations based on the Monte Carlo method, and the results of the numerical computation 

will be given in the next section. 

 

Simulation results 

To examine the actual ܲ ி஺ redefined in the previous section, we conduct ிܲ஺ simulations based 

on the proposed method. First, some simple examples, which are called ‘canonical example’ 

(Eugene et al. 2018; Joerger and Pervan 2016) are addressed, showing how the proposed 

method works. Second, an analysis based on a combination of GPS and Galileo constellation 

is carried out using the proposed method. The baseline simulation conditions which are 

specified in some earlier works (WG-C 2016; Blanch et al. 2015) are applied to the analysis, 

and those conditions will also be shown in the following sections. 

 

Canonical examples 
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Three one-dimensional canonical examples were first tested to demonstrate the validity of the 

evaluation method for the ிܲ஺. In these cases, a single scalar state, x, and simple measurement 

models in Table 2 are assumed. The first example considers two satellites from a single 

constellation and two single fault modes corresponding to each measurement. As the next steps, 

two additional 1-D cases were examined: one with three 1-D measurements and three single 

fault modes and the other one with four measurements and four single failures. Also, unit 

variances for all measurement noises are assumed. 

 

Table 2 Measurement models for three canonical examples and the continuity budget 

Measurement 

model 
Case 

Observation matrix 

(۵ሻ 

Measurement noise 

(ઽሻ 

Continuity budget 

( ிܲ஺,ோாொ) 

ܡ ൌ ݔ۵ ൅ ઽ 

1 ሾ1,1ሿ୘ ܰሺ0,  ଶሻ 10-1ࡵ

2 ሾ1,1,1ሿ୘ ܰሺ0,  ଷሻ 10-1ࡵ

3 ሾ1,1,1,1ሿ୘ ܰሺ0,  ସሻ 10-1ࡵ

 

 As mentioned earlier, the numerical integration for the probability computation was 

performed using the Monte Carlo method. For three canonical examples, Monte Carlo 

iterations of 104 were tried to evaluate the probability. Since the likelihood could be differently 

assessed every trial due to the numerical integration error, the probability calculation is 

conducted 150 times for each case. Also, the median value of the resulting probabilities is taken 

to obtain a robust estimate against outliers due to the numerical approach. More discussions on 

the uncertainty of the numerical approach will be given in the next section. Table 3 shows 

results obtained by applying geometries and measurement models in Table 2. 

 

Table 3 Simple single constellation based canonical example ிܲ஺ 

Case Fault mode ிܲ஺ (median) 

1 Single satellite fault 0.0500 

2 Single satellite fault 0.0842 

3 Single satellite fault 0.0890 
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 As seen in Table 3, the ிܲ஺ obtained by accounting for correlation between tests is 

decreased (i.e., by 50% compared to the requirement of 10-1) in the first case. In this case, as 

the rank of the observation matrix is one, with two perfectly correlated tests, such improvement 

can be expected. Since the number of independent tests is less than the number of the full 

combination of tests, the actual ிܲ஺ tends to be less than a given requirement. Like the first 

example, the number of independent tests in the second case can be expected to be two i.e., the 

number of measurements minus the number of states of interest. Despite the rank of two, the 

computed probability of approximately 0.084 is different from the simple guess which is two-

thirds of the total budget of 10-1 (i.e., about 0.067). The gap between the expected probability 

and the computed one can be explained by showing the integration region after the 

transformation over which the ிܲ஺ is computed. In particular, the new random vector, ܡ, after 

the transformation has the covariance matrix, ۷ଶൈଶ, as mentioned in the previous section. Also, 

the parity vector (Sturza 1988; Jeorger et al. 2014) associated with the second example has the 

same covariance matrix, hence the integration region after the transformation can be expressed 

in the parity domain. 

