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Abstract—Identification and characterisation of air traffic
flows is an important research topic with many applications
areas including decision-making support tools, airspace design or
traffic flow management. Trajectory clustering is an unsupervised
data-driven approach used to automatically identify air traffic
flows in trajectory data. Long-established trajectory clustering
techniques applied for this purpose are mostly based on classical
algorithms like DBSCAN, which depend on distance functions
capturing only local relations in the data space.

Recent advances in Deep Learning have shown the potential
of using deep clustering techniques to discover hidden and more
complex relations that often lie in low-dimensional latent spaces.
The goal of this paper is to explore the application of deep
trajectory clustering based on autoencoders to the problem of
flow identification. Thus, we present two clustering techniques
(artefact and DCEC) and show how they embed trajectories into
the latent spaces in order to facilitate the clustering task.

Keywords— machine learning; deep learning; trajectory clus-
tering; deep clustering; autoencoders

I. INTRODUCTION

Identification and characterisation of air traffic flows is
important for decision-making support in areas such airspace
design or traffic flow management. The identification of air
traffic flows from trajectories can be done automatically from
trajectory data by applying trajectory clustering techniques in
order to find the set of clusters which best fit the operational
flows within an airspace.

Clustering is a fundamental unsupervised method for knowl-
edge discovery. Because of its importance in exploratory data
analysis, clustering is still an active field of research. The
application of clustering to trajectories is particularly challeng-
ing for several reasons. First, trajectories have a functional
nature and the definition of appropriate distance functions
between trajectories is difficult. Secondly, trajectories are often
available as samples of data points in high-dimensional space
where classical distances loose their discriminative power
(curse of dimensionality). Thirdly, the availability of massive
amounts of open trajectory data to be explored require highly
efficient and scalable trajectory clustering algorithms.

Trajectory clustering approaches relying on classical meth-
ods such k-means or DBSCAN suffer from the same issues.
These well-established algorithms depend on similarity (or dis-
tance) functions usually defined directly on high-dimensional
data space (trajectories), which prevent them from capturing
richer dependencies potentially lying in the low-dimensional
latent space. For this reason, it is common practice when
using these algorithms to apply a dimensionality reduction
technique as a preprocessing step. However, in addition to the

fact that techniques such as Principal Component Analysis
(PCA) can only generate linear embeddings, this two-step
approach may be sub-optimal as the assumptions underlying
the dimensionality reduction and the clustering techniques
are independent. A better solution would be an integrated
approach generating an embedding specifically optimised for
the purpose of clustering.

Such a solution can be found in the field of deep clustering,
where recent techniques have been developed to train a deep
neural network in order to learn suitable representations for
clustering. This is done by incorporating appropriate cri-
teria and assumptions during the training process, e.g. by
introducing new regularisation terms. The ultimate goal is
to automatically perform feature extraction, dimensionality
reduction and clustering with a single and same model rather
than doing these tasks independently with separated models.
These deep-learning based approaches have also the advantage
of being scalable as they have been developed to deal with big
data.

As far as we know, none of the deep clustering algorithms
available in the literature have been applied yet to the specific
problem of trajectory clustering for air flow identification
and characterisation. The purpose of this paper is to explore
some of the advantages and inconveniences of such novel
approaches and illustrate their use for trajectory and flow
analysis.

This study is based on a dataset of 19,480 trajectories land-
ing at Zurich airport. We use autoencoding neural networks
to generate a low-dimensional latent space so that we can
study some of its inherent properties. In particular, we show
that although some clusters are naturally formed in the latent
space, there are cases where the points are not well separated
and overlap. Finally, we apply a deep clustering technique to
demonstrate that such techniques can generate a latent space
with a better separation of the clusters. The impact of these
techniques on the way trajectories are actually clustered into
flows will be discussed. We begin with a literature review
in Section II, present the dataset and our methodology in
Section III, then we provide a comparative analyses of the
results in Section IV.

