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Abstract: Le (M, g) be a Riemannian manifold equipped with a pair of dual connections1

(∇,∇∗).Such a structure is known as a statistical manifold since it was defined in the context2

of information geometry. This paper aims at defining the complete lift of such a structure to the3

cotangent bundle T∗M using the Riemannian extension of the Levi-Civita connection of M.In the first4

section, common tensors associated with pairs of dual connections, emphasizing the cyclic symmetry5

property of the so-called skewness tensor. In a second section, the complete lift of this tensor is6

obtained, allowing the definition of dual connections on TT∗M with respect to the Riemannian7

extension.8

1. Introduction9

Information geometry was originally dealing with parameter spaces of families of probability10

densities viewed as differentiable manifolds [1,2]. More specifically, let E be a measure space and let11

S = {pθ , θ ∈ M} be a parameterized family of densities on E satisfying:12

1. M is a topological manifold (in most of the case it is simply an open subset of Rn).13

2. The topology of S induced by the L1 norm is compatible with the topology of M.14

3. It exists a probability measure µ on E such that for any θ ∈ M, pθ << µ.15

4. θ 7→ (x ∈ E→ pθ(x)) is smooth uniformly in x.16

5. ∂θEµ[log p(x, θ)] = Eµ [∂θ log p(x, θ)].17

6. The moments up to order 3 of x 7→ ∂θ log p(x; θ) exist and are smooth.18

7. The matrix F with entries Fij(θ) = Epθ

[
∂θi log p(x, θ)∂θj log p(x, θ)

]
is positive definite.19

The last assumption allows to endow M with the structure of a Riemannian manifold with metric:

gθ

(
∂θi , ∂θj

)
= Fij(θ) (1)

Parameterized families of the so-called exponential type, whose densities can be written as:

p(x; θ) = exp (−〈θ, T(x)〉 − ψ(θ) + h(x))

play a special role in statistics and have a well behaved Riemannian structure. When T(x) = x, the
family is said to be natural and is defined entirely by ψ.In such a case, the Fisher information matrix
takes the form:

Fij(θ) = −Epθ

[
∂2

∂θi∂θj

]
so that the Riemannian metric is Hessian. The structure of such manifolds has been thoroughly studied
in [3]. Finally, from considerations arising in statistical estimation, a pair of dual connections ∇,∇∗
with respect to the Fisher metric can be constructed [4]. They possess vanishing torsion and are related
by the skewness tensor:

g (∇XY, Z)− g (∇∗XY, Z) = T(X, Y, Z)
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with:
Tijk = Epθ

[
∂θi log p(x, θ)∂θj log p(x, θ)∂θk log p(x, θ)

]
As a generalization, a smooth Riemannian manifold (M, g) equipped with a pair (∇,∇∗) of20

torsionless dual connections is called a statistical manifold. It can be defined equivalently by (M, g, T)21

where T is a fully symmetric (0, 3)-tensor. It turns out [5] that any statistical manifold can be embedded22

as a statistical model, i.e. one related to a parameterized family of densities.23

For a Riemannian manifold (M, g), lifting geometric objects to the tangent bundle TM (resp.24

cotangent bundle T∗M) is a classical problem [6–8] that relies most of the time on the whithey sum25

TTM = HTM⊕VTM (resp. TT∗M = HT∗M⊕VT∗M) with VTM the vertical bundled obtain from26

the kernel of the canonical projection dπ : TTM → TM (resp. dπ : TT∗M → T∗M and HTM the27

horizontal subspace arising from a fixed affine connection ∇. In the tangent bundle, [8] introduces a28

lift based on horizontal and vertical lifts of vector fields and relies on a quasi-complex structure on29

TM. For T∗M, the preferred method involves complete lifts [9] and Riemann extensions [10], which30

are pseudo-riemannian metrics of neutral signature defined on the cotangent bundle and associated in31

a canonical way to affine connections with vanishing torsion. The complete lift of the connection is32

defined to be the Levi-Civita one with respect to its Riemann extension. Complete and vertical lifts of33

different kind of tensors are also presented in [6]. Finally, horizontal lifts of connections are presented34

in [7].35

In this paper, the complete lift of dual connections is defined and yields a pair of dual connections36

which have vanishing torsion if the original connections have. The strategy adopted is to lift the37

skweness tensor, here defined in a more general setting as a (0, 3)-tensor with cyclic symmetry. The38

procedure described in [6] is adapted to this case, effectively allowing to get a skewness tensor on39

