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Abstract—Accurate prediction of aircraft arrival times is one of
the fundamental elements for air traffic controllers to manage an
optimal arrival and departure sequencing on the runway, reduce
flight delays, and achieve a good collaboration with airports
and airlines. In this work, we analyze the feature engineering
problem to predict Aircraft Landing Time (LDT) in Extended-
TMA with machine learning models. Two main contributions are
highlighted in this work. First, the impact of different features
in LDT prediction is investigated. Second, a machine learning
prediction model is presented to predict LDT. Our case of study
is the E-TMA of Singapore Changi Airport (WSSS) with a
radius of 100NM. Firstly, data analysis is conducted to check
the availability of different resource data, as well as cleaning the
raw trajectory data. Then, feature construction and extraction
are discussed in details, machine learning prediction models
are proposed to address the LDT prediction. The experimental
results show that 4 sets of features play a significant impact on
LDT prediction for primary runway-in-use, they are: (1) Control
intent: traffic demand, current traffic density, and adjacent flow;
(2) Weather: surface wind; (3) Trajectory: the position of aircraft;
(4) Seasonality: parts of a day and a week. Moreover, comparing
three Machine Learning algorithms, in our study case, Extra-
Trees is the best prediction algorithm compared with other
machine learning models in terms of Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). It is also found that
Machine learning models perform much better than the current
operational system. In summary, two main conclusions are drawn
from the present work. First, predicting the aircraft LDT is
strongly correlated with the TMA density at the flight operation
time. Second, feature selection with domain knowledge and expert
opinions is very important, and with good features, the model is
less sensitive to the choice of machine learning algorithm.

Keywords—Terminal Maneuvering Area, Trajectory predic-
tion, Machine learning, Data mining, Aircraft Landing Time.

I. INTRODUCTION

The increase of air traffic demand all over the world
emphasizes the pressure around airports, yielding to a high
congestion level on Terminal Maneuvering Area (TMA),
which causes several air transportation problems, such as flight
delays, the high workload for Air Traffic Controllers (ATCO),
and non-optimal usage of ground resources [16].

Accurate knowledge of aircraft arrival times is one of the
fundamental factors for ATCO to efficiently handle air traffic
flows around the airport [13]. With more accurate information
about arrival traffic, arrival manager systems, such as AMAN,
will be more efficient in predicting the arrival sequencing,

scheduled departure, and arrivals, then maintaining an orderly
and safe flow in TMA (around 25 NM from the airport). These
could lead to larger ground taxi times on airports and delays
in the air. On the other hand, with an accurate prediction
of arrival and departure times before reaching TMA, airport
ground equipment and crews can be more effectively deployed
in advance.

In this paper, we are going to propose a data-based approach
to predict the Landing Time (LDT) of an aircraft in the
Extended-TMA (E-TMA) airspace. With the available data, we
will emphasize on the feature selection and extraction problem
in Machine learning methods. Changi airport is considered as
the case in our study to validate the proposed methodology.

The structure of this paper is organized as follows. First,
section II presents an overview of the background, and a
literature review summarizing the previous main works that
belong to the scoop of our topic. Second, section III describes
our proposed methodology, which is divided into two sub-
sections: data preparation and data exploration. Then, section
IV highlights the feature extraction and prediction model. Sec-
tion V discusses the computational results. Finally, conclusions
are drawn in section VI.

II. STATE OF THE ART

A. Arrival management in TMA

The ATCO is responsible for guiding each arrival aircraft
entering the TMA until reaching the runway. In reality, this
process is performed as follows:

• ATCO assigns to each aircraft the STAR route, which
represents a set of way-points to be flown.

• The Flight Management System (FMS) computes the
optimal descent plan and transmits the Estimated Time
of Arrival (ETA) and the feasible time window at the
metering fix to the ATCO.

• ATCO assigns a Controlled Time of Arrival (CTA) within
the feasible window.

• FMS computes the optimal descent plan complying with
the CTA.