 Let us assume we have ݊ measurements and ݉ states to be estimated. The ݊ െ݉ 

dimensional parity vector, ܘ, is defined by the transformation from the measurement space to 

the parity space as expressed in (16) 

 

ܘ ൌ ܡ۾ ሺ16ሻ 

 

The ሺ݊ െ݉ሻ ൈ ݊ parity matrix ۾ whose row vectors are the orthonormal basis for the parity 

space, or left null space of ۵, is defined such 

that 

 

܂۾۾ ൌ ۵۾	and	࢓ି࢔۷ ൌ ૙ሺ࢓ି࢔ሻൈ࢓ ሺ17ሻ 

 

Since the parity vector provides direct observation of the impact of the measurement fault 

(Sturza 1988), we employ the parity space representation in this section to visualize the fault 

detection mechanism. For the configuration of the second example, we have ݊ ൌ 3 and ݉ ൌ 1 
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and thus two-dimensional parity space, as shown in Figure 1. Black lines are three fault mode 

lines on which the mean parity vector exists as the magnitude of the fault (Jeorger et al. 2014) 

and blue lines correspond to the normalized solution separation detection thresholds, 

represented as T, for their corresponding fault modes. Those normalized detection thresholds 

are expressed as ∆ܶ௫ො೔/ߪ∆௫ො೔ ൌ ݅ ௙௔,௜ forܭ ൌ 1,2,3 instead of those in (5). More details on the 

parity vector and the corresponding parity space can be found in earlier works (Sturza 1988; 

Jeorger et al. 2014). If we consider the even continuity allocation, the detection boundaries are 

a hexagon, as shown in the figure, and no detection region is defined as the inner part of the 

hexagon (Jeorger et al. 2014). 

 

 

Fig. 1 Fault detection boundaries for the solution separations in the parity space 

  

 Next, to show how the detection boundaries for the random vector ܡ form during the 

transformation, we first consider the lower and the upper bounds in (13) for the canonical 

example as follows: 

 

൥
ଵܮ
ଶܮ
ଷܮ
൩ ൑ ܡۿ ൌ ቎

1 0
ଶ,ଵݍ 1
ଷ,ଵݍ 1

቏ ቂ
ଵݕ
ଶݕ
ቃ ൑ ൥

ଵܷ
ܷଶ
ܷଷ
൩ ሺ18ሻ 

 

where two constraints on yଶ and associated lower bounds (i.e., L2 and L3) and upper bounds 

(i.e., U2 and U3) are functions of yଵ and represent lines in the parity space. More specifically, 



- 15 - 

those two inequalities have the form: 

 

ଶܮ   െ ଵݕଶ,ଵݍ ൑ ଶݕ ൑ ܷଶ െ ଷܮ ଵ andݕଶ,ଵݍ െ ଵݕଷ,ଵݍ ൑ ଶݕ ൑ ܷଷ െ  ଵ (19)ݕଷ,ଵݍ

 

As for the lower triangular form of the resulting matrix, ۿ, in (18), more details can be found 

in the Appendix. Figure 2 shows bounds in (19) in the parity space. 

 

 

Fig. 2 Detection boundaries (yellow and light blue parallelograms) defined by two constraints 

on the new random variable (yଶ) after the transformation in the parity space. A single 

constraint on yଶ, the intersection of two regions, is the same as the detection bounds based on 

the parity vector (dotted blue hexagon) 

 

In Figure 2, light blue and yellow lines respectively indicate boundaries from the first and the 

second inequalities defining yଶ in (19) given the limits for yଵ in (18). A single constraint on yଶ 

can be determined by identifying the intersection of two regions surrounded by those 

boundaries. As a result, detection boundaries based on yଵ and yଶ form the blue dotted hexagon 

in the space that is the same detection region defined by the parity vector (see Figure 1). Since 

the ிܲ஺ is the probability that the vector ܡ lies outside the hexagon area, the evaluation using 

the proposed method should be equivalent to that based on the joint probability density of the 

parity vector. 

 For better understanding, we compare the pure guess based on the matrix rank and 

the actual calculation in Figure 3. In the figure, the red square based on the simple rank of two, 
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the guess, leads to a smaller probability (i.e., two-thirds of Pி஺,ோாொ=10-1) than the computed 

one in Table 3. However, in reality, the computed probability which accounts for the more 

complex boundaries, in three directions instead of two, lies between the full allocation (i.e., 10-

1) and the simple guess, as shown in Table 3. Also, since areas of the hexagon and the square 

are determined by the normalized detection thresholds for the given requirement (i.e., ܭ௙௔ 

factor in (6)), it can be proven easily by the simple geometry that the area of the square is 

greater than that of the hexagon when those polygons have the same width. 