TT∗M.40

2. Statistical structures41

In information geometry, dual connections are the basic objects defining the so-called statistical42

manifold structure [4]. In the sequel, M is a smooth n-dimensional manifold endowed with a Riemann43

metric g.44

Definition 1. Let ∇,∇∗ be affine connections on TM. They are said to be dual if for any triple X, Y, Z
of vector fields:

Z (g(X, Y)) = g (∇ZX, Y) + g (X,∇∗ZY) (2)

The torsion of a connection ∇ is the tensor T defined as: T(X, Y) = ∇XY−∇YX − [X, Y]. The45

next well known proposition relates the torsion tensors of dual connections.46

Proposition 1. Let ∇,∇∗ be dual connections. Let T (resp. T∗) be the torsion tensor of ∇ (resp. ∇∗). Then,47

T = T∗.48

Proof. For any triple (X, Y, Z) of vector fields:

g(T∗(X, Y), Z) = g (∇∗XY, Z)− g (∇∗YX, Z)− g ([X, Y], Z)

= Xg(Y, Z)− g (∇XZ, Y)−Yg(X, Z) + g (∇YZ, X)− g ([X, Y], Z)

= g (Z,∇XY)− g (Z,∇YX)− g ([X, Y], Z)

= g (T(X, Y), Z)

49

As a particular, but important case, if the torsion of T vanishes, so does the torsion of T∗.50

Proposition 2. Let ∇,∇∗ be dual connections. Then ∇g = −∇∗g51
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Proof. For any triple (X, Y, Z) of vector fields:

(∇Zg)(X, Y) = Z(g(X, Y))− g(∇ZX, Y)− g(X,∇ZY)

and
(∇∗Zg)(X, Y) = Z(g(X, Y))− g(∇∗ZX, Y)− g(X,∇∗ZY)

Using the relations:
Z(g(X, y)− g(∇∗ZX, Y) = g(X,∇ZY)

and:
Z(g(X, y)− g(X,∇∗ZY) = g(∇ZX, Y)

the claim follows.52

Definition 2. Let ∇1,∇2 be affine connections on TM. Their mutual torsion is the tensor:

D∇1,∇2(X, Y) = ∇1
XY−∇2

YX− [X, Y]

Remark 1. The divergence tensor is defined for dual connections ∇,∇∗ as D(X, Y) = ∇XY −∇∗XY,53

which is related to D∇,∇∗ by the relation D∇,∇∗ = T(X, Y) + D(X, Y). For torsion-less connections,54

the two notions agree, i.e. D∇,∇∗ = D.55

In the case of dual connections with vanishing torsion, the commutation defect of the divergence56

is related to the mutual curvature of the connections.57

Definition 3. Let (∇1,∇2) be a pair of connections. Their mutual curvature is the tensor (1, 3)-tensor:

R∇1∇2(X, Y, Z) = ∇1
X∇2

YZ−∇1
Y∇2

XZ−∇1
[X,Y]Z (3)

As in the case of the curvature, it is often useful to introduce the (0, 4)-tensor:

R∇1∇2(X, Y, Z, U) = g (R∇1∇2(X, Y, Z), U)

The curvature and the mutual curvature of dual connections enjoy symmetry properties.58

Proposition 3. Let (∇,∇∗) be a pair of dual connections. Then, for any vector fields X, Y, Z, U;{
R(X, Y, Z, U) = R∗(X, Y, U, Z)

R∇∗∇(X, Y, Z, U) = R∇∇∗(X, Y, U, Z)
(4)

Proof. The proof of the first property is found in, e.g. [4]. For the second, the definition of R∇∇∗ is
written as:

R∇∗∇(X, Y, Z, U) = g(∇∗X∇YZ, U)− g(∇∗Y∇XZ, U)− g(∇∗[X,Y]Z, U)

Using the duality property:

R∇∗∇(X, Y, Z, U) =X (g(∇YZ, U))− g(∇YZ,∇XU)

−Y (g(∇XZ, U)) + g(∇XZ,∇YU)

− g(∇∗[ X, Y]Z, U)
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Using duality once again:

R∇∗∇(X, Y, Z, U) =XY (g(Z, U))− Xg(Z,∇∗YU)−Y (g(Z,∇∗XU)) + g(Z,∇∗Y∇XU)

−YX (g(Z, U)) + Y (g(Z,∇∗XU))