II. LITERATURE REVIEW

A. Trajectory clustering

Clustering is an unsupervised data analysis technique widely
used to group similar entities into clusters according to a sim-
ilarity (or distance) function. Multiple clustering algorithms
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exist in the literature to cluster point-based data such as k-
means [1], BIRCH [2], OPTICS [3], DBSCAN [4] or H-
DBSCAN [5]. When clustering is applied to trajectories, it
requires a proper distance function to be defined between
trajectory pairs, which is challenging because of the functional
nature of trajectories. The most common approach is to simply
sample the trajectory to obtain a n-dimensional vector of points
for the use of point-based clustering algorithms and distances
such as the Euclidean one.

Other distances exist to better take into account the ge-
ometry of the trajectories and in particular their shape: the
best well known shape-based distances are Hausdorff [6] and
Fréchet [7]. More recently, a more promising shape-based
called Symmetrized Segment-Path Distance (SSPD) distance
has been proposed [8], [9] which takes into consideration
several trajectory aspects: the total length, the variation and
the physical distance between two trajectories.

A significant number of clustering methods exist in the
literature for flow identification, where the goal is to determine
the set of clusters that best fit the operational air traffic flows
within an airspace. These methods associate each cluster to an
air traffic flow which is a traffic pattern with both temporal and
spatial characteristics. The exact definition of what a flow is
ultimately depends on the specific application context. Also, it
is worth noticing that a majority of the research have focused
primarily on studying the spatial dimension of flows.

Some flow identification methods are specifically applied
to terminal area operations, which is also the focus in our
paper. For instance, Eckstein [10] combines PCA with k-
means to evaluate the performance of individual flights in
TMA procedures. Rehm [11] and Enriquez [12] apply hierar-
chical and spectral clustering techniques to identify air traffic
flow patterns from and to an airport. Murça et al. [13], [14]
present a framework based on DBSCAN and other machine
learning algorithms to identify and characterise air traffic flow
patterns in terminal airspaces. Olive et al. [15] propose a
specific clustering technique for identifying converging flows
in terminal areas, which helps understand how approaches are
managed.

B. Deep clustering

The ever increasing amount of generated ADS-B data offers
an unprecedented opportunity to the ATM research community
for knowledge discovery in trajectory data through the appli-
cation of unsupervised clustering algorithms.

Unfortunately, conventional clustering algorithms present
serious performance issues when applied to high-dimensional
large-scale datasets. Prior to the application of the clustering
algorithm, the features need to be manually and carefully
extracted from data and a dimensionality reduction technique
applied. Solutions to all these issues have been at the core
of the success in the deep learning field, even though the
application of deep neural networks to the specific problem
of clustering (deep clustering) is relatively more recent and
less well-known.

Deep clustering is however an active area of research with a
number of methods already published [16], [17]. Even though
it is out of the scope of the paper to provide a detailed review
of the field, we will introduce the main principles and provide
a focus on the main references on autoencoder-based deep
clustering.

Deep clustering relies on a deep neural network to learn a
representation or embedding of the input data (e.g. trajecto-
ries) into a lower-dimensional latent space by minimising the
following loss function:

L = Ln +λLc (1)

where Ln is the network loss, Lc is the clustering loss and
λ is a hyper-parameter to control the weight of the clustering
loss. The network loss ensures that the learned embedding
respects the structure of the original data preventing the
network from finding trivial solutions or corrupting the latent
space. The clustering loss constrains the points in the latent
space to become more separated or discriminative.

Autoencoder-based deep clustering is probably the most
popular approach and the methods in this category can use
either the basic autoencoder or any of its multiple variants
(convolutional autoencoder, denoising autoencoder, sparse au-
toencoder) to define the network architecture. In this ap-
proach, the reconstruction error corresponds to the network
loss whereas the clustering loss is specific to the method:
cluster assignment loss in both the Deep Embedded Clustering
(DEC) [18] and Deep Convolutional Embedding Clustering
(DCEC) [19] or the k-means loss in the Deep Clustering
Network (DCN) [20].