• FMS executes the descent plan and meets the CTA.
Furthermore, in order to meet the required level of safety
and efficiency, ATCO relies on decision support tools, such
as Arrival Manager System (AMAN) to compute the optimal



sequences and scheduling of landings flights at the runway.
To this end, the AMAN systems apply prediction models
to predict the time of arrival of the aircraft to the runway.
The used prediction models heavily rely on mathematical
approaches, which usually fail in accurately predicting flight
arrival times due to its inefficiency in handling uncertainties.
As a result, the arrival sequencing has to be updated constantly
so as to provide precise information to ATCOs [14], [15]. An
accurate prediction of aircraft LDT is a challenging task due
to the non-deterministic nature of both environmental and air
traffic factors which are summarized as follows:

• Uncertainty in the wind and temperature calculation:
FMS uses a typical wind forecast generated by Numerical
Weather Prediction (NWP) models, which is several hours
before aircraft reaching the Top Of Descent (TOD).

• Inaccuracy in-flight parameter, such as weight and veloc-
ity.

• The trajectory assigned by the ATCO to the flight is
unknown in advance.

• ATCO frequently vectors the aircraft from the STAR
routes, either by elongating the trajectory or by shortening
it. These reroutings are caused by many factors, such
as meeting time constraints at the runway, maintaining
separation with surrounding traffic, avoiding bad weather,
or minimizing fuel consumption.

Those last-minute perturbations of flight sequencing yield to
penalizing flight withholding time and trajectory deviations,
which in turn cause delays and non-optimal flight sequencing.

B. Literature review

Predicting flight arrival times has attracted numerous atten-
tion from worldwide researchers in the past decades. Early
works focused on LDT prediction by applying deterministic
and probabilistic approaches that heavily rely on aircraft
performance models, along with either parametric or physics-
based trajectory models. The models are based on kine-
matic assumptions where parameters are determined based
on aircraft performance, planned flight routes and predicted
atmospheric conditions [5]–[7]. Despite the significant contri-
butions of these aircraft performance models, their main issues
are that they rely on ideal assumptions while overlooking the
actual constraints and human behavior factors.

On the other hand, when dealing with uncertainty and pre-
diction problems, machine learning approaches are powerful
tools that have proved their efficiencies in many fields for
several years. In the context of aviation, several methods from
the field of artificial intelligence are used to cluster [24]–
[27], detect anomalies [28], [29], [33], [34] and predict aircraft
trajectories [35]–[37], predict and resolve conflicts [30], [31],
develop dynamic airspace designs [38], [39], analyse runway
and apron operations [32], [33], [40]–[42], determine airport
performance including the impact of local weather events [43],
[44], and for airport terminal operations (turnaround) [45].
More initiatives to leverage ADS-B open data in order to
improve the state of the art are already commonplace, esp.
in the field of aircraft modelling [46], [47].

In particular, predicting LDT using data-based approaches
has been proposed as well. For example, Glina et al. [8] apply
Quantile Regression Forests (QRF) to estimate aircraft landing
times. Their model is validated with flight data from the
Dallas/Fort Worth International Airport. Their findings consist
of a short-term prediction (with a radius of prediction ranging
between 20-30 NM) of flight arrival times with accuracy about
60 seconds for 68% of flights. In the same context, [10]
presents a short-term trajectory prediction in TMA based on
4D trajectory prediction. Their model consists of data mining
and Deep Neural Networks (DNNs) model. They predict the
LDT at the TMA (within 25NM from the airport) with a MAE
of 70 seconds. We believe that controllers need to have an
accurate prediction not only in TMA, but also in larger areas.
This will help in better handling the traffic for an optimal flight
sequencing on the runway.

Furthermore, feature engineering is the process of trans-
forming raw data into features that better represent the under-
lying problem to the predictive models, resulting in improved
model accuracy on unseen data. In data-based LDT prediction
researches, several researchers emphasize the importance of
feature selection. For example, the work presented in [9]
aimed at improving the Estimated Time of Arrival (ETA)
predictions generated by the Federal Aviation Administration
(FAA)’s Enhanced Traffic Management System (ETMS). In
their work, intensive feature analysis was presented in order
to understand the main feature influencing the prediction of
ETA. By applying Random Forest (RF), they predicted ETA
with 78.8% more accurately than the FAA’s ETMS. In [9], they
did not take trajectory shape into features, but in [11], [12],
authors propose to cluster trajectories in feature engineering
before applying the prediction model. Numerical experiments
demonstrated that Neural Network (NN) with DBSCAN pre-
possessing performs best in terms of Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). However, the
aircraft trajectories with holding pattern are all considered as
noise and not served as input for the prediction model. As
inspired by Hong et al. [1], in our research, controllers intent
will be considered as an important feature in our prediction
model. We are trying to build up the features to reflect
the controllers’ decisions impact on the trajectory prediction.
We would like to investigate the assumption that the LDT
prediction model may achieve higher accuracy with more
operational features.