+ X (g(Z,∇∗XU))− g(Z,∇∗X∇YU)

− [X, Y]g(Z, U) + g
(

Z,∇[X,Y]U
)
= −R∗∇∇∗(Y, X, U, Z) = R∗∇∇∗(X, Y, U, Z)

59

In the case of dual connections without torsion, the definition of D(X, Y) simplifies to ∇XY −60

∇∗XY. Letting DX : Y → D(X, y), the next proposition relates the commutation defect to the61

curvatures.62

Proposition 4. For any vector fields X, Y, Z:

DXDYZ− DYDXZ = R(X, Y, Z) + R∗(X, Y, Z)− R∇∇∗(X, Y, Z)− R∇∗∇(X, Y, Z)

Proof. By simple computation:

DXDYZ− DYDXZ = (∇X −∇∗X) (∇YZ−∇∗YZ)− (∇Y −∇∗Y) (∇XZ−∇∗XZ)

= ∇X∇YZ−∇X∇∗YZ−∇∗X∇YZ +∇∗X∇∗YZ

−∇Y∇XZ +∇Y∇∗XZ +∇∗Y∇XZ−∇∗Y∇∗XZ

and the claims follows by identification of the terms.63

Proposition 5. Let ∇,∇∗ be dual affine connections on TM. Then, for any triple X, Y, Z of vector fields:

g (∇XY, Z) = g
(
∇lc

XY, Z
)
+

1
2
[g (D∇,∇∗(Z, X), Y)− g (D∇,∇∗(Y, Z), X) + g (D∇,∇∗(X, Y), Z)] (5)

where ∇lc is the Levi-Civita connection.64

Proof. Since the two connections are dual:

X (g(Y, Z)) = g (∇XY, Z) + g (Y,∇∗XZ)

Using the definition of D∇,∇∗ it comes:

X (g(Y, Z)) = g (∇XY, Z) + g (Y,∇ZX)− g (D∇,∇∗(Z, X), Y)− g([Z, X], Y)

Using then an alternating sum over the cyclic permutations of (X, Y, Z) and the Koszul formula:

2g
(
∇lc

XY, Z
)
=X (g(Y, Z))− Z (g(X, Y)) + Y (g(Z, X))

+ g(Y, [Z, X]− g(X, [Y, Z]) + g(Z, [X, Y])

yields the result.65

Remark 2. Prop. 5 is the analogue of the Kozsul formula for dual connections. It is a defining property66

given D∇∇∗ .67

Notation 1. The (0, 3)-tensor:

U∇1,∇2(X, Y, Z) = g
(

D∇1,∇2(Z, X), Y
)
− g

(
D∇1,∇2(Y, Z), X

)
+ g

(
D∇1,∇2(X, Y), Z

)
(6)
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is the skewness tensor associated the connections ∇1,∇2. When no confusion is possible in the case of68

dual connections, the subscripts will be dropped so that U(X, Y, Z) stands for U∇,∇∗(X, Y, Z)69

Remark 3. The formula of prop. 5 can be rewritten to give the expression of ∇∗:

g (∇∗XY, Z) = g
(
∇lc

XY, Z
)
− 1

2
U(Y, X, Z)

Proposition 6. For any triple (X, Y, Z):

U(X, Y, Z) = U(Y, X, Z) + 2g (T(X, Y), Z) (7)

where T is the torsion of ∇.70

Proof. Using the definition:
∇XY = ∇YX + [X, Y] + T(X, Y)

and the fact that the Levi-Civita has vanishing torsion:

g (∇XY, Z) = g
(
∇lc

XY, Z
)
+

1
2

U(X, Y, Z)

thus:

g (∇YX, Z) = g
(
∇lc

Y X, Z
)
− g (T(X, Y), Z) +

1
2

U(X, Y, Z)

= g
(
∇lc

Y X, Z
)
+

1
2

U(Y, X, Z)

and so:
U(X, Y, Z) = U(Y, X, Z) + 2g (T(X, Y), Z)

71

Proposition 7. The tensor U has the cyclic symmetry propery, that is for any triple (X, Y, Z) of vector fields:

U(X, Y, Z) = U(Z, X, Y) (8)

Proof. Using the symmetry of the Riemann metric, the same derivation as in prop. 5 but applied to
the terms X(g(Z, Y), Y(g(X, Z), Z(g(Y, X) yields:

2g
(
∇lc

XZ, Y
)
=2g (∇XZ, Y)

− g (Z, D(Y, X)) + g (X, D(Z, Y))− g (Y, D(X, Z))
(9)

By identification it comes:
U(X, Z, Y) = U(Y, X, Z) (10)

72

Proposition 8. Let U be a tensor with cyclic symmetry, then the connections defined by:

g (∇XY, Z) = g
(
∇lc

XY, Z
)
+

1
2

U(X, Y, Z)

g (∇∗XY, Z) = g
(
∇lc

XY, Z
)
− 1

2
U(Y, X, Z)

(11)

are dual.73



Version July 31, 2020 submitted to Mathematics 6 of 13

Proof. For any triple (X, Y, Z) of vector fields:

X (g(Y, Z)) = g
(
∇lc

XY, Z
)
+ g

(
Y,∇lc

XZ
)

Under the assumption of eq. 10, it comes:

X (g(Y, Z)) =g (∇XY, Z) +
1
2

U(X, Y, Z)

+ g((Y,∇∗XZ)− 1
2

U(Z, X, Y)

and since U has cyclic symmetry:

X (g(Y, Z)) = g (∇XY, Z) + g((Y,∇∗XZ)

74

Proposition 9. Let ∇1,∇2 be a pair of affine connections. For any triple (X, Y, Z) of vector fields:

g
(
Y, D∇1,∇2(Z, X)

)
=

1
2
[
U∇1,∇2(X, Y, Z) + U∇1,∇2(Z, X, Y)

]
(12)

Proof. Direct computation from the definition of U.75

Remark 4. Prop. 9 shows that the mutual torsion of a pair of dual connections is uniquely defined by a76

cyclic symmetric tensor. Conversely, for a pair ∇1,∇2 of connections, the cyclic symmetry defect of77

the tensor U∇1,∇2 , namely A(X, Y, Z) = U∇1,∇2(X, Y, Z)−U∇1,∇2(Z, X, Y) is the obstruction of being78

dual. Please note also that the torsion for a pair of dual connections can be seen as the obstruction for79

the tensor U to be totally symmetric.80

Remark 5. A statistical manifold may be defined as a quadruple (M, g,∇, U) with M a a smooth81

manifold, g a Riemannian metric, ∇ an affine connection and U a tensor with cyclic symmetry. It82

slightly more general than the usual definition since U is not required to be totally symmetric, thus83

allowing connections with torsion.84

3. Dual connections lifts85

Let U be a coordinate neighborhood in M and let π : T∗M → M be the canonical projection.86

φ−1(U) is a coordinate neighborhood in T∗M with coordinates denoted as (x1, . . . , xn, p1, . . . , pn).87

The lift of connections on the cotangent bundle has been studied in [6,7] using the Riemann
extension defined in [10]. Another kind of lift is introduced in [11] along with a metric on T∗M
Let (M, g) be a smooth Riemannian manifold and let ∇ be an affine connection. The kernel of
dπ : TT∗M → T∗M defines an integrable distribution, called the vertical distribution, hereafter
denoted by VT∗M. It is spanned by the vectors:

ej+n = δj =
∂

∂pj
, j = 1 . . . n (13)

Complementary to it, there is an horizontal distribution spanned by the vectors:

ej = ∂j + Γk
ji pkδi, j = 1 . . . n (14)

with:
∂j =

∂

∂xj
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These basis vectors are conveniently put into a matrix form, following the convention of [11]:

L =

(
Id 0
Γ Id

)
(15)

where Γ is the matrix with entries:
Γji = Γk

ji pk (16)

Definition 4. The Riemannian extension of a torsion-free affine connection ∇ on TM is the symmetric
(0, 2)-tensor with component matrix:

∇R =

(
−2Γ Id

Id 0

)

where Γ is the matrix defined in 16.88

Proposition 10. Let ∇ be a torsion-free affine connection on M and let (ej)1,...,2n be its adapted frame in
TT∗M. With respect to it, the component matrix of the Riemannian extension is:(

0 Id
Id 0

)

Proof. In the adapted frame, the expression of the component matrix of the Riemannian extension is:

Lt

(
−2Γ Id

Id 0

)
L

which is equal to: (
−2Γ + Γ + Γt Id

Id 0

)
using the assumption that ∇ is torsion-free, Γt = Γ and the claim follows.89

Definition 5. The Levi-Civita connection with respect to Riemannian extension, denoted by ∇c, is90

called the complete lift of the connection ∇. .91

Proposition 11. The Christoffel symbols of the complete lift ∇c are given by:

cΓk
ji = Γk

ji,
cΓk+n

ji = pl Rl
kij,

cΓk+n
j(i+n) = −Γi

jk, i, j, k = 1, . . . , n

When∇ = ∇lc, the torsion-free assumption is automatically satisfied, so that in an adapted frame92

the Riemannian extension reduces to the one of prop. 1093

Proposition 12. Let (∇,∇∗) be a pair of dual affine connections on TM. Then, with respect to the Riemannian
extension ∇R of ∇lc, the following relations hold:

Lt∇RL∗ = L∗t∇RL =

(
0 Id
Id 0

)
(17)

Lt∇RL =

(
1
2
(

D̃ + D̃t) Id
Id 0

)
(18)

L∗t∇RL∗ =

(
− 1

2
(

D̃ + D̃t) Id
Id 0

)
(19)
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where D̃ is the matrix with entries:
D̃ji = pkDk

ji

and L (resp. L∗) is the component matrix of the adapted frame to ∇ (resp. ∇∗).94

Proof. In the case of dual connections, eq. 12 yields:

g (D(X, Y), Z) = U(X, Y, Z)

and so:

∇ = ∇lc +
1
2

D (20)

∇∗ = ∇lc − 1
2

Dt (21)

where Dt(X, Y) = D(Y, X). From 20 (resp. 21), it comes:

Γ = Γlc +
1
2

D̃ (22)

Γ∗ = Γlc − 1
2

D̃t (23)

(24)

When then have:

∇RL =

(
−Γlc + D̃

2 Id
Id 0

)
and:

L∗t∇RL =

(
− D̃

2 + D̃
2 Id

Id 0

)
=

(
0 Id
Id 0

)
The other equations are proved the same way.95

The above relations show that the horizontal subspaces of∇ and∇∗ are related by the Riemannian
extension in a very simple way. Let X, Y be a vector in Tx,pT∗M with decomposition X = XV + XH
(resp. Y = YV∗ + YH∗ ) according to the horizontal subspace of ∇ (resp. ∇∗), then:

∇R(Y, X) = 〈YV∗ , XH〉+ 〈XV , YH∗〉

with 〈·, ·〉 the euclidean inner product.96

Another interesting fact is that with respect to the adapted frames of∇ (resp. ∇), the Riemannian97

extension becomes a modified Riemannian extension in the sense of [12]. To a given modified98

Riemannian extension, it is thus possible to associate a pair of dual connections with a given torsion99

(this last restriction comes from the fact that only the symmetric part of the tensor D enters the100

expression).101

Since duality is related to metric, it is not so obvious how to lift a pair of mutually dual connections102

in a canonical way since the complete lifts of ∇ and ∇∗ involve different Riemannian extensions.103

The preferred approach will be thus to lift the mutual torsion D to a (0, 3)-tensor, what can be done104

extending the approach of [6], and to exploit the fact that it has the cyclic symmetry property.105

In the sequel, the symmetric (resp. anti-symmetric) part with respect to the contravariant indices
of the (1, 2)-tensor D will be denoted by sD (resp. aD), i.e.:

sDk
ij =

1
2

(
Dk

ij + Dk
ji

)
aDk

ij =
1
2

(
Dk

ij − Dk
ji

)
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Proposition 13. The expression:

σ =
1
2

pk
aDk

ijdxi ∧ dxj

defines a 2-form on TT∗M. Its exterior derivative dσ is given by:

dσ =
1
2

pl
∂aDl

ij

∂xk dxk ∧ dxi ∧ dxj +
1
2

aDk
ijdpk ∧ dxi ∧ dxj

Rearranging the terms, the form dσ can be rewritten as:

6dσ =pl

(
∂aDl

ij

∂xk +
∂aDl

ki
∂xj +

∂aDl
jk

∂xi

)
dxi ∧ dxj ∧ dxk

+ aDk
ijdpk ∧ dxi ∧ dxj + aDi

jkdxk ∧ dpi ∧ dxj + aDj
kidxk ∧ dxi ∧ dpj

(25)