In spite of the previously mentioned advantages of the deep
clustering approach, there are also some important challenges
to be considered. First, the optimal setting of the hyper-
parameters is not obvious, especially in an unsupervised
setting where there is no real validation data to be used as
guidance. Secondly, the lack of interpretability intrinsic to the
use of neural networks is even more of an issue because there
is no validation data on which we could build a certain level
of trust. Lastly, most of the deep clustering methods lack the
theoretical ground needed to estimate the generalisation of
their performance.

III. METHODOLOGY

A. Reference dataset

The methodology is tested with a dataset including a total
of 19,480 trajectories landing at Zurich airport (LSZH) between
October 1st and November 30rd 2019. We relied on The
OpenSky Network [21] database to properly label trajectories
landing at LSZH.

All trajectories have been requested and preprocessed with
the help of the traffic Python [22] library which down-
loads OpenSky data, converts the data to structures wrapping
pandas data frames and provides a specialised semantics for
aircraft trajectories (e.g., intersection, resampling or filtering).
In particular, it iterates over trajectories based on contiguous
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Figure 1. Structure of an autoencoding neural network

timestamps of data reports from a given icao24 identifier: all
trajectories are first assigned a unique identifier and resampled
to one sample per second before the bearing of the initial point
within 40 nautical miles (ASMA area) is computed.

The data presented in this paper is now provided as a generic
import in the traffic library, triggering a download from a
corresponding figshare repository [23] if the data is not in the
cache directory of the user.

B. Autoencoding neural networks for anomaly detection

Autoencoders are artificial neural networks consisting of
two stages: encoding and decoding. Autoencoders aim at find-
ing a common feature basis from the input data. They reduce
dimensionality by setting the number of extracted features to
be less than the number of inputs. Autoencoder models are
usually trained by backpropagation in an unsupervised manner.

The encoding function of an autoencoder maps the input
data s ∈ Rd to a hidden representation y ∈ Rh = e(s). The
decoding function maps the hidden representation back to
the original input space according to ŝ = d(y).The objective
of the autoencoder model is to minimise the error of the
reconstructed result:

(w,b,w′,b′) = argmin `(s,d(e(s))) (2)

where `(u,v) is a loss function determined according to the
input range, typically the mean squared error (MSE) loss:

`(u,v) =
1
n ∑ ||ui− vi||2 (3)

Figure 1 shows an example of autoencoding neural network
structure where layers are stacked so as to better handle
volume and complexity in data sets we analyse. Autoencoders
(also referred to in a wider sense as reconstruction methods)
have proven useful at detecting anomalies in large data sets,
and in aircraft trajectories [24], [25], [26].

C. Information extraction on the latent space

Figure 1 shows how the whole dataset projects onto a two-
dimensional latent space through the first part of the autoen-
coding neural network (a projection operator). Samples are

Figure 2. Trajectories landing at LSZH airport, clustered using the bearing
angle when entering the ASMA area on runway 14, within 40 nautical miles
from the airport.

projected onto a smaller dimension space before a generation
operator attempts at reconstructing the original samples.

In spite of a poorer reconstructive power, we projected our
samples down to a two-dimensional space in order to plot
the distribution of projected samples on Figure 2. Here we
assigned colours to each trajectory based on the bearing with
respect to the airport at the moment the aircraft enter a 40
nautical miles radius: each colour is associated to an incoming
flow into the TMA.

Figure 3 restricts the dataset to trajectories which are
self-intersecting (holding patterns) and assigns a colour to
trajectories landing from a bearing angle between 90 and
132 degrees. Three pairs of trajectories which are close to
each other in their two-dimensional latent representation are
plotted: the top right map display two trajectories stacking
two holding patterns before getting the clearance to land on
runway 14. The two other pairs also display similar features
when plotted on a map.

Looking a the latent space of autoencoders trained to
reconstruct trajectories is particularly enlightening with respect
to their ability to extract information from large amounts of
data which comes as a side of effect of their first intended use.

D. Enforcing a clustered structure in the latent space

As autoencoders seem to naturally separate similar data in
the latent space, we present in this section two methods to
further enforce a clustering of high-dimensional data based
on their representation on a lower dimensional space: artefact
(AutonecodeR-based t-SNE for AirCraft Trajectories) and
DCEC (Deep Convolutional Embedded Clustering) [19].