Thus, given a set of historical flight data, our objective is
to implement a data-based approach to predict the LDT for
each arrival aircraft in E-TMA. The framework of concept
is illustrated in Figure 1. We will address the following
challenges:

• All features related to arrival time prediction are consid-
ered and discussed in detail. Especially, wind data and
controllers’ decision intent will be considered in feature
engineering.

• Some deviations of the flight trajectories from the as-
signed STAR route are considered. Trajectories with
normal holding are included in the experiments.



Fig. 1: Framework

III. DATA ANALYSIS

The performance of data-based algorithms is directly related
to the quality of the data. A common problem affecting the
quality of data is the presence of noise and outliers. Noise
instances refer to unnecessary information with missing or
invaluable attributes, while outliers refer to instances with
exceptional values in comparison with the rest of the data.
In this section, we describe the data we use in our model,
as well as the techniques applied to remove both noise and
outliers.

A. Data source

The data used in this work is related to arrival flights to
Changi International Airport (ICAO: WSSS) in March and
April of 2019. They are collected from the following sources:

1) TMA airspace data: WSSS has two parallel runways for
domestic use, designated as 02L/20R and 02C/20C.

2) Trajectory data: The trajectory data source of this
study is Automatic Dependent Surveillance-Broadcast (ADS-
B) flight data. The public availability of aircraft ADS-B
messages has contributed to the development of online services
that display the current air traffic in real-time with worldwide
receiver networks (depending on the local coverage), such as
The OpenSky Network [17] (see Figure 2) or Flightradar24
(flightradar24.com). However, aircraft that are not equipped
with ADS-B transponder are not considered in the current
study since we do not have their flight data. ADS-B is a co-
operative surveillance technology, which provides situational
awareness in the air traffic management system. Aircraft deter-
mine their position via satellite, inertial and radio navigation
and periodically emit it (roughly one sample per second)
with other relevant parameters to ground stations and other
equipped aircraft. Signals are broadcast at 1090 MHz: a decent
ADS-B receiver antenna can receive messages from cruising

aircraft located up to 400 km far away, while the range is much
lower for aircraft flying in low altitude or on the ground. For
each flight trajectory, ADS-B data are recorded with unequal
frequency. Thus, interpolation was performed on trajectory
points in order to fix the time difference between 2 adjacent
records as 5 seconds.

Fig. 2: ADS-B messages received from arriving and departing
aircraft at Changi airport (https://opensky-network.org/)

3) Flight operational data: The flight operational data
include Scheduled Time of Departure (STD), Actual Time
of Departure (ATD), Scheduled Time of Arrival (STA), and
Actual Time of Arrival (ATA) for each flight. Flight plan
information (STD and STA) are provided by the website of
Changi airport. Furthermore, ATA is calculated using a data-
driven milestone approach [19], [42].

4) Meteorological data: The meteorological data comes
from Singapore Changi airport station. This data contains
surface wind information, including wind direction (relative
to true north) and wind speed. Each record is stated as the
measured or estimated mean value of each component over the
10 minutes prior to the issue time, unless there are significant
variations during this period. This data updates every half-
hour.

B. Data cleaning

1) Noise filtering: The following points are considered as
noise data, which should be removed:

• Duplicated data;
• Trajectories with less than 30 recording points;
• Trajectories with missing points are retained and missing

points are tuned by interpolation. However, if one of the
flight or airport features are missing, this flight is not
considered. Also, if STD, ATD, STA are missing, this
flight is removed from the dataset.