It turns out that the above tensor has cyclic symmetry since it is (0, 3) and skew-symmetric. This106

can made more explicit by first noticing that the first line in the right hand side has obviously this107

property. In the second line, considering as an example the first term aDk
ijdpk ∧ dxi ∧ dxj, a cyclic108

permutation of the arguments yields aDk
ijdxj ∧ dpk ∧ dxi. Now, the indices change j→ k, k→ i, i→ j109

gives aDi
jkdxk ∧ dpi ∧ dxj, which is exactly the original second term. The remaining terms can be110

worked the same way.111

Considering now the symmetric part of D, a similar procedure can applied to obtain a fully
symmetric (0, 3)-tensor. Let us denote by � the symmetric tensor product, that is:

x� y = (x⊗ y + y⊗ x)/2

. From sD, a symmetric tensor on TT∗M can be defined as:

θ =
1
2

pk
sDk

ijdxi � dxj

Following the construction of 13 and the formula of [13], a fully symmetric lift can be defined.112

Definition 6. The symmetric lift of sD is the (0, 3)-tensor with components:

1
6

(
pl

(
∂sDl

ij

∂xk +
∂sDl

ki
∂xj +

∂sDl
jk

∂xi

)
dxi � dxj � dxk

+sDk
ijdpk � dxi � dxj + sDi

jkdxk � dpi � dxj + sDj
kidxk � dxi � dpj

) (26)

Gathering things together, both the symmetric and the anti-symmetric part of D can be lifted to a113

cyclic symmetric (0, 3)-tensor. In the sequel, the notation of [6] is adopted: Latin letters i, j, . . . refer to114

x components, overlined letters i, j, . . . refers to p components and capital letters can be used for both.115

As an example, dxi = dpi, δi = ∂i.116

Definition 7. The cyclic symmetric complete lift of the (1, 2)-tensor D, denoted Uc, is the (0, 3)-tensor
with components uc

ABCdxA ⊗ dxB ⊗ dxC:
uc

ijk = pl

(
∂Dl

ij

∂xk +
∂Dl

ki
∂xj +

∂Dl
jk

∂xi

)
uc

ijk
= Di

jk, uc
ijk

= Dj
ki, uc

ijk
= Dk

ij

uc
ijA

= uc
iAj

= uc
Aij

= 0
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From Uc, the complete lift of D can be defined as the (1, 2)-tensor Dc such that for any triple of
vector fields:

∇R (X, Dc(Y, Z)) = Uc(X, Y, Z) (27)

Given the matrix form of the Riemannian extension:

∇R =

(
−2Γ Id

Id 0

)

its inverse is readily obtained as:

∆ =

(
0 Id
Id 2Γ

)
The components of Dc in coordinates can be obtained by composing the matrix A, yielding:

Dc C
AB = ∆CDuDAB



Dc i
jk = Di

jk

Dc i
jk = pl

(
∂Dl

ij

∂xk +
∂Dl

ki
∂xj +

∂Dl
jk

∂xi

)
+ 2Γi

l D
l
jk

Dc i
jk
= Dj

ki

Dc i
jk
= Dk

ij

Dc i
jk
= Dc i

jk
= Dc i

jk
= Dc i

jk
= 0

(28)

with the notation Γi
l = Γil . Please note that the above relations are different from the one given in [6]117

for the complete lift of a skew-symmetric (1, 2)-tensor since here the Riemann extension is used in118

place of the canonical ε (1, 1)-tensor and only the cyclic symmetry is assumed. This last fact can be119

noticed in the third and forth lines of eq. (28).120

The next definitions are recalled for the sake of completeness.121

Definition 8. Let ω = ωidxi be a degree 1 differential form. Its vertical lift to TT∗M is the vector field:

ωV = ωiδ
i

Vector fields admit both a vertical and a complete lift. Only the later will be used here.122

Definition 9. Let X = Xi∂i be a vector field on M. Its complete lift to TT∗M is the vector field:

Xc = Xi∂i − pl
∂Xl

∂xk δk

Finally (1, 1)-tensors can be lifted in a quite obvious way:123

Definition 10. Let F be a (1, 1)-tensor field. Its vertical lift to TT∗M is the vector field:

FV = pl Fl
kδk

The action of Dc on vertical and complete lift can now be obtained.124

Proposition 14. Let X be a vector field and ω, θ be 1-forms. Then:{
Dc(ωV , θV) = 0

Dc(ωV , Xc) = (ωDX)
V , Dc(Xc, ωV) =

(
ωDX)V (29)
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where DX (resp. DX) is the (1, 1)-tensor defined by: DX(Y) = D(X, Y) (resp. DX(Y) = D(Y, X)).125