First, we developed the artefact method which is based on
t-SNE (t-distributed Stochastic Neighbour Embedding) [27] as
a way to force a more fitted representation in the latent space
for the traditional clustering methods. Second, we adapted an
existing deep clustering method named DCEC, which was
originally designed for images, so it can be applied to the
clustering of trajectories.

The goal is to compare these two methods in terms of
clustering capabilities. The advantage of DCEC over artefact
is that it can identify the clusters directly without the need of
using a classical clustering method. However, DCEC needs
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Figure 3. The scatter plot displays the latent space on trajectories containing
one or several loops. Sample that are close to each other reveal similar patterns
on the map. In particular, trajectories stacking holding patterns are plotted on
the top right in purple and the subset of trajectories corresponding to strictly
more than one holding pattern are located in the top left purple cluster.

the number of clusters to be set in advance, which is not
necessarily the case with artefact if used in combination with
algorithms like DBSCAN.

1) artefact: This method is based on an autoencoder and
a loss function combining the reconstruction error and a
regularisation term based on t-SNE.

t-SNE [27] is a dimensionality reduction method and
also a powerful 2D or 3D visualisation technique for high-
dimensional data. The projection operator is not applicable to
new samples of data; yet this technique is commonly used as
a hint to determine whether samples would be separable for
classification with a (deep) artificial neural network.

Given a set of n-dimensional samples {xi ∈ X}, t-SNE
defines a conditional probability p j|i between two samples xi
and x j (proportional to the similarity between xi and x j) as
the probability for x j to be a neighbour of xi given a Gaussian
distribution of x j samples around xi:

p j|i =
e−d(xi,x j)

2/2σ2
i

∑k 6=i e−d(xk,xi)2/2σ2
i

(4)

and a distribution of similarity between xi and x j as:

pi j =
p j|i + pi| j

2n
(5)

t-SNE also defines a similarity distribution on the latent
space based on a heavy-tailed Student t-distribution (one-
degree of freedom) defined as:

qi j =

(
1+d(zi,z j)

2)−1

∑k 6=l (1+d(zk,zl)2)−1 (6)

t-SNE tends to minimise similarities (defined in terms
of Kullback-Leibler distances) among distances in the large
dimension space X and in the latent space Z:

dKL(P||Q) = ∑
i, j

pi j log
Å

qi j

pi j

ã
(7)

2) DCEC: This method is an evolution of DEC [18] and
uses a convolutional autoencoder instead of a feed-forward
autoencoder. Unlike in artefact, the goal of DEC/DCEC is
not the minimisation of the KL divergence to generate a
latent structure representative of the distances between data
points in the original data space. Instead, DEC/DCEC defines
a centroid-based probability distribution and minimises its KL
divergence to an auxiliary target distribution to simultaneously
improve clustering assignment and feature representation. This
centroid-based method reduces complexity from O(n2) in arte-
fact to O(nk), where k is the number of centroids. However,
this requires the number of clusters to be fixed in advance.

More precisely, both DEC/DCEC use the cluster assignment
hardening loss [17], [18]. First, the soft assignment of points
to clusters is done via the Student’s t-distribution with one-
degree of freedom. which is a kernel measuring the similarity
between the points in the latent space and the cluster centroids:

qi j =

(
1+d(zi,u j)

2)−1

∑ j′
(
1+d(zi,µ j′)2

)−1 (8)

where zi is a point in the latent space and µ j is the j-th
cluster centroid and qi j represents the probability of point zi
to be assigned to cluster j. Note that in t-SNE this distribution
is calculated from the pairwise distance between points in the
latent space.

The auxiliary target distribution in DCEC is the one pro-
posed in DEC and is defined as:

pi j =
q2

i j/ f j

∑ j′ q2
i j′/ f j′

(9)

where f j = ∑i qi j are the soft cluster frequencies. By squar-
ing the the original Q distribution and then normalising it, P
forces the soft assignments to become closer to 0 or 1. The
divergence between these two distributions is computed via
the KL divergence as in Equation (7).