 

 

Fig. 3 Comparison of detection bounds by two independent tests, initial guess (red square), 

and that based on the transformation (blue dotted hexagon) 

  

 We also investigated another example by adding a satellite in the same direction. In 

the third case, the vector ܡ has the covariance matrix, ۷ଷൈଷ, and the corresponding parity space 

is three-dimensional. Relevant lower and upper bounds after the transformation are shown in  

 

൦

ଵܮ
ଶܮ
ଷܮ
ସܮ

൪ ൑ ܡۿ ൌ

ۏ
ێ
ێ
ۍ
1 0 0
ଶ,ଵݍ 1 0
ଷ,ଵݍ ଷ,ଶݍ 1
ସ,ଵݍ ସ,ଶݍ ے1

ۑ
ۑ
ې
ቈ
ଵݕ
ଶݕ
ଷݕ
቉ ൑ ൦

ଵܷ
ܷଶ
ܷଷ
ܷସ

൪ ሺ20ሻ 

 

In this case, we have four constraints on the vector ܡ ൌ ሾyଵ, yଶ, yଷሿ, and L and U respectively 
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indicate the corresponding lower and upper bounds obtained by the transformation. Like the 

second case, the upper and lower bounds on yଶ are all functions of yଵ, and those bounds form 

lines in the three-dimensional parity space. Also, bounds on yଷ are identified by both yଵ and 

yଶ, and thus those bounds become surfaces in the parity space. The no-detection region, which 

is defined by the combination of the given constraints, is shown in Figure 4. 

 

 

Fig. 4 No-detection zone for yଵ, yଶ and yଷ obtained from the transformation in the three-

dimensional parity space (blue octahedron). No-detection region based on four fault lines 

(black lines) is the same as the region based on the transformation in the parity domain 

 

 In Figure 4, black lines are fault mode lines formed by the parity vector, and the blue 

octahedron designates the detection bounds which are determined by the constraints on yଵ, yଶ 

and yଷ. It was checked that those detection bounds are the same as those based on fault lines 

and the corresponding thresholds in the parity space (Joerger and Pervan 2016). Like the 

previous two-dimensional parity space case, a higher probability (see Table 3) was observed 

than the initial guess (i.e., three-fourths of the requirement) where the detection boundaries 

look like a cube in the parity space. For the sake of simplicity, the cube is not represented in 

Figure 4. 
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Preliminary assessment of ிܲ஺ for solution separation ARAIM 

We have examined some simple examples to evaluate the ܲ ி஺. In this section, to further extend 

the understanding of the impact of the correlation across ARAIM test statistics on the false 

alarm performance, four simulations were conducted assuming different fault modes: single 

and double satellite failures, a combination of a single and double satellite faults and triple 

faults. Underlying vital assumptions and parameters specified in WG-C (2016) are used to 

perform the simulations. The dual-frequency 24 GPS/Galileo baseline constellation with 

formal parameters (WG-C 2016) is used and the results were assessed for H- ARAIM 

operation. The false alarm requirement is set to be 10-6, and 108 Monte Carlo trials are carried 

out to estimate the ிܲ஺ at each user location and each satellite geometry. Table 4 shows some 

key simulation parameters. 

 

Table 4 ிܲ஺ simulation parameters 

Parameter Description Parameter Description 

Constellation 24 GPS + 24 GAL ߪ௎ோ஺ GPS/GAL: 2.5m 

PFA,REQ 10ି଺ Monte Carlo trials 108 

Mask Angle 5 deg. User grid formation 10 deg. by 10 deg. 