2) Outliers removing: In statistics, an outlier is an observa-
tion point that is distant from other observations. To keep our
data coherent in terms of remaining flight time (or travel time
in E-TMA), flights with very long trajectories (generally the
trajectory with very long holding time) should be removed.



For this reason, we apply the standard deviation method. This
approach ensures that 85% of remaining flight time is within
the standard deviation from the mean. As a result, trajectories
with reasonable holding are still included in the experiments.

C. Data exploration

Data exploration aims to investigate the main characteristics
of the dataset. Firstly, raw data contains 4985 flight trajectories
in WSSS area. After removing outliers and missing data, the
remaining dataset includes 3762 flight trajectories. Further-
more, it is found that runways 02L and 02C accommodate
about 90% of the traffic (3376 flight). Thus, this research
focus on runway 02L and runway 02C. All aircraft trajectories
landing to North are illustrated in Figure 3. Furthermore, it is

Fig. 3: Arrival trajectories with primary runway-in-use 02L
and 02C at WSSS

of significance to explore the distribution of predicted value.
The histogram and distribution of remaining flight time are
shown in Figure 4. The distribution is estimated with the kernel
density estimate. The mean is 25.17 min and the standard
deviation is 2.25 min. The magnitude and variation of the
predicted values provide another perspective on the difficulty
of this prediction task.

Fig. 4: Remaining flight time distribution

IV. METHODOLOGY

A. Feature construction and extraction

In ADS-B data, there are a list of features could be used
to predict the LDT. However, based on the discussions with
domain experts in Air Traffic Management (ATM), other
factors may significantly influence the LDT prediction as well,
they could be included as features in LDT prediction problem.
Detailed discussions are listed as following:

• Entry zone: Figure 5 plotted the points 100NM away from
the airport of trajectories in the training set. It can be
seen that flights are coming from mainly 7 directions. we
cluster the flights into different entry zones according to
the angle with the runway. The entry zone of each flight
then becomes a feature to specify the coming direction
of flights.

Fig. 5: Flight entry zone clusters

• Traffic density and capacity: generally, if the traffic den-
sity is lower, then the traffic demand may be lower than
capacity; If the traffic density is super higher, then the
traffic demand may be higher than capacity. The traffic
demand, density, and flow conditions directly link the
current or potential complexity of the airport. As a result,
the flight trajectories more likely deviated from the STAR
route and longer than normal. More seriously, even with
holding and delay may happen. In order to measure this
aspect, the following features are considered:

– Number of flights entering the E-TMA in the past
15 minutes.

– Number of flights expected to enter the E-TMA in
the next 15 minutes.

– Number of flights departing from WSSS in the past
15 minutes.

– Number of flights departing from WSSS in the next
15 minutes.

– Number of flights entering the E-TMA from the same
flight entry zone in the past 15 minutes.



– Number of flights expected to enter the E-TMA from
the same flight entry zone in the next 15 minutes.

• Landing sequencing: deviation of trajectories is strongly
related to the arrival sequencing on the runway. The flight
trajectory could be elongated or shortened in order to
satisfy an optimal and safe use of the runway. There-
fore, based on First-Come-First-Serve (FCFS) arrival
sequencing on the runway, we are considering to add the
following features for each flight:

– Decision intent: it can be either elongation if the
flight is expected to shift its initial landing slot
backward; or nominal if the flight is expected to keep
its initial landing slot, or short-cut if the flight is
expected to shift its initial landing slot forward.

– Time shift: represents the time window needed in
order to satisfy the optimal sequencing on the runway
resulting from the FCFS algorithm. The time shift is
positive in case of elongation, null in case of nominal
and negative in case of short-cut.

• Seasonality: the chronological information is important
to consider when tracking air traffic data. traffic flow in
the airport can be affected by different seasonal factors,
including the time of the day, holiday, etc. Limited by the
size of the dataset, we only focus on the daily and weekly
patterns. To avoid creating too many features (24 hours
per day, 7 days per week), for each record, the hour is
classified into the morning, afternoon, or dark by sunrise
time, solar noon and sunset time. The date is classified
into weekday or weekend. In the dark, the traffic demand,
density, and flow become few. On the contrary, they are
more likely dense in the morning and afternoon, but with
opposite trends. The air traffic flow also links with days
of the week.