E. Clustering in the latent space

The training process of both artefact and DCEC consists
in the minimisation of the following loss function which is
based on both the network loss (reconstruction error) and the
clustering loss (KL divergence):

(w,b,w′,b′) = argmin `(s,d(e(s)))+λdKL(P||Q) (10)

However, the two clustering losses are in fact of a very
different nature, each one being an example of the two
categories identified by Min et al. [16]: auxiliary clustering
loss and principal clustering loss.
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An auxiliary clustering loss only guides the network to
obtain a more clustering-friendly embedding from which the
clusters have to be identified by running a clustering algorithm
after the network training process. The t-SNE regularisation
term in artefact plays exactly this role, with the actual cluster-
ing being performed in the fitted latent space by a separated
algorithm such as DBSCAN or Gaussian mixture.

On the other hand, a principal clustering loss allows to
obtain directly the cluster assignments after the training pro-
cess. This is the case of the cluster assignment hardening loss
used by DEC/DCEC where the cluster assignment j of each
sample i can be obtained directly from distribution Q from
argmaxj(qi j).

F. Application and implementation

Trajectories are downsampled with a rate of 64 points
per trajectory and four features per trajectory point have
been selected for clustering: true track angle (unwrapped),
longitude, latitude and altitude. We focused on two specific
subsets of trajectories: all trajectories landing on runway 14
(14,441 trajectories) and a focus on the subset of trajectories
coming from a northbound flow (initial bearing between 162
and 216°, 4437 trajectories), specifically addressed in Sec-
tion IV-C. For the sake of reproducibility, we provide below
a declarative description of our preprocessing using Python
traffic [22] library (version 2.3):
landing_zurich_2019
.resample(64) # unwrap angles and reduce to 64 samples
.query("runway == '14' and initial_flow != 'N/A'")
.query("initial_flow == '162-216'") # 2nd dataset only
.eval() # triggers iteration, evaluation and reduce

As determining hyper-parameters by cross-validation is not
possible in unsupervised learning, we set up them only guided
by the visualisation of results.

artefact uses a feed-forward autoencoder with network di-
mensions set to d-32-8-h for the encoder (decoder is a mirror
of the encoder), where d is the data-space dimension (64
samples/trajectory ×4 features) and h = 2. Batch size is equal
to the dataset length when λ = 0 and 1000 otherwise. The
number of iterations per batch is set to 800 if λ > 0 and 5000
otherwise. The auxiliary clustering algorithm is a Gaussian
mixture with the number of components set to 5 for the whole
traffic dataset and to 4 for the other two smaller datasets.
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Figure 4. Architecture implemented for the artefact autoencoder

The convolutional autoencoder architecture from DCEC has
been adapted to take into account the smaller dimensionality
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Figure 5. Architecture implemented for the DCEC convolutional autoencoder

of trajectories when compared to the one of the images used
in DCEC. Thus, we have removed one of three original
convolutional layers in the encoder (as well as the corre-
sponding deconvolutional layer in the decoder) and the em-
bedding dimension h is set to 2 like in artefact. The resulting
architecture is shown in Figure 5, where Conv2d(n, k) (and
its transpose Conv2DTranspose(n, k)) denotes a convolutional
(deconvolutional) layer with n filters and kernel size k× k.
The stride length is set to 2 in all convolutional layers. The
input trajectories are reshaped from 64×4 to 8×8×4 to work
with the 2D convolutional layers. The number of clusters is
set to 5 for the dataset with the full traffic and 4 otherwise.
The convolutional autoencoder is pre-trained (without the
clustering layer) for 1000 epochs and then fine-tuned with the
clustering layer enabled for 1000 iterations per batch. Batch
size is set to 1000 samples.

IV. RESULTS AND ANALYSIS

We trained several clustering models using both artefact and
DCEC with several λ values in order to assess the effect
of the clustering loss parameters introduced in III-E. The
λ = 0 executions serve as baseline for vanilla (convolutional)
autoencoders. Then, we trained models on a subset of trajec-
tories which is already commonly identified as a flow from an
operational perspective using inbound flow and runway.