Simulation Time 

Step 
10 mins Simulation Duration 48 hours 

 

 Figure 5 shows an example time series of the ிܲ஺ obtained at a specific user location 

for over 48 hours with 10 mins time interval. 10଼ MC trials were performed independently 

every 10 mins, i.e., at each point in the figure, to assess the likelihood. Due to the convergence 

performance of the numerical integration using Monte Carlo method, outliers beyond the given 

requirement of 10-6 are inevitably involved (approximately 3% of cases over the duration in 

the example). If the average risk of false alarm over the given time interval is taken, the risk 

estimate could be biased to some extent due to such outliers. So, this investigation takes the 

median of probabilities over the given period such that the probability estimation can be robust 

against outliers from the numerical integration. 
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Fig. 5 Time series of the ிܲ஺ evaluated at a specific location over 48 hours. Outliers beyond 

the requirement (10-6) within the circular dotted line 

 

 The first case assesses the ிܲ஺ of ARAIM integrity monitoring when only a single 

satellite failure is assumed. A simulation of a two day period is considered to account for the 

underlying computational uncertainty in the numerical method as well as various geometry 

conditions. In the simulation, the ܲ ி஺ is estimated at each grid location and epoch. As described 

above, substantial outliers were observed due to the Monte Carlo method based computational 

error in all simulations performed. Hence, we take the median of the likelihood estimated over 

the simulation period (i.e., 48 hours) to obtain the robust measurement against possible outliers. 

Figure 6 shows the median of the ܲ ி஺ obtained by applying a single satellite fault to the ARAIM 

fault monitoring algorithm. The maximum improvement is about 1% compared to the 

requirement of 10-6 (i.e., the minimum value is about 9 x 10-7). Such improvement can be 

achieved in most regions, and it mainly comes from the valid number of orthogonal statistics 

in the transformed domain which are less than the number of the full ensemble of the statistics 

by at least five (i.e., the number of estimated states). 
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Fig. 6 Median ிܲ஺ obtained by considering single satellite failures and correlated ARAIM 

monitor test statistics. 

 

 

Fig. 7 Median of the ிܲ஺ of ARAIM fault monitoring when cross-correlations amongst test 

statistics are considered. Double satellite failures are applied to ARAIM FD algorithm 

  

 The ிܲ஺ for three other cases were obtained by assuming a pair of satellite failures 

and combined fault mode of a single and double satellite faults, and triple faults, respectively. 

As in the previous simulation in Figure 6, the same risk evaluation method and simulation 

parameters are used. Figure 7 shows the result when double satellite faults are applied to the 

ARAIM fault monitoring algorithm and the median ிܲ஺ is decreased down to approximately 

76% of the requirement of 10-6. As discussed in the single failure case, the predetermined 

continuity risk is allocated to more tests to determine the corresponding detection thresholds. 
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Thus, greater monitor thresholds are generated compared to the single fault case, resulting in 

improvement of the performance. However, the estimated probability is still quite close to the 

expected performance of 10-6. 

 Next, the increased number of fault modes is considered in the FD test by applying 

both a single satellite fault and double failures in the same way as the previous simulations in 

Figures 6 and 7. Figure 8 represents the median value of ிܲ஺ when more fault modes are 

assumed. Since the greater number of fault hypotheses lead to reduced continuity risk 

allocation for each test, the minimum median value for the combined fault mode drops down 

to approximately 7 x 10-7, which is about 8% improvement compared to that for the double 

fault case shown in Figure 7. 

 

 

Fig. 8 Median of ிܲ஺ of ARAIM fault monitoring based on a combination of a single fault 

and a pair of failures 

 

 We also further investigated how the number of monitor test statistics (or the number 

of monitored fault modes) affects the ARAIM false alarm performance by applying the triple 

satellite fault hypothesis to ARAIM FD algorithm. Figure 9 shows the median ிܲ஺ when more 

fault modes are applied to the ARAIM algorithm. In this case, the lowest median value is 

decreased from approximately 7 x 10-7 for the combined fault mode case, shown in Figure 8, 

to roughly 5 x 10-7 for the triple fault mode (i.e., by about 28%). As expected, the false alarm 

performance of ARAIM fault monitoring improves due to the substantially increased number 

of fault modes. In this case, the reduction in the continuity budget allocated to each fault mode 
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is more dominant compared to the decrease in the effective amount of independent monitor 

statistics.  

 Since the actual ிܲ஺ tends to be less than the expected one, one can expect the 

implementation of a lower threshold to reduce the magnitude of HPL or VPL and therefore 

increase the fraction of the total time that the user’s PL is less than a given alert limit. However, 

the impact of the reduced ிܲ஺ actual false alarm rate could be more complicated than such an 

argument would propose since the protection level is not a simple linear function of the 

detection threshold. The VPL equation employed in the baseline ARAIM user algorithm 

(Blanch et al., 2015) is as follows. 