• Wind: firstly, surface wind direction and speed will affect
the runway-in-use for arrival flights, because generally,
aircraft need to land in headwind condition. In excep-
tional tailwind conditions, the maximum tailwind limita-
tion for a safe landing is normally 15 knots. Secondly,
tailwind conditions at high altitudes will increase aircraft
ground speed. Thus, if the remaining distance is fixed,
then the required flight time will be shorter. In our case,
if the traffic density in TMA is low, and there is no
capacity limitation at airport, then a tailwind condition
will definitely accelerate the aircraft to land at the airport;
however, if there is already frequent delay happening
at the airport, then the tailwind effect on aircraft land-
ing time prediction could be ignored. In brief, tailwind
conditions in high altitudes will benefit the aircraft with
decision intent labeled by short-cut. Currently, we don’t
have the wind field data, as the wind energy will increase
with the altitude in E-TMA airspace, so we will only use
surface wind data in this paper.

B. Prediction models
Several machine learning models are used in this study,

including Gradient Boosting Machine (GBM) [21], Random

Forests (RF) [22] and Extra-Trees (ET) [23]. Deep learning
techniques and linear models are not used, since deep learning
is hard to be implemented with limited data, and linear
models are not suitable for this task. GBM is a famous
ensemble learning method and can be viewed as iterative
functional gradient descent algorithms. RF are popular tree-
based ensemble learning method. They are combinations of
tree predictors such that each tree in the forest depends on the
values of a random vector sampled independently and with
the same distribution. With the combination of weak learners,
a stronger learner will be generated. As an ideal candidate for
bootstrap aggregating (bagging) algorithm, the idea in RF is
to improve the variance reduction of bagging by reducing the
correlation between the trees, without increasing the variance
too much. ET are also a popular tree-based ensemble learning
model. ET are very similar to RF, except for the sampling and
split strategy.

V. RESULTS

A. Feature discussion

All possible feature types are summarized in Table I.
These features could be grouped into 6 types: aircraft-related
features, airport-related features, trajectory related features,
weather-related features, control intent related features and
seasonality related features. All categorical features are en-
coded into dummy variables, namely one-hot encoding. The
final feature set contains 244 features. Remark that the avail-
able data is not rich enough for training given such number
of features. Besides, the large number of dummy variables
make the feature set very sparse. Some of the features may be
either redundant or irrelevant. Thus, feature selection should
be performed.

To have an initial impression on the relationship between
features and target variable, Pearson correlation coefficient is
used as a measure of the linear correlation between variables.
It’s absolute value is between 0 and 1, 0 is no linear correlation
and 1 is total linear correlation. Figure 6 highlights the 20

Fig. 6: Absolute Pearson correlation efficient between features
and target variable



TABLE I: Summary of All Possible Features

Group Feature Description

Aircraft Airline Name of the airline
Aircraft type Type of the aircraft

Airport
Departure airport Airport the flight departs from
Destination airport Airport the flight arrives to
Runway Runway the aircraft will be landing in

Trajectory

Latitude, longitude and altitude 3D position of the flight at each point
Speed Ground-speed of the aircraft at each position
RoC Rate of climb of the aircraft at each position
Heading Heading of the aircraft at each position
STD Scheduled Time of Departure at the runway
ATD Actual Time of departure at the runway
STA Scheduled Time of Arrival at the runway
Entry zone The zone that flight is coming from in E-TMA

Weather Surface wind Wind direction and speed

Control intent

Current traffic density Number of arrival and departure aircraft in the last 15 minutes in E-TMA
Traffic demand Number of arrival and departure aircraft in the next 15 minutes in E-TMA
Adjacent flow Number of aircraft in the last and next 15 minutes in the same entry zone
Landing sequencing decision Elongation, Short-cut, or Nominal based on FCFS sequencing
Sequencing time shift The amount of shift time for safe sequencing and landing

Seasonality Parts of a day Morning, afternoon, or dark
Parts of a week weekday or weekend

highest Pearson correlation coefficients between the model
features and the flight LDT. It can be seen that even the
highest coefficient is less than 0.2, which indicates that there
is no obvious linear correlation between features and LDT.
The nonlinear relationship between the explanatory variable
and the response variable illustrate again the great challenge
of this study.