A. Baseline for comparison: λ = 0

In order to properly assess the benefits of the λ term (i.e.
of the impact of regularisation terms), we introduce in this
section baseline results with λ = 0 on both artefact (i.e. simple
autoencoder) and DCEC (i.e. convolutional autoencoder).

Figure 6 shows the latent space structure as generated
by artefact (simple autoencoder). Inbound flows are properly
separated, and even further clustered. Figure 7 confirms the
idea that autoencoders display an intrinsic separating ability on
their latent space: we selected two inbound flows and coloured
trajectories on the map with respect to clusters emerging on
their latent space. We kept original colours for the most direct
trajectories and complementary colours (i.e. orange vs. blue;
red vs. green) for the secondary emerged clusters, roughly
corresponding to stacked holding patterns.

Figure 8 shows the latent space structure as generated
by DCEC (convolutional autoencoder) on the same subset
of trajectories. Samples seem to self organise differently:
while clusters organisation seems radial on Figure 6 (or even
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Figure 6. artefact with λ = 0: this is equivalent to a simple autoencoder.

Figure 7. artefact with λ = 0: focus on how inbound flows are separated.

Figure 8. DCEC with λ = 0: this is equivalent to a convolutional autoencoder.

Figure 2 which was trained only on the track angle feature),
whereas samples seem to distribute in a more scattered pattern
on Figure 8. Although, to our knowledge, no scientific proof
supports this description, we found these distribution patterns
on 2D latent spaces consistent enough across executions and
data sets to be mentioned in these lines.

B. Structure of the latent space with clustering loss

In this section we look into the effect of the clustering
loss on the structuring of the latent space. Colours are still
to be related with the naive flow identification (incoming flow
– runway) in order to help describing how the latent space
structures with λ 6= 0.

Figure 9 compares the structure of the latent space con-
structed with artefact λ = 0 (equivalent to Figure 6) and
λ = 0.5, then plots the corresponding trajectories on a map.
For the sake of readability, we never plot more than 50
trajectories per cluster. The first line of the grid plots the latent

Figure 9. Comparison of latent spaces for artefact with λ = 0, λ = 0.5, and
corresponding samples on the right. Colours are consistent with initial flows
in the beginning of the paper.

space for the whole dataset: we can observe that samples have
been further pushed away from each other in a manner that is
consistent with the incoming flows.

In the second and third lines of the grid, we focus on
specific samples selected in the latent space of the λ = 0.5
training, between the two red lines. Selected samples are then
highlighted in the latent space generated with λ = 0 (the left
column of the grid).

The second line selects a subset of purple trajectories (flow
from the North-West) which are mostly stacking holding
patterns in a predetermined position. Few orange samples seem
to overlap as they also stack holding patterns in the same
location. On the left side of the latent space, the selection
caught two outliers from the blue set of trajectories (flow from
the North) which are obviously non standard.

The third line shifts the selection interval below the one
depicted on the second line and selects more orange trajec-
tories stacking holding patterns; also, few purple trajectories
are selected as they cross the final approach before aligning
to runway 14 on a left-hand turn. On the left side of the
latent space, another outlier from the Northern flow has been
selected, which lands in Zurich airport after three attempts.

Figure 10 implements a similar comparison with the latent
space generated with DCEC. Similarly, clusters are further
pushed away from each other with λ = 0.5 and some tra-
jectories from different initial flows become closer to each
other: we can observe the emergence of three clusters grouping
trajectories from different initial flows.

The second line of the grid displays the cluster resulting
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Figure 10. Comparison of latent spaces for DCEC with λ = 0, λ = 0.5, and
corresponding samples on the right. Colours are consistent with initial flows
in the beginning of the paper.

from the merging of two incoming flows with no holding
pattern. Interestingly, it seems that the neural network captured
the symmetry in the two flows converging to runway 14. The
third line of the grid grouped purple and orange trajectories
stacking holding patterns. With λ = 0, DCEC grouped all
trajectories coming from the North-West in a single cluster
(arguably separated by a thin empty space); with λ = 0.5,
direct and tromboning trajectories are more clearly separated
from holding trajectories.