 

2ܳ ቆ
ܮܸܲ െ ܾሺ଴ሻ

ሺ଴ሻߪ
ቇ ൅෍ ௙ܲ௔௨௟௧,௞ܳ ቆ

ܮܸܲ െ ௞ܶ െ ܾሺ௞ሻ

ሺ௞ሻߪ
ቇ

ே

௞ୀଵ

ൌ ݂ሺܲܫܯܪ௏ாோ்/ுைோ, ௡ܲ௢௧	௠௢௡௜௧௢௥௘ௗሻሺ21ሻ 

 

Here ܳሺ∙ሻ is the tail probability of a zero-mean unit normal distribution, ௙ܲ௔௨௟௧,௞, ௞ܶ and ܾ௞ are 

respectively the prior probability, detection threshold, and the magnitude of nominal bias for 

the k-th fault mode. The right hand side of the equation is a function of risk requirements: 

 ுைோ are integrity risk requirements allocated to vertical and horizontalܫܯܪܲ ௏ாோ் andܫܯܪܲ

coordinate, respectively, and ௡ܲ௢௧_௠௢௡௜௧௢௥௘ௗ is the allocation for fault modes that don’t need to 

be monitored because their prior probabilities are too low compared to the risk requirement 

(Blanch et al., 2015). If we have a lower threshold here, the magnitude of VPL should get lower 

accordingly, such that the VPL equation holds for given integrity risk requirements. 

 

 In order to specify a change in VPL due to a change in the detection threshold, Table 

2 shows two example calculations. The first column indicates the number of fault modes. With 

24 GPS and 24 Galileo constellation, we observed approximately 10 to 15 fault modes on 

average in our simulations. Let us assume we set a lower threshold to take advantage of the 

margin in ிܲ஺, i.e., half of 10ି଺ as shown in our findings. The second and third columns 

compare the ܭ௙௔ in (6) for ிܲ஺ ൌ 10ି଺ to that for ிܲ஺ ൌ 0.5 ∗ 10ି଺. 
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Table 2 Comparison of Kfa (Pfa=10-6) and Kfa (Pfa=0.5ൈ10-6) 

No. of 

fault modes (h) 

PFA,REQ in (6) 
 ܭ∆

ிܲ஺ ൌ 10ି଺ ிܲ஺ ൌ 0.5 ൈ 10ି଺ 

10 Kfa=5.3267 ܭ௙௔=5.4513 0.1246 

 ௙௔=5.5230 0.1231ܭ ௙௔=5.3999ܭ 15

 

In these examples, the difference in ܭ௙௔ is barely about 0.12, and such a difference would not 

be that significant in the computation of VPL in (21). Thus, although the minimum of median 

PFA is decreased up to approximately 50% of the requirement of 10-6, such improvement would 

not dramatically affect the magnitude of the protection level. 

 

 

Fig. 9 Median of ிܲ஺ of ARAIM solution separation test when triple satellite faults are 

applied to the fault detection 

 

 The impact of the correlation between the solution separation monitors on the 

ARAIM false alarm rate is shown in this study. Also, it is demonstrated that the previously 

proposed assumption for the ARAIM continuity risk could not be over-conservative. However, 

the minimum ிܲ஺, which is around half of the requirement might have been observed merely 

due to chance, because all possible multiple fault modes were not investigated in this 

investigation. Thus, more different types of satellite failures, including constellation faults, 
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need to be examined. 

 

Conclusion 

We conducted a preliminary assessment of the ARAIM false alarm risk by presenting a 

methodology to evaluate the actual risk based on the test correlation and applying the same 

ARAIM FD algorithm (Blanch et al. 2015; Joerger and Pervan 2016) to the risk evaluation. 