Proof. Let ω = ωidxi, θ = θjdxj. Then D(ωv, θV) = ωiθ jDc A
ij

= 0. Let X be vector field and Xc its
complete lift. By linearity:

Dc A(ωV , Xc) = ωiX jDc A
ij − pl

∂Xl

xk Dc A
ik

Since Dc A
ik

= 0, the second term in the right hand side vanishes. For the fist one, only Dc k
ij

= Di
jk is

non-zero, so that:
Dc(ωV , Xc) = ωiX jDi

jkδk

The tensor DX has expression DX(Y) = Dk
ijX

iY j∂k, so that ωDX is the form ωDX = ωkXiDk
ijdxj, whose126

vertical lift is ωkXiDk
ij∂

k.127

Please note while the expression obtained is similar to the one of [6], the sign is opposite.128

The case of the action on two complete lifts is a little bit more complicated. First of all, given two
vector fields X = Xi∂i, Y = Y j∂j, a simple computation yields:

Dc(Xc, Yc) = XiY jDk
ij∂k + XiY j pl

(
∂Dl

ij

∂xk +
∂Dl

ki
∂xj +

∂Dl
jk

∂xi

)
δk

+ 2plΓkl Dl
ijX

iY jδk − Xi pl
∂Yl

∂xj Dj
kiδ

k −Y j pl
∂xl

∂xi Di
jkδk

(30)

After rewriting, eq. (30)becomes:

Dc(Xc, Yc) = XiY jDk
ij∂k + Xi pl

(
Y j ∂Dl

ki
∂xj −

∂Yl

∂xj Dj
ki

)
δk

+ Y j pl

(
Xi

∂Dl
jk

∂xi −
∂Xl

∂xi Di
jk

)
δk + XiY j pl

∂Dl
ij

∂xk δk + 2plΓkl Dl
ijX

iY jδk

(31)

Let us consider, for X, Y fixed vector fields, the (1, 1)-tensor ∇lcD(X, Y):

Z 7→ ∇lc
Z(D(X, Y)) = Zk

∂Dl
ijX

iY j

∂xk
+ Γl

kmDm
ij XiY jZk

Its vertical lift is then:

(
∇lcD(X, Y)

)V
= pl

∂Dl
ijX

iY j

∂Xk δk + plΓ
l
kmDm

ij XiY jδk (32)

On the other hand, the complete lift of the vector field D(X, Y) is:

(D(X, Y))C = Di jkXiY j∂k − pl
∂Dl

ijXiYj

∂xk δk (33)

Combining ed. (32) and eq. (33) yields:

2plΓkl Dl
ijX

iY jδk + XiY jDk
ij∂k = 2

(
∇lcD(X, Y)

)V
+ (D(X, Y))C − pl

∂Dl
ijXiYj

∂xk δk (34)
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Putting the expression in eq. (31) yields:

Dc(Xc, Yc) = 2
(
∇lcD(X, Y)

)V
+ (D(X, Y))C + Xi pl

(
Y j ∂Dl

ki
∂xj −

∂Yl

∂xj Dj
ki

)
δk

+ Y j pl

(
Xi

∂Dl
jk

∂xi −
∂Xi

∂xi Di
jk

)
δk − pl Dl

ij
∂Xl

∂xk Y jδk − pl Dl
ijX

i ∂Yj

∂xk δk

(35)

Let K be a (1, 1) tensor K. Its Lie derivative can be written [14, p. 32, prop. 35.]:

LXK(Y) = [X, K(Y)]− K([X, Y])

It thus comes:
LYDX(Z) = [Y, DX(Y)]− DX([Y, Z]) (36)

Which can be written in coordinates:

LYDX(Z)l = Y j ∂Dl
ikXiZk

∂xj − Dj
ikXi ∂Yl

∂xj Zk −Y j ∂Zk

∂xj XiDl
ik + Zj ∂Yk

∂xj XiDl
ik

= Xi

(
Y j Dl

ik
∂xj
− Dj

ik
∂Yl

∂xj

)
Zk +

∂Yk

∂xj XiDl
ikZj

(37)

Plugging it into eq. (35) finally gives the reduced expression:

Dc(Xc, Yc) = 2
(
∇lcD(X, Y)