C. Hierarchical clustering

In this section, we use artefact and DCEC in order to
perform a clustering on the latent space that is trained. DCEC
comes with its own clustering method; we perform a separate
Gaussian Mixture on the latent space constructed by artefact.
After incoming flows are separated by a first clustering, we
recursively apply a new clustering on each identified flow.

We implemented artefact and DCEC on the Northern flow
(between 162 and 216°) with a hyperparameter of 4 clusters
to identify. Figure 11 plots the four constructed latent spaces
with artefact and DCEC, for λ = 0 (baseline) and λ = 0.5.

Figure 12 display the identified clusters with artefact. Re-
sults are similar for the green (holding patterns and trom-
boning) and orange clusters. However, we observe a transfer
of trajectories from the red cluster to the blue cluster: with
λ = 0.5, the two branches to the North of the ASMA area
are separated: the Eastern branch is grouped in the red cluster,
while the Western branch is further separated between (almost)
direct flights to the final approach fix (orange cluster) and
trajectories with little tromboning (blue cluster).

Figure 11. Latent spaces for flow 162-216 generated by artefact and DCEC
with λ = 0 and λ = 0.07

Figure 12. Clusters identified by artefact for one flow with λ = 0 (left) and
λ = 0.5 (right); to be related with the first line of the grid in Figure 11

Figure 13. Clusters identified by DCEC for one flow with λ = 0 (left) and
λ = 0.5 (right); to be related with the second line of the grid in Figure 11

Figure 13 display the identified clusters with DCEC. Iden-
tified clusters are different with this implementation. The
most notable impact of the clustering loss is the transfer of
tromboning trajectories, mostly from the blue cluster to the
red cluster which was almost empty with λ = 0.

Although artefact and DCEC result in slightly different
clusters, both provide a precious insight about the organisation
of traffic under different complexity conditions. Both methods
separate trajectories stacking holding patterns, and manage to
isolate different patterns, including direct or trombones.
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V. CONCLUSIONS

Traditional clustering techniques based on similarity or
distance functions defined in a high-dimensional data space
are ineffective and do not scale well with large datasets. In this
paper, we have studied the application of clustering techniques
developed in the field of deep learning to the problem of air
traffic flow identification. These techniques provide automatic
feature extraction and dimensionality reduction by generating
a low-dimensional latent space which is more fitted to the
clustering task. This is done by integrating into the loss
function a regularisation term called clustering loss.

We presented and compared two autoencoder-based trajec-
tory clustering methods: artefact and DCEC. We applied both
methods to identify the arrival flows in the Zurich terminal
area and shown how they can provide an embedding of
the trajectories which is more discriminative for clustering.
Although both methods are able to identify the arrival flows,
they present some functional and performance differences due
to the nature of their clustering losses. While artefact needs to
be combined with a clustering algorithm such as a GMM or
DBSCAN to identify the clusters, DCEC can do so directly.
However, DCEC always needs the number of clusters to be
fixed a priori, which is not the case for artefact if used with
DBSCAN for instance.

One of the main issues with deep clustering methods is
the significant number of hyper-parameters that needs to be
fitted. In our study, we mainly focused on the impact of the λ

parameter on the results. However, we neither explored the
influence nor optimised the values of other parameters. In
particular, for the sake of simplicity and illustration purposes,
we have systematically fixed the dimension of the latent space
to 2, even though a higher dimension could have been more
appropriate. More generally, the difficulty stems from the lack
of validation data which hampers the evaluation process of
unsupervised methods.

Both clustering methods presented in this paper can also be
used for trajectory anomaly detection. An anomaly score for
each trajectory can be computed from either the reconstruction
error or the probability of cluster membership when artefact
is combined with a model like a Gaussian mixture or directly
from DCEC Q distribution. However, the definition of an
appropriate threshold is required to label each trajectory as
anomalous or not. Future works will assess the impact of
clustering losses on the performance of reconstruction-based
anomaly detection methods.
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