Using the proposed method and the baseline conditions, we have demonstrated how the cross-

correlation amongst ARAIM test statistics affects the false alarm performance of ARAIM based 

integrity monitoring. We found that the maximum margin of approximately 30% of the 

predefined false alarm risk (e.g., 10ି଺) was observed for the single plus double faults, and the 

maximum improvement of about 50% was achieved for the triple fault when the cross-

correlation is accounted for. However, despite the approximately half as much improvement in 

the risk probability under the triple case, regarding the reduction of the magnitude of the 

horizontal or vertical protection level, the factor of two would not be substantial. Therefore, it 

was shown that the exact determination does not bring much benefit. This, as a result, is 

conclusive in verifying that the existing ARAIM implementation, such as the baseline FD 

algorithm and the continuity allocation (WG-C 2016; Blanch et al. 2015) appears to be not far 

from being optimal. Also, it is worth noting that the impact of the cross-correlation on the 

ARAIM false alarm risk might be more significant for multiple fault conditions such as 

constellation wide failure, but the marginal improvements in the protection bound imply no 

need of further investigation across a wide range of faults to achieve better performance. This 

understanding of the predicted system performance assessed from applying predefined design 

parameters and algorithms could be employed as a feasibility study especially during the initial 

phase of the ARAIM development and standardization (WG-C 2016) when the system design 

and the corresponding algorithm development will be carried out. 

 Most notably, this is the first work to the author’s knowledge to investigate the cross-

correlation effect of the ARAIM solution separation test on the actual ARAIM false alarm rate. 

Our results provide compelling evidence for the current continuity allocation and the ARAIM 

FD mechanism with a high level of accuracy and suggest that the current analysis seems to be 

more or less complete. However, it was found that the cross-correlation and temporal 

correlation of monitor statistics have opposing effects, as described in the previous related work 

(Pervan et al. 2017). Continuing research, therefore, will include the follow-up work designed 
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to evaluate the impact of temporal correlation between test statistics on ARAIM performance. 
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Appendix 

This section gives some elements for the development of (13) and (15). The derivation of the 

equations is based on the method in Genz and Kwong (2000). First, the reduction of the 

integration dimension is discussed. In (12), the integration region is represented as െ܂ ൏ ܡۿ ൌ

,ଵݕሾۿ ⋯,ଶݕ , ࢀ௛ሿݕ ൏ ௜௝ݍ has the lower triangular form whose elements ۿ and the matrix ,܂ ൌ 0 

for all ݆ ൐  Here let us assume that a rearrangement of the inequalities has been completed .ݎ

such that the matrix ۿ has the following form: 

 

 

Fig. 10 Transformation matrix 

 

where ۿ′ is a h x r submatrix of Q with permuted columns in terms of ݕ௜ for ݅ ൌ 1,⋯ ,  and ,ݎ
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the subscription ݇௜ for ݅ ൌ 1,⋯ ,  ,.௜ (i.eݕ denotes the number of inequalities in each group of ݎ

∑ ௝݇ ൌ ݄௥
௝ୀଵ ). Only ݕଵ, ⋯,ଶݕ ,  ୰ variables have constraints whilst the remaining h - r variablesݕ

,୰ାଵݕ ⋯,୰ାଶݕ ,  ୦ are not constrained, so integrations in (12) which are related to thoseݕ

unconstrained variables should be all equal to 1 and those terms thus are not included in the 

equation. Therefore, the integration is reduced to r dimensional one in (13). 

 Next, normalization can be performed such that the matrix ۿ has the form in (22) 

where entries corresponding to each group of ݕ௜ (e.g., ݍଵ,ଶ,⋯ ,  ଶ in the light blueݕ ௞మ,ଶ forݍ

colored box in Figure 10) are all ones and ∗ could be a zero or nonzero component. In the 

process, if an inequality needs to be divided by a negative number, the order of the inequality 

must be changed so that after division by a negative number, a scaled lower limit becomes an 

upper limit, and a scaled upper limit becomes a lower limit. 