To select the features, permutation feature importance is
introduced [20]. It is defined to be the decrease in a model
score when a single feature value is randomly shuffled. Figure
7 illustrates the first 20 important features in the training set of
three models. These features are selected as the input variables
for each model. Each feature is permuted for 20 times. The
overall permutation importance of each feature is illustrated
by the box plot.

These feature ranking results give an insight into the impact
of the model attributes on the prediction results. However,
each model has a different view of features for the prediction.
Therefore, the feature importance differs for different models.
In RF, the traffic demand, current traffic density, parts of a day
and surface wind are considered more important than other
features. These features are also important in ET, but the parts
of a day are more focused on. In terms of GBM, the case
is overall similar to other models, but a certain aircraft type
A388, the world’s largest passenger airliner, is thought to be
relevant to LDT. Among the three models, 4 groups of features
play a significant impact on LDT prediction, they are:

1) Control intent: traffic demand, current traffic density and
adjacent flow;

2) Weather: surface wind;
3) Trajectory: the position of aircraft;
4) Seasonality: parts of a day and a week;

The common important features provide a novel point of
view of the artificial intelligence point of view on the factors
that influence LDT.

B. Prediction results

The LDT prediction model evaluation is based on two
metrics : Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE), computed as follows:

MAE =
1

n

n∑
i=1

|yi − ỹi| (1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ỹi)2 (2)

where n is the number of flights in the test flight set, ỹi is the
LDT predicted value of the i-th flight and yi is its true value.

The prediction results are shown in Table II. The perfor-
mance of the three machine learning models is compared
for the two runway in-use. By comparing the results of the
three models we notice that our problem is less sensitive to
the choice of the machine learning model. In fact, the MAE
difference between the three models is less than 5 seconds for
runway 02L, and 10 seconds for runway 02C. Nevertheless,
in our model, ET provides better results than RF and GBM in
terms of MAE and RMSE for the two runway-in-use.

To further evaluate the prediction result of machine learning
models, we demand the ETA data predicted by the current
operations system in WSSS and the ATA data of these flights
from the airport operations control center. The operations
system is called baseline. For comparison, the best machine
learning model reduces the MAE over 50 seconds and the
RMSE nearly 150 seconds. In terms of runway 02L, MAE
is reduced by over 30 seconds and RMSE is reduced by
nearly 100 seconds. This result also reflects the prediction
of LDT made by the current operations system is not stable,
which contains very large errors. Machine learning models
perform much better, which can be used to enhance the airport
operations system.



(a) RF

(b) ET

(c) GBM

Fig. 7: Permutation importance of models

VI. CONCLUSIONS

In this work, a method to predict aircraft Landing Times
(LDT) is presented. The proposed model includes data analysis
in order to determine the most important features that have
an impact on predicting the arrival times on runway. Then, 3
machine learning models are trained for the prediction.

In order to evaluate the performance of our models, com-
putational results are conducted on real traffic data for Changi
Extended TMA. Two important conclusions can be drawn.

TABLE II: Aircraft LDT Prediction Results

Models 02L 02C

MAE (s) RMSE (s) MAE (s) RMSE (s)

Baseline 142.84 260.13 116.14 200.08
RF 101.92 125.94 94.19 115.2
ET 91.96 111.97 85.32 104.05
GBM 93.07 114.8 86.47 106.14

First, predicting the aircraft LDT is strongly correlated with
the TMA density at the flight operation time. This is not sur-
prising as in dense traffic controllers require more elongations
to handle the traffic sequencing on the runway, while in less
dense situations, short-cut trajectories are frequently proposed.
Second, feature selection with domain knowledge and expert
opinions is very important, and with good features, the model
is less sensitive to the choice of machine learning algorithm.

In future works, we plan to include wind field data at the ex-
tended TMA, not only the runway surface wind. Furthermore,
in our current model, we do not consider dynamic runway
change. Thus, a classification model for runway prediction
should be investigated.
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