)V
+ (D(X, Y))C

+ (LYDX + LXDY)
V

+ 2((∇0D)(X, Y)−∇0(D(X, Y))V

(38)

with ∇0 the trivial connection with 0 Christoffel symbols. The equation eq. (38) completely defines the129

tensor Dc.130

From the complete lift Dc, dual connections with respect to the Riemannian extension can be
obtained: {

∇̃ = ∇c + 1
2 Dc

∇̃∗ = ∇c − 1
2 Dc t

(39)

The pair (∇̃, ∇̃∗) defines the complete lift of the original statistical structure to the pseudo-Riemannian131

manifold (T∗M,∇R). When∇ is without torsion, then D is symmetric. Using eq. (38) and the fact that132

in such a case DX = DX show that Dc is itself symmetric, proving that ∇̃ has vanishing torsion.133

Conflicts of Interest: ‘The author declare no conflict of interest134

References135

1. Amari, S.; Nagaoka, H. Methods of Information Geometry; Translations of mathematical monographs,136

American Mathematical Society, 2007.137

2. Amari, S. Information Geometry and Its Applications; Applied Mathematical Sciences, Springer Japan,138

2016.139

3. Shima, H. The Geometry of Hessian Structures; World Scientific, 2007.140

4. Amari, S.; Barndorff-Nielsen, O.; of Mathematical Statistics, I.; Kass, R.; Lauritzen, S.; Rao, C. Differential141

Geometry in Statistical Inference; American Oriental Series, Institute of Mathematical Statistics, 1987.142

5. Le, H. Statistical manifolds are statistical models. Journal of Geometry 2006, 84, 83–93.143

doi:10.1007/s00022-005-0030-0.144

https://doi.org/10.1007/s00022-005-0030-0


Version July 31, 2020 submitted to Mathematics 13 of 13

6. YANO, K.; M. PATTERSON, E. Vertical and complete lifts from a manifold to its cotangent bundle. J. Math.145

Soc. Japan 1967, 19, 91–113. doi:10.2969/jmsj/01910091.146

7. YANO, K.; M. PATTERSON, E. Horizontal lifts from a manifold to its cotangent bundle. J. Math. Soc.147

Japan 1967, 19, 185–198. doi:10.2969/jmsj/01920185.148

8. Dombrowski, P. On the Geometry of the Tangent Bundle. Journal für die reine und angewandte149

Mathematik 1962, 1962, 73 – 88. doi:https://doi.org/10.1515/crll.1962.210.73.150

9. Satô, I. Complete lifts from a manifold to its cotangent bundle. Kodai Math. Sem. Rep. 1968, 20, 458–468.151

doi:10.2996/kmj/1138845751.152

10. Patterson, E.M.; Walker, A. Riemann extensions. The Quarterly Journal of Mathematics 1952, 3, 19–28,153

[https://academic.oup.com/qjmath/article-pdf/3/1/19/7295501/3-1-19.pdf]. doi:10.1093/qmath/3.1.19.154

11. Mok, K.P. Metrics and connections on the cotangent bundle. Kodai Math. Sem. Rep. 1977, 28, 226–238.155

doi:10.2996/kmj/1138847443.156

12. Calviño-Louzao, E.; Garcia-Rio, E.; Gilkey, P.; Vázquez-Lorenzo, R. The geometry of modified Riemannian157

extensions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2009,158

465. doi:10.1098/rspa.2009.0046.159

13. Olver, P.J. Symmetry groups and group invariant solutions of partial differential equations. J. Differential160

Geom. 1979, 14, 497–542. doi:10.4310/jdg/1214435234.161

14. Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry, Volume 1; A Wiley Publication in162

Applied Statistics, Wiley, 1996.163

c© 2020 by the authors. Submitted to Mathematics for possible open access publication164

under the terms and conditions of the Creative Commons Attribution (CC BY) license165

(http://creativecommons.org/licenses/by/4.0/).166

https://doi.org/10.2969/jmsj/01910091
https://doi.org/10.2969/jmsj/01920185
https://doi.org/https://doi.org/10.1515/crll.1962.210.73
https://doi.org/10.2996/kmj/1138845751
http://xxx.lanl.gov/abs/https://academic.oup.com/qjmath/article-pdf/3/1/19/7295501/3-1-19.pdf
https://doi.org/10.1093/qmath/3.1.19
https://doi.org/10.2996/kmj/1138847443
https://doi.org/10.1098/rspa.2009.0046
https://doi.org/10.4310/jdg/1214435234
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Statistical structures
	Dual connections lifts
	References