 

ഥۿ ൌ ሾۿഥ௛ൈ௥
ᇱ 	૙௛ൈ௛ି௥ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1ଵ,ଵ 0 0 ⋯ ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1௞భ,ଵ 0 0 ⋯ ⋯ 0 ⋯ 0
∗ 1ଵ,ଶ 0 ⋯ ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
∗ 1௞మ,ଶ 0 ⋯ ⋯ 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ 0 ⋯ 0
∗ ∗ ⋯ ∗ 1ଵ,௥ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
∗ ∗ ⋯ ∗ 1௞ೝ,௥ 0 ⋯ ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺ22ሻ 

 

L and U designate the new limit vectors after permutations, normalizations, and interchanges 

of the original limit vectors -T and T (see (13)), such that the new set of constraints for the 

integration region takes the following form: 

 

ۺ ൏ ܡഥᇱۿ ൌ ഥᇱሾ௬భ,௬మ,⋯,௬ೝሿۿ
ࢀ
൏ ܃ ሺ23ሻ 

 

We can now produce explicit expressions for the limits of the continuous integration variables. 

For instance, let ݉௜ ൌ ∑ ௝݇
௜
௝ୀଵ  , then the revised limits for ݕ௜ in (23) can be determined by ݇௜ 

constraints for ݕ௜ as shown in (24) and (25). Here ݊ is the index for the row of the matrix ۿഥᇱ. 
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,ଵݕ௜ሺܮ ⋯,ଶݕ , ௜ିଵሻݕ ൌ max
௠೔షభ	ழ	௡	ஸ	௠೔

ቌ݈௡ െ෍ݍ௡,௝ݕ௝

௜ିଵ

௝ୀଵ

ቍ ሺ24ሻ 

௜ܷሺݕଵ, ⋯,ଶݕ , ௜ିଵሻݕ ൌ min
௠೔షభ	ழ	௡	ஸ	௠೔

ቌݑ௡ െ෍ݍ௡,௝ݕ௝

௜ିଵ

௝ୀଵ

ቍ ሺ25ሻ 

 

By applying these bounds, the resulting expression of the integration in (12) becomes the 

expression in (13). 

 Second, the form of integration in (13) is further simplified using the transformation 

in (26), such that standard numerical integration methods are easily applied to the evaluation 

of the probability. 

 

୧ݖ   ൌ ݅ ௜ሻ    forݕሺܨ ൌ 1,⋯ ,  (26) ݎ

 

 ,ሺ∙ሻ designates the Gaussian cumulative distribution function (CDF). By definitionܨ

ϕሺݕ௜ሻ݀ݕ௜ ൌ  ௜ where ϕ indicates the Gaussian probability density function (PDF) and (13)ݖ݀

becomes  

   

න න ⋯
௎ഥమሺ௭భሻ

௅തమ

௎ഥభ

௅തభ

න ࢠ݀
௎ഥೝሺ௭భ,௭మ,⋯,௭ೝషభሻ

௅തೝሺ௭భ,௭మ,⋯,௭ೝషభሻ
ሺ27ሻ 

 

where new limits for ݖ௜, ܮത and ഥܷ are derived based on (26). 

 

⋯,ଵݖത௜ሺܮ , ௜ିଵሻݖ ൌ ܨ ቀܮ௜൫ିܨଵሺݖଵሻ,⋯ , ௜ିଵሻ൯ቁݖଵሺିܨ ሺ28ሻ 

ഥܷ௜ሺݖଵ,⋯ , ௜ିଵሻݖ ൌ ܨ ቀ ௜ܷ൫ିܨଵሺݖଵሻ,⋯ , ௜ିଵሻ൯ቁݖଵሺିܨ ሺ29ሻ 

 

Lastly, let us put ݖ୧ ൌ ത௜ܮ ൅ ሺ ഥܷ௜ െ ݅ ௜ forݑത௜ሻܮ ൌ 1,⋯ ,  so that integration limits all have an ݎ

interval ሾ0,1ሿ. From ݀ݖ௜ ൌ ሺ ഥܷ௜ െ  ௜, equation (27) can be expressed in the form of (14) inݑത௜ሻ݀ܮ

the previous section: 
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ሺ ഥܷଵ െ തଵሻනܮ ൫ഥܷଶሺݑଵሻ െ ⋯ଵሻ൯ݑതଶሺܮ
ଵ

଴
න ൫ഥܷ௥ሺݑଵ,⋯ , ௥ିଵሻݑ െ ⋯,ଵݑത௥ሺܮ , ௥ିଵሻ൯නݑ ࢛݀

ଵ

଴

ଵ

଴
ሺ30ሻ 